
Powertrain Control Verification Benchmark

Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, Ken Butts
firstname.lastname@tema.toyota.com

Powertrain Control and Model-based Development, Toyota Technical Center, USA

Abstract. Industrial control systems are often hybrid systems that are required to
satisfy strict performance requirements. Verifying designs against requirements is
a difficult task, and there is a lack of suitable open benchmark models to assess,
evaluate, and compare tools and techniques. Benchmark models can be valuable
for the hybrid systems research community, as they can communicate the nature
and complexity of the problems facing industrial practitioners. We present a col-
lection of benchmark problems from the automotive powertrain control domain
that are focused on verification for hybrid systems; the problems are intended
to challenge the research community while maintaining a manageable scale. We
present three models of a fuel control system, each with a unique level of com-
plexity, along with representative requirements in signal temporal logic (STL).
We provide results obtained by applying a state of the art analysis tool to these
models, and finally, we discuss challenge problems for the research community.

1 Introduction

Hybrid dynamical systems are prevalent in modern control designs, and many researchers
continue to develop new technologies and tools to analyze such systems. Unfortunately,
there is a paucity of standard benchmark systems and accompanying requirements that
researchers can use to evaluate and compare the efficacy of their analysis techniques.
Industrial benchmark problems can be of added value as they exemplify the context,
scale, and complexity of real-world hybrid systems challenges. Often, however, indus-
trial models are either proprietary and cannot be shared with the research community
or they are too complex to be investigated with academic tools. To address this, we
present a suite of benchmark hybrid systems verification problems in the form of a se-
ries of models of an automotive powertrain control system along with a collection of
formal specifications.

An inherent challenge in the analysis of hybrid systems is that even the simplest of
problems run into the problem of undecidability; for example, the problem of reach-
ability analysis for linear hybrid automata was shown to be undecidable [21]. Many
researchers have worked on this problem [5, 7], and continue to extend reachability
analysis to systems with more interesting nonlinear dynamics [9]. This research area
has been served well by efforts such as [15] that have formulated benchmark problems.
The benchmarks proposed in [15] are easily extensible, for example a navigation system
with a parameterized set of cells on a map-grid. While the original paper evaluated tools
such as d/dt, CHARON, and a predicate abstraction based verifier on the benchmark
problems, these benchmark problems have also successfully influenced more recent re-
search leading to tools such as PHAver [16], SpaceEx [18] and iSAT [14].

In this paper, we present three benchmark models, a set of challenge problems and
suite of requirements in Signal Temporal Logic (STL) specifying the behavior and per-
formance of the models. The models that we present in Sec. 3 are successive simplifi-
cations of the model of an important control problem in the automotive domain, that of
air-fuel (A/F) ratio control [10]. In an internal combustion engine, the ratio of air mass
to injected fuel has direct implications on the rate of exhaust gas emissions, driveability
and fuel efficiency. A three-way catalyst (TWC) system (used in catalytic converters
that reduce the amount of undesirable exhaust gases) performs optimally when the A/F
ratio is at the stoichiometric value. The control problem for this system is to maintain
A/F ratio to this set value.

The first model is the most complex model, implemented using Simulink1 and con-
tains many features typical of an industrial closed-loop system; i.e., a plant model that
captures the physical aspects of the fuel and air subsystems and has elements such as
lookup tables (LUTs), variable transport delays, and highly nonlinear dynamics, and a
controller model that is a time-triggered system with mode switching behavior that has
hysteresis. This model is beyond the capabilities of most existing formal verification
tools; with the state of the art, the best one could achieve with this model is simulation-
based falsification.

The second model presents hybrid I/O automata (HIOA) models of the plant and
the controller and an automaton representing their composition. In this model, we sim-
plify dynamics of some subsystems, remove time delays, replace lookup tables with
continuous functions, and remove certain subsystems. The plant is an HIOA model of a
continuous dynamical system, while the controller is an HIOA model of a discrete-time
multi-modal dynamical system. The third model is a further simplification in which the
controller is modeled with continuous-time differential equations, and all nonpolyno-
mial dynamics are approximated by polynomials. These final two models could, per-
haps, be more amenable to formal techniques such as reachable set estimation or stabil-
ity analysis.

The rest of the paper is organized as follows. We review definitions related to hy-
brid I/O automata and Signal Temporal Logic in Section 2. In Section 3, we present
the three benchmark models and provide a collection of formal requirements for them
in Section 4. Section 5 presents samples of analyses of the models using a falsifica-
tion tool known as S-TaLiRo [6]. Finally, in Section 6, we present verification research
challenges.

2 Preliminaries

In this section, we briefly review the terminology that we will use in this paper. We use
the formalism of hybrid input/output automata (HIOA) similar to the one presented in
[17, 24]. These are essentially hybrid automata extended with ability to process exoge-
nous inputs and produce outputs. We further elaborate on how a hybrid system with a
mixture of discrete-time and continuous-time state variables can be modeled by such a
hybrid automaton. Finally, we introduce the falsification problem for hybrid systems.

1 SimulinkTM is a registered trademark of the MathWorks Inc.

2.1 Hybrid I/O Automata

A hybrid automaton is a useful model of a system that displays continuous-time behav-
ior interleaved with discrete jumps. Hybrid automata with inputs and outputs have ad-
ditional structure as they allow exogenous time-varying inputs, and observable outputs.
Due to this additional structure, HIOA facilitate modular descriptions of subsystems
and their compositions to obtain larger systems.

Let V = {v1, . . . , vk} denote a set of variables, such that each of them takes values
from possibly different domains. Let D(V) denote the domain of values for the variables
in V . Let ν(V) denote a valuation for the variables, i.e., a tuple of values from D(V).
In the sequel, we follow the notation that caligraphic symbols (such as V) denote sets
of variables {v1, . . . , vk} and the corresponding normal capitalized, italic font letters
(such as V) to denote D(V).

Formally, a hybrid input/output automaton (HIOA)A is defined as a tuple (L,X ,U ,M,G,R, ∆, T ,Y, I),
where:
– L is a finite set of discrete modes.
– X = {x1, . . . , xn} is a finite set of n state variables, and following the notation

defined before, X denotes the set of all valuations of X . The hybrid state space is
thus a subset of the set L×X . We use x as an abbreviation for the tuple (x1, . . . , xn).

– U = {u1, . . . , um} denotes a set ofm typed input variables. Note that input variables
could be of different types such as R, Z, Booleans, etc. We use u as an abbreviation
for the tuple (u1, . . . , um).

– M maps each mode ` with a mode invariantM(`) ⊆ X × U .
– G is a set of predicates over X × U .
– R is a set of functions from X × U to X .
– ∆ ⊆ L×G×R×L, is a finite set of transitions. For each transition δ : (`, g, r, `′) ∈
∆, g ∈ G is its guard predicate, and r ∈ R its reset map.

– Let T ⊆ R≥0 represent the domain of time values. A trajectory τ(X ,U) is a function
from T to (X ×U) that describes the valuations of the input variables and state vari-
ables over time. T is a finite or infinite set of trajectories. In an HIOA, a trajectory is
often a sequence of alternating flows (within modes) and resets (consistent with mode
transitions). For a given mode `, the flow within the mode is typically the solution
trajectory x(·) of an initial value problem as described by an ordinary differential
equation (ODE) of the form ẋ = f`(x,u) with ν(x) = x0 at time t = t0.

– Y ⊆ X denotes a set of typed output variables.
– I ⊆ L × X is the set of possible initial discrete modes and valuations of the state

variables.
In what follows, we use x(t), u(t) to denote the valuation of the variables x and u

at time t.

Parallel Composition. Given two HIOA A1 and A2, where Ai is defined as the tu-
ple (Li,Xi,Ui,Mi,Gi,Ri, ∆i, TiYi, Ii), for i ∈ {1, 2}, we say that A1 and A2 are
compatible if X1 ∩ X2 = ∅, Y1 ⊆ U2 and Y2 ⊆ U1.

The parallel composition operation allows compatible HIOA representing two mod-
ules to be composed to form a composite module. Note that the input and output vari-
ables that are part of the interface between two HIOA disappear as a result of composi-

tion. For a given set X , let X ↓ Y denote projection or the restriction of X to the ele-
ments of Y . The composite HIOAAc = A1 ‖ A2 representing the parallel composition
ofA1 andA2 as shown above is defined as the tuple (Lc,Xc,Uc,Mc,Gc,Rc, ∆c,Yc, Tc, Ic),
where:
– Lc = L1 × L2,
– Xc = X1 ∪ X2,
– Uc = (U1 ∪ U2) \ (Y1 ∪ Y2),
– ν(Xc) ∈Mc(`1, `2) iff for i ∈ {1, 2}, ν(Xc ↓ Xi) ∈Mi(`i),
– Gc is a set of predicates over Xc × Uc and Rc is a set of functions from Xc × Uc to
Xc.

– A transition δc of the form (`c, gc, rc, `
′
c) is in the set ∆c if:

◦ There is a transition δ1 ∈ ∆1 of the form (`1, g1, r1, `
′
1), and `c = (`1, `2), gc =

g1, rc = r1 and `′c = (`′1, `2), or,
◦ there is a transition δ2 ∈ ∆2 of the form (`2, g2, r2, `

′
2), and `c = (`1, `2), gc = g2,

rc = r2 and `′c = (`1, `
′
2) or,

◦ there are transitions δ1 and δ2 as described in the previous cases, and `c = (`1, `2),
`′c = (`′1, `

′
2), gc = g1 ∧ g2, and rc = r1 ∪ r2.

– Yc = (Y1 ∪ Y2) \ (U1 ∪ U2),
– A trajectory τ(Xc,Uc) is in Tc iff for i = 1, 2, τ(Xi,Ui) ∈ Ti.
– ((`1, `2), ν(Xc)) ∈ Ic iff for i = {1, 2}, (`i, ν(Xc ↓ Xi)) ∈ Ii.

Modeling discrete-time updates. In our model, we have a mixture of states that evolve
in continuous-time according to dynamics defined by an ODE, as well as states that
evolve in discrete-time that stay constant between discrete time-steps. The latter can be
modeled by a traditional hybrid automaton using resets.

2.2 Polynomial Hybrid I/O Automata

Let UR denote the variables U restricted to those uj that take values over R. Let
P(x,u, k) denote the set of all polynomial functions from (X × UR) to R, such that
for any polynomial function f(x,u) ∈ P(x,u, k), the maximum degree of any mono-
mial in f(x,u) is k. Further, let B(x,u, k) denote the infinite set of predicates of the
form g(x,u) < c, where g ∈ P(x,u, k) and c ∈ R. A polynomial hybrid I/O automaton
(PHA) is an HIOA where:
– For each mode `, the flow within the mode is described as a solution trajectory of the

initial value problem of an ODE of the form ẋ = f`(x,u), where f` ∈ P(x,u, k).
– For each mode `,M(`) is a finite Boolean combination of predicates in B(x,u, k).
– The set G is a finite subset of the set B(x,u, k).
– The setR is a finite subset of P(x,u, k).

A well-known subclass of polynomial hybrid I/O automaton is that of linear hybrid
automata (LHA), where the sets in the above definition are restricted to those with
degree k = 1. As reachability analysis tools such as SpaceEx [18], and Flow* [9] are
applicable for models expressed as LHA and PHA respectively, these are interesting
subclasses of the general model.

2.3 Falsification Analysis

In Section 4, we provide some benchmark specifications that characterize desired be-
havior of the closed-loop system consisting of the plant and the controller. Such formal
specifications, also known in the automotive world as verifiable requirements are typi-
cally not expressed in a format amenable to analysis tools. The ultimate goal for auto-
motive control systems is improvement in metrics such as fuel economy, driveability,
and lower exhaust gas emissions. With the benchmark specifications, our intent is to
map these high-level requirements to checkable requirements on individual subsystems
(such as the A/F control subsystem).

To specify requirements, we use the formalism of signal temporal logic (STL) or its
close variant metric temporal logic (MTL). These logics are extensions of linear tem-
poral logic (LTL), which is used in software verification to specify correctness of finite
or infinite traces of programs. STL and MTL extend the temporal operators provided
by LTL with time-intervals, and this allows us to specify real-time requirements. While
MTL characterizes time-varying behavior of pre-defined Boolean predicates, STL ad-
mits time and frequency-domain properties on signals [12, 13]. Here, we focus on the
time-domain specifications using STL. Below we give the formal syntax and semantics
of STL, which are similar to those of MTL [23, 4].

Syntax and Semantics of STL. STL is a temporal logical formalism that allows pred-
icates on real-valued signals; it is used to specify precise real-time relations between
predicates. An n-dimensional signal x is defined as a function from a time domain (in
our case this is some interval, i.e., a bounded and closed subset of R) to Rn.

Informally, an atomic unit of an STL formula is some predicate µ on an n-dimensional
signal x, and can be converted to an inequality of the form f(x) > 0, where f is any
function from Rn to R. Note that as x is an n-dimensional signal, this definition allows
constraints relating multiple signals. Further, equality constraints can be specified by us-
ing Boolean combinations of predicates. Relations between predicate values at different
time instants in a signal are specified using timed temporal operators. Temporal opera-
tors such as � (“always”), ♦ (“eventually”) and U (“until”) are commonly used. Each
temporal operator ranges over an open time-interval of the form (a, b) where a, b ∈ R.
Other time-intervals such as those with one or both end-points included in the interval
are also permitted. We use I to denote any such time-interval. While it is known that
the � and ♦ operators can be rewritten using the U operator, in the following formal
syntax we include them for completeness:

ϕ ::= true /* the true predicate */
| µ /* µ: signal predicate f(x) > 0 */
| ¬ϕ | ϕ ∧ ψ /* Boolean combinations */
| �ϕ /* always */
| ♦ϕ /* eventually */
| ϕUI ψ /* timed until */

The satisfaction of an STL property by a signal is always relative to a specified
time instant in the signal. We denote by (x, t0) |= ϕ the satisfaction of ϕ by x at time
t0. The semantics of STL formulas are inductively defined using first-order logic with

quantifiers as follows:

(x, t0) |=
µ iff x satisfies µ at time t0
¬ϕ iff (x, t0) |=/ ϕ
ϕ1 ∧ ϕ2 iff (x, t0) |= ϕ1 and (x, t0) |= ϕ2

�(a,b)ϕ iff ∀t : t ∈ (t0+a, t0+b)⇒ (x, t) |= ϕ
♦(a,b)ϕ iff ∃t : t ∈ (t0+a, t0+b) ∧ (x, t) |= ϕ
ϕU(a,b) ψ iff ∃t1 : t1 ∈ (t0+a, t0+b) ∧ (x, t1) |= ψ∧

∀t2 : t2 ∈ (t0, t1)⇒ (x, t2) |= ϕ

Falsification Problem. In simple terms, the falsification problem is to determine if
given a hybrid system, there is a trajectory of the system that does not satisfy a specific
logical requirement. In addition to the Boolean semantics specified above, the logics
STL and MTL also allow quantitative semantics. These allow us to define a numeric
value known as the robustness value or the satisfaction value for a property with respect
to a given (x, t0) (denoted as ρ(x, t0, ϕ)). Informally, ρ(x, t0, ϕ) indicates how strongly
(x, t0) satisfiesϕ. A large positive value means (x, t0) easily satisfiesϕ, a small positive
value means that (x, t0) is very close to violating ϕ, and a negative value indicates
(x, t0) 6|= ϕ. The quantitative semantics for STL can be found in [12].

When equipped with the quantitative semantics, previous work has framed the fal-
sification problem as the problem of minimizing the robustness value. If the minimum
value is negative, a counterexample is obtained. This optimization problem is over a
highly nonlinear and hybrid space, and hence traditional optimization techniques may
not succeed in finding counterexamples. In [6, 28] the authors have proposed using tech-
niques based on stochastic optimization to find traces with minimum robustness value.
In Sec. 5, we present results from experiments using S-TaLiRo to falsify some of our
benchmark requirements for each of the benchmark models.

3 Models

In this section, we present three different versions of an automotive air-fuel control
model. We begin with the most complex version and end with the simplest. All param-
eter values are listed in the Appendix.

3.1 Abstract Fuel Control System

We present a description of a fuel control model implemented in Simulink. The model
contains the air-fuel controller and a mean-value model of the engine dynamics, such
as the throttle and intake manifold air dynamics. The controller has provision to operate
in either a.) a closed-loop mode using Proportional + Integral (PI) feedback control
along with feedforward control based on an observer or b.) an open-loop mode using
feedforward control based on the observer.

The plant model consists of the throttle and intake manifold and the air-path dynam-
ics. The throttle and intake manifold models are taken from the Simulink Demo palette

[30], which was based on the work by Crossley and Cook [11] (excluding an exhaust
gas recirculation system). We assume that the throttle angle θin (in degrees) and the
engine speed ω (in rad/sec) are exogenous inputs to the model.

Throttle Control. An electronic throttle control system takes exogenous throttle com-
mands θin as input and regulates the throttle plate position θ to the desired setpoint. We
model this system with the following first-order ODE:

dθ

dt
= 10(θin − θ). (1)

Throttle Air Dynamics. The throttle air dynamics subsystem defines the rate at which
air flows past the throttle plate, or in other words the rate at which the throttle intro-
duces air into the intake manifold. This rate is denoted by ṁaf and often called the
inlet air mass flow rate. The quantity ṁaf is a product of two functions, one is an em-
pirical function of the throttle plate angle given in degrees (denoted by the intermediate
variable θ̂), and the other is a function of the atmospheric and manifold pressure. The
former is given by the following polynomial equation:

θ̂ = c6 + c7θ + c8θ
2 + c9θ

3.

Let state variable p be the manifold pressure (in units of bar), and let c10 represent
atmospheric pressure. The inlet air mass flow rate (denoted ṁaf) in grams per second
is given by:

ṁaf = 2θ̂

√
p

c10
−
(
p

c10

)2

. (2)

Intake Manifold. The following details the manifold dynamics, as found in the Simulink
Demo palette [30]. The rate ṁc at which air flows into the cylinder is a function of the
throttle, and is known as the pumping polynomial (the quantity in parentheses in the
RHS of (3)). In the controller, we implement an estimator for p, and to model error in
estimation, we use the parameter c12.

ṁc = c12
(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)

(3)

According to the ideal gas law, the derivative of the manifold pressure is propor-
tional to the net rate of change of air mass in the intake, which is the difference between
the rate at which air enters the manifold (ṁaf) and the rate at which it is pumped into
the cylinder (ṁc). In other words, the ODE for p is given as:

dp

dt
= c1 (ṁaf − ṁc) , (4)

Substituting (2) and (3) into (4), we have

dp

dt
=

c1

2θ̂
√

p

c10
−
(
p

c10

)2

− c12
(
c2+c3ωp+c4ωp

2+c5ω
2p
). (5)

Cylinder and Exhaust. The air-fuel path aspects of the model, including the cylinder
and exhaust dynamics, are largely based on the development in [20]. Let ṁϕ be the rate
of flow of fuel into the cylinder, in g/s. The A/F ratio in the cylinder is then given by:

λc(t) =
ṁc

ṁϕ
. (6)

In reality, there is a variable transport delay incurred when the exhaust gas produced
by the engine reaches the oxygen (O2) sensor for the A/F ratio measurement. This
delay is given by a 2D lookup table (LUT 4(b) in the appendix). The LUT values are
estimated values, taken from Figure 4.24 in [20]. The table axes are the air mass into the
cylindermc and the engine speed (n) in rpm (revolutions per minute). The former can be
obtained from ṁc and the engine speed in rad/sec (ω) asmc =

πṁc
ω . Let the delay value

obtained from the table be denoted∆(mc, n). The delayed A/F ratio passes through two
first-order transfer functions, representing the exhaust system transport dynamics and
the O2 sensor dynamics. The output of the transfer functions is the measured A/F ratio,
denoted λm(t). Then the ODE governing λm(t) is given by:

d2λm(t)

dt2
=

1

0.002

(
−0.12dλm(t)

dt
− λm(t) + λc(t−∆(mc, n))

)
. (7)

Sensor Fault. The oxygen sensor measures the amount of oxygen in the exhaust gas,
which is proportional to the air-fuel ratio. The oxygen sensor measurements are fed back
to the controller. An external event can trigger a fault in the oxygen sensor. This fault
causes the output of the oxygen sensor to raise the sensor failed flag. The controller
detects this fault condition and reacts by switching to a mode of operation where only
feedforward control is applied, and feedback control is disabled.

Wall Wetting. The wall wetting dynamics are based on the description of the Aquino
model described in [20]. The mass of the fuel flowing into the cylinder is given by (8).
Parameters κ(·) and τ(·) appear in the Aquino model and depend on several factors
including engine speed (in rpm) and the air mass in the cylinder, and are approximated
by 2D LUTs (LUT 4(a)). The LUTs presented contain values estimated from those in
[20] Figure 2.21.

ṁϕ = (1− κ(n,mc))ṁψ +
mf

τ(n,mc)
, (8)

In (8), ṁϕ is the fuel mass aspirated into the cylinder, ṁψ is the fuel mass injected
into the intake manifold. The dynamic equation for the mass of fuel stored in the fuel
film, mf , is given by:

dmf

dt
= κ(ω,mc)ṁψ −

mf

τ(ω,mc)
. (9)

Equations (8), (9) are taken from (2.60) and (2.61) in [20].

State Unit Description

p bar Intake manifold pressure
λ - A/F Ratio
pe bar Est. manifold pressure
i - Integrator state, PI

ṁaf g/s Inlet air mass flow rate
ṁc g/s air flow Rate to cylinder
θin degrees Throttle angle input
θ degrees Delay-filtered throttle angle
θ̂ - O/P of Throttle polynomial
ω rad/sec Engine speed
Fc g/s Commanded fuel

Table 1: States and Intermediate Variables

To summarize, a modular view of the plant model is considered with the following
interface specifications, and main internal states:
– Exogenous Inputs: Throttle Angle (θin), Engine Speed (ω).
– Inputs from Controller: Fuel command (Fc).
– Outputs to Controller: Measured inlet air mass flow rate (ṁaf) and the measured

A/F ratio (λm).
– Continuous-valued States: Intake Manifold pressure (p), two states associated with

(7), the state associated with the filter block for the throttle input (θ), fuel stored in
the fuel film (mf), and states associated with the variable delay2.

Controller. The controller is a sampled-time subsystem with two high-level subsys-
tems: 1.) a Proportional + Integral (PI) feedback controller, 2.) a feedforward controller
based on an estimate of the air mass entering the cylinder. The controller is compli-
ant with a standard published by the MathWorks automotive advisory board (MAAB),
which is used by the automotive industry. We used Version 3.0 of the MAAB standard
[26].

The feedforward controller estimates the rate of air flow into the cylinder based on
a measurement of the inlet air mass flow rate (ṁaf). In a real system, such an observer
is a carefully designed system that compensates for delays and noise in the plant model;
for example an extended Kalman filter. For simplicity, we choose an “almost perfect”
observer, i.e., we assume almost perfect knowledge of the pumping polynomial (mod-
ulo some multiplicative error factor) to observe state p (intake manifold pressure), and
use the observer state (denoted pe) to compute the estimated air mass flowing into the
cylinder. The feedback PI controller regulates the A/F ratio in closed-loop, and uses the
measured A/F ratio to compute the fuel command (Fc). The controller has four modes
of operation, that we now detail.
1. Startup mode: Standard O2 sensors produce accurate measurements only when they

reach a particular operating temperature; until then the controller operates in an

2 Strictly speaking, a variable system delay requires an infinite number of states to model pre-
cisely.

“open-loop” mode, i.e., with only feedforward control. In lieu of modeling the heat-
ing dynamics, we model this phenomenon with a timer. The timer limit is assumed
to be a range, and once the timer expires, the controller changes mode to a normal
mode of operation.

2. Normal mode: In this mode, the controller uses both feedback PI control and feed-
forward control to regulate the A/F ratio.

3. Power enrichment mode: This mode represents a situation where the user provides
a wide throttle angle (i.e., by depressing the gas pedal more than a certain thresh-
old). In this mode, to satisfy the power and torque demands, the controller uses only
feedforward control, and disables feedback correction until the throttle angle is re-
duced to below a certain threshold. Also, the desired A/F setpoint is adjusted from
the standard value of 14.7 down to 12.5.

4. Fault mode: This mode represents one or more sensor failures. Again, in this mode
the controller switches to open-loop control. Once entered, the system remains in this
mode.

Note that in a real system, it is certainly possible for the system to transition to
power enrichment mode directly from the startup mode or to encounter a fault in startup
mode. We choose not to model these behaviors for simplicity in modeling and analysis.
To summarize, the controller can be viewed as a module with the following inputs,
outputs and internal states:
– Inputs from Plant (sensors): Inlet air mass flow rate measurement (ṁaf), Measured

A/F ratio (λm).
– Exogenous Inputs: Throttle angle (θ), Engine speed (ω), Sensor failure event (fail event).
– Outputs to Plant: Fuel command (Fc).
– States: Estimate of the rate of air mass pumped into the cylinder (pe), Integrator state

for the PI controller (i), and fuel command state (Fc).

Error Factor Correction. A constant error factor, c24, is included in the oxygen sensor
measurement. Also, the inlet air mass flow rate ṁaf is measured by the controller; a
constant error factor, c23, is included in this measurement. The fuel command produced
by the controller and the actual fuel produced by the actuator may be different due to
actuator error; a constant fuel injector actuator error c25 is included to account for this.

3.2 Hybrid I/O Automaton Model

In this section, we present a simplification of the system dynamics described in Sec. 3.1.
Ideally, we would like to perform analysis, including formal verification, on the system
introduced in Sec. 3.1, but limitations in existing verification techniques for such sys-
tems prevent this. Hence, we present a hybrid automaton version of the system more
amenable to extant analysis techniques.

Plant HIOA. Certain aspects of the model described in Sec. 3.1 can present difficulties
to some analysis tools, such as the transport delays and LUTs. To address these con-
cerns, this version of the model presents several significant simplifications. We remove
the wall wetting subsystem entirely. For the exhaust subsystem, we approximate the
variable transport delay (which is accurately described using a delay-differential equa-

tion), the sensor dynamics and the transport dynamics by a single first order filter. Thus,
we simplify the dynamics of the A/F ratio to the following equation:

dλ

dt
= c26 (λc − λ) . (10)

Substituting (3) into (6) and using the fuel command from the controller, Fc, modi-
fied by the fuel tolerance factor, c25, we get

dλ

dt
= c26

(
c12 ·

(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)

c25 · Fc
− λ

)
. (11)

We leave the dynamics of the intake manifold pressure (p) unchanged. In effect, the
plant dynamics can be modeled by a single mode system, with the continuous states p
and λ, where xp = [p λ]T evolves according the to ODE ẋp = f(xp), where f is the
multi-valued function given by (5) and (11).

We skip the tuple definition of the plant HIOA for brevity. As it has only one discrete
mode, the sets ∆P , GP , RP are empty. The rest of the model (input variables, state
variables, output variables, states3) are as specified in the modular definition of the
plant in Sec. 3.1, except for states that were eliminated. The plant HIOA has a single
initial state given by (θ 7→ 8.8◦, p 7→ 0.9833, λ 7→ 14.7).

Controller HIOA. The controller HIOA has four discrete modes, and the transition
structure is as shown in Fig. 1. The controller HIOA tuple is defined as follows:
– The set of modes LC has four modes (startup, normal, power, sensor fail),
– The set of state variables XC is {pe, i, τ, Fc}. We use xc as shorthand to represent

the tuple of the state variables.
– The set of input variables UC is {ṁaf , fail event, λ},
– As the controller is a discrete-time system, for any trajectory in T , the flow function

for the trajectory in any mode is described by the ODE ẋc = 0.
– For each mode `,M maps ` to the negation of the conjunction of all the guards on

its outgoing transitions.
– The set of guards is {fail event = true, τ = τI , θ ≤ 50◦, θ ≥ 70◦ }.
– The set of reset functions is a union of two functions gc(·) and go(·). We define the

actual functions below.
– The transitions are as depicted in Fig. 1.
– The set of output variables is {Fc}.
– The set of initial states is the singleton set: {(startup, pe 7→ 0, i 7→ 0, τ 7→ 0, Fc 7→
0.6537)}.

We now elaborate on the discrete-time update equations that appear in the reset
transitions in Fig. 1. In what follows, h denotes the sample period for the controller,
and we use the notation x[k] to mean the value of continuous-time variable x at time
t = kh, and k ∈ Z≥0 is a sample number.

3 Technically, ṁaf is not a state in the plant, but is defined as an output variable. To make the
plant HIOA well-defined, we can introduce a dummy state in the plant, and allow only those
trajectory functions in T that are consistent with equation 2.

startup
ṫ = 1
ẋc = 0

t = h/
xc := gi(xc)
t := 0

normal
ṫ = 1
ẋc = 0

t = h/
xc := gc(xc)
t := 0

sensor fail
ṫ = 1
ẋc = 0

t = h/
xc := go(xc)
t := 0

power
ṫ = 1
ẋc = 0

t = h/
xc := go(xc)
t := 0

τ = τI

fail event
θ ≥ 70◦

θ ≤ 50◦

Fig. 1: Hybrid I/O Automaton Ac modeling the controller. The HIOA Ap for the plant
model is a single discrete mode automaton with the ODE ẋp = f(xp), and we omit its
depiction for brevity. Note that the state t in Ac is not an actual state in the respective
models, but is an artifact of modeling a discrete-time system using a HIOA formalsim.

The quantity pe denotes the estimated manifold pressure. The dynamics for the
estimated manifold pressure are:

pe[k+1] = pe[k] + hc1(c23 · ṁaf−(
c2 + c3ωpe[k] + c4ωpe[k]

2 + c5ω
2pe[k]

)
).

(12)

Closed-loop discrete dynamics. In the normal mode, which is the common operating
mode, the controller uses feedback control. The dynamics for the PI controller state and
the fuel command are given by

i[k+1] = i[k] + hc14(c24λ[k]− c11), (13)

Fc[k+1] =
1

c11
(1 + i[k] + c13(c24λ[k]− c11)) ·(
c2 + c3ωpe[k] + c4ωpe[k]

2 + c5ω
2pe[k]

)
. (14)

Note that the timer is not used in this mode, thus the corresponding update equation is

τ [k+1] = 0.0. (15)

The update function gc is a multi-valued function consisting of the RHSs of equa-
tions (12), (13), and (15).

Open-loop discrete dynamics. In the power and sensor fail modes, the signal from
the O2 sensor is ignored, and the controller uses only feedforward control, hence the
state of the integrator in the PI control does not change. Note that the timer is not used
in this mode. Also, in power mode, we use c11 = 12.5, and in sensor fail mode we
use c11 = 14.7. The update equations for the integrator state and the fuel command are
given as follows:

Fc[k+1] =
1

c11

(
c2 + c3ωpe[k] + c4ωpe[k]

2 + c5ω
2pe[k]

)
,

i[k+1] = 0.0,

τ [k+1] = 0.0. (16)

Thus, the update function go is a multi-valued function consisting of the RHSs of
equations (12) and (16).

Startup mode dynamics. In the startup mode, in addition to having open-loop con-
trol, the controller also uses the timer to count up to τI seconds. The update function gi
consists of the the first two update equations from (16), and τ [k+1] = τ [k] + h.

Controller transitions. As shown in Fig. 1, the controller starts in the startup mode
using open-loop dynamics, and after τI seconds, enters the normal mode of operation.
If at any time, the effective throttle angle input (θ) is greater than 70◦, the controller
switches to the open-loop dynamics, and when θ drops below 50◦, it switches back to
the closed-loop dynamics. In the normal mode if there is a sensor failure event detected,
the controller switches to the sensor fail mode, and remains there. In sensor fail

mode it again uses open-loop dynamics.

Closed-loop HIOA. The closed-loop HIOA is obtained by parallel composition of the
plant HIOA and the controller HIOA. As some of the interface variables are eliminated
during the composition, the closed-loop HIOA has fewer input and output variables.
The closed-loop HIOA has the same basic structure as the HIOA for the controller,
except each state also contains the plant dynamics. Further, the update equations and
the dynamics do not contain the interface variables, as for each output variable of the
plant (resp. controller), the corresponding output variable of the plant (resp. controller)
is substituted in the respective input variable of the controller (resp. plant). The final
closed-loop HIOA has 6 states (θ, p, λ, pe, i, Fc), three exogenous inputs (θin, ω,
fail event), and no outputs.

3.3 PHA model

The model presented in Sec. 3.2 contains features that present unique challenges to
hybrid systems verification tools. Specifically, the dynamic equations are not explicitly
expressed as polynomial equations. We now present a simplified version of the system,
where the continuous-valued dynamics are restricted to the class of polynomials and
are converted from mixed continuous/discrete time to ODEs. Such a hybrid system can
be analyzed by some tools, including Flow* [9]. We also eliminate the fuel command
state in the controller, as the purpose of that state is simply to implement a zero-order

hold, which is not required for a model with fully continuous dynamics in each mode
(with no resets).

We now present a PHA model of the closed-loop fuel control problem, obtained by
applying a host of simplification techniques to the model in Sec. 3.2. We approximate
the rational function in (11) with the following second order polynomial function, which
is accurate in the range 1.0 ≤ ṁc ≤ 20.0 and 0.5 ≤ Fc ≤ 1.2:

d

dt
λ ≈ c26(c15 + c16c25Fc + c17c

2
25F

2
c+

c18ṁc + c19ṁcc25Fc − λ).
(17)

Next, we approximate the square root function in (2) with a polynomial, which is
accurate in the range 0.5 ≤ p ≤ 1.0:√

p

c10
−
(
p

c10

)2

≈ c20p2 + c21p+ c22. (18)

Applying these substitutions, and using continuous-time versions of the discrete-
time update equations, we obtain the following alternative system representation:

d
dtθ = 10(θin − θ)
d
dtp = c1(2θ̂

(
c20p

2 + c21p+ c22
)
−

c12
(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)
)

d
dtλ = c26(c15 + c16c25Fc + c17c

2
25F

2
c + c18ṁc+

c19ṁcc25Fc − λ)
d
dtpe = c1(2c23θ̂

(
c20p

2 + c21p+ c22
)
−(

c2 + c3ωpe + c4ωp
2
e + c5ω

2pe
)
)

d
dt i = c14(c24λ− c11),

(19)

where Fc is given by:

Fc =
1
c11

(1 + i+ c13(c24λ− c11)) ·(
c2 + c3ωpe + c4ωp

2
e + c5ω

2pe
)
,

(20)

and ṁc is given by (3).
Again, in any mode with open loop dynamics, the air-fuel ratio signal measurement

is not used by the controller, and it only uses feedforward control. The ODEs for states
p, λ, and pe remain as in (19), and the updates for Fc and i are given by the following:

Fc =
1

c11

(
c2 + c3ωpe + c4ωp

2
e + c5ω

2pe
)

(21)

d

dt
pe = 0.0. (22)

4 Requirements

In this section, we present typical formal requirements for an A/F ratio control prob-
lem. These requirements were formulated by by surveying the A/F ratio control design

t (sec)

θin(t)
(deg)

τI
τs

d

ε ζ

ζ/2

a

90◦

8.8◦

(a)

t (sec)

µ(t)

−0.02

0.02

−0.05

0.05

η

ηobs

0.0

(b)
Fig. 2: (a) shows a pulse train input (with period ζ, amplitude a, rise time ε, and delayed
by time d) depicted by a solid line. The dashed and dotted pulse trains lines illustrate
other inputs that match the profile. (b) shows the output µ(t) when the system is excited
by the input depicted by the solid line. ηobs denotes the observed settling time for the
input, while η represents the maximum settling time as specified by requirement (27).
The dashed lines denote the settling region, and the solid lines parallel to the dashed
lines denote the maximum permitted undershoot/overshoot.

literature (cf. [10, 29]). We express requirements in STL; please see Sec. 2 for its syntax
and semantics. In the sequel, we assume that the simulation time horizon is denoted by
the symbol T .

Requirement Format. The expected behavior of most industrial control systems is
usually specified with respect to a set of input profiles. Informally, an input profile is
a parameterized representation of a possibly infinite set of input signals. For all the
requirements described here, we assume the following input profiles: (1) the engine
speed (ω) signal profile is the set of constant signals with amplitude in [900, 1100] rpm
(approx. [94.25, 115.19] rad/sec), (2) the throttle angle (θin) signal profile is the set of
pulse train signals (with pulse width equal to half the period). We use pulse(a, ζ, d)
as shorthand to symbolically denote a class of pulse train signals, such as those shown
in Fig. 2, where a is the pulse amplitude, ζ is the period (ζmin < ζ < ζmax) in
seconds, and d is some initial delay in seconds before the first pulse (to allow for effects
of transients due to initial conditions to dissipate). Here, ζmin, ζmax, and d are fixed
constants.

We assume that an input profile can be specified using an STL formula ϕI . For
instance, the θin input profile can be defined using events rise(a) and fall(a) (23
and 24). The rise event specifies that within time ε, the throttle angle rises from 8.8◦

to some value a (where 8.8◦ < a), and similarly the fall event specifies a falling
transition. The time ε represents a small unit of time, typically comparable to the the

time-step selected by the numerical integration solver.

rise(a) ≡ (θ = 8.8◦) ∧ ♦(0,ε)(θ = a) (23)
fall(a) ≡ (θ = a) ∧ ♦(0,ε)(θ = 8.8◦) (24)

Let u denote the input signals, and y denote the output signals of the model. A
behavioral I/O requirement on the closed-loop model specifies that for a signal u satis-
fying the input profile ϕI from time 0 onwards, the corresponding output y must satisfy
the output requirement ϕO, i.e., (u, 0) |= ϕI ⇒ (y, 0) |= ϕO. In what follows, we
omit the input portion of the requirements, only presenting the requirements on the out-
put signals. For convenience, we define a normalized error signal µ that indicates the
error in λ from the reference stoichiometric value λref .

µ(t) =
λ(t)− λref

λref
(25)

Requirements in the normal mode. For all the requirements in normal mode, we use
the input profile pulse(a, ζ, d) and constrain a such that 8.8◦ < a < 70◦, where 70◦ is
the value of θin that triggers a transition to the power mode. Also, we do not allow any
failure event to occur.

Transient and Steady-state behavior: Measuring both the steady-state and the transient
response of the control system with periodic pulse inputs is important. If the control
system’s response time is not fast enough, then the pulse events can occur before the
transients have dissipated, leading to insufficient performance or even instability. Also
the rising and falling edges of the pulse signal can trigger overshoots and undershoots
in the controlled signal. The first requirement (26) specifies the maximum permitted
overshoot or undershoot. Note that the requirement does not include behavior over the
initial time interval of (0, τs) (where τs = τI + ηS→N). This is to exclude behaviors in
the startup mode for the first τI seconds, and then to allow the controller to settle after
transitioning into the normal mode. For our models, we use τI = 10 secs, ηS→N = 1
second. The STL requirement (27) specifies that after each rising or falling edge of the
pulse, the signal settles within η seconds, and remains within the settling region (that
we define as λref±0.02λref) until the next rising or falling edge of the pulse can occur.
(See Fig. 2(b) for an illustration of these requirements).

�(τs,T) |µ| < 0.05 (26)

�(τs,T)

(
rise(a)|fall(a)⇒ �(η, ζ2)

|µ| < 0.02
)

(27)

Error tolerance: An important quantity for a control system is the error between the
desired setpoint and the controlled signal. A standard way of measuring this error is by
taking the root mean square (RMS) value of the error over the period of time when the
controller is in the normal mode. We first define the RMS error accumulated over time
t as a signal in (28), where u(τ) is the Heaviside step function that masks the error in
the initial τI seconds where the system is not in the normal mode. Here, the calculation

starts at τI to include the transient error introduced by the transition from the startup
mode to the normal mode.

xrms(t) =

√
1

t− τI

∫ t

0

(λ(τ)− λref)2u(τ − τI)dτ (28)

Recall that (x, 0) |= ♦[T,T]ϕ means that the property ϕ holds for (x, 0) exactly at
time T . Thus, requirement (29) states that the RMS error at time T (i.e., the accumulated
error over the duration (τI , T)) is less than some value c.

♦[T,T] xrms < c (29)

Worst-case excursions in the normal mode: The performance of the controller is sensi-
tive to the accuracy of sensors and actuators. At extremal tolerance values, we require
that the worst-case excursions in the A/F ratio remain within a given range around
the stoichiometric value. We identified two extreme scenarios corresponding to certain
fixed values of the sensor tolerances c23 and c24 and the actuator error c25.

In the first case, the following set of extremal tolerances: {c23 = 1.05, c24 = 1.01,
c25 = 1.05}, gives rise to a steady-state error in λ, where λ settles to a setpoint that
corresponds to the A/F mixture being fuel-rich (i.e., µ < 0). Thus, this set of tolerances
leads to the worst case behavior for the undershoot on µ, and requirement (30) specifies
the worst-case permitted undershoot −cr.

In the second case, the set of tolerances {c23 = 0.95, c24 = 0.99, c25 = 0.95}, gives
rise to a similar steady-state error in λ; however, here λ settles to a lean A/F mixture
(i.e., µ > 0). Thus, this set of tolerances leads to the worst case overshoot on µ, and
requirement (31) specifies the worst-case permitted overshoot cl.

�(τs,T) µ > −cr (30)
�(τs,T) µ < cl (31)

Transitioning out of the power mode: As λ in the power mode is regulated in an open-
loop fashion and has a different set-point, we want to ensure that the controller is able
to settle to a value close to λref within a specified time after switching back from
the power mode. The input profile pulse(a, ζ, d) for this requirement constrains a
differently; the constraint used here is 8.8◦ ≤ a ≤ 90◦. This allows the controller
to transition to the power mode and stay in that mode for approximately ζ

2 seconds.
Requirement (32) characterizes this settling-time requirement.

�(τs,T)

(
`= power ∧ ♦(0,ε)`= normal⇒
�(η, ζ2)

|µ| < 0.02

)
(32)

Requirements in the power mode. In the power mode, the feedforward control is
expected to provide a fuel-rich air mixture, i.e., the setpoint for the A/F ratio is λpwrref

= 12.5. Let µp(t) define the error signal in power mode, where λref in equation (25)
is replaced by λpwrref . The input profile for θin is pulse(a, ζ, d), where a is constrained

such that 70◦ ≤ a ≤ 90◦. Such a pulse input maintains the controller in the power

mode after the initial delay of τs seconds. The transient and steady-state requirements
for power mode are similar in form to the ones for the normal mode; however, as there
is only open-loop control in this mode, the requirements on λ are typically relaxed. We
omit the requirement on settling time for brevity, and in (33) specify that the maximum
undershoot/overshoot on λ is within 20% of λpwrref .

�(τs,T) (`= power⇒ |µp| < 0.2) (33)

Requirement in the startup and sensor fail mode. When the controller is in the
startup or sensor fail mode, the controller uses open-loop control. The require-
ments on λ are similar in form to the ones in normal mode, but with relaxed bounds on
the settling region and transient excursions (we omit the latter for brevity). The input
profile pulse(a, ζ, d) has similar constraints on a as the one for requirements (26),(27).
Further, we force a sensor failure event to occur at 15 seconds.

�(0,T)

((̀
= startup|sensor fail

∧ rise(a)|fall(a)

)
⇒�(η, ζ2)

|µ| < 0.1

)
(34)

5 Analysis: Case study

Table 2: Experimental results of falsification analysis with S-TaLiRo.

Model 1 (Sec. 3.1) Model 2 (Sec. 3.2) Model 3 (Sec. 3.3)

Req. Parameters Time (sec) Sim. Falsified? Time (sec) Sim. Falsified? Time (sec) Sim. Falsified?

(26) η = 1 5173.27 1000 no 1026.57 1000 no 1569.81 1000 no
(27) η = 1 5421.03 1000 no 1097.09 1000 no 1727.83 1000 no
(29) c = 0.05 4188.39 1000 no 1044.54 1000 no 1399.54 1000 no
(30) cr = 0.1 5296.41 1000 no 1058.50 1000 no 1586.46 1000 no
(31) cl = 0.1 5589.76 1000 no 1061.15 1000 no 1560.16 1000 no
(32) η = 1 5.44 1 yes 1.27 1 yes 1.73 1 yes
(33) λpwrref = 12.5 4193.46 1000 no 996.58 1000 no 1459.73 1000 no
(34) η = 1 3893.06 1000 no 1019.28 1000 no 1521.63 1000 no

In this section, we provide the results of performing falsification analysis on the
three models presented in Sec. 3 with the tool S-TaLiRo. Given the requirements in
the previous section4, S-TaLiRo searches each model for the falsifying counterexam-

4 Implementing requirements (27), (32), and (34) in S-TaLiRo is difficult, as strictly speaking
each is not a single requirement, but specifies a class of requirements for varying values of ζ.
For any fixed value of ζ, each requirement is indeed an STL formula. But, we allow S-TaLiRo
to choose ζ as an optimization variable, which changes the requirement in each iteration of
S-TaLiRo; this is not currently supported. In the actual analysis, we thus use a relaxed form of
the requirement, where the term ζ

2
is replaced by ζmin

2
.

ple. Table 2 lists the requirement under consideration, the parameter values used, total
run-time, number of simulations, and indicates if S-TaLiRo was able to find a coun-
terexample. When testing the requirements, we use the following values for the input
profile parameters: ζmin = 10, ζmax = 30, d = 3, and ε = 0.02.

Conclusions. We present a brief analysis of the experimental results presented in Ta-
ble 2. The results indicate that each requirement is either falsified by S-TaLiRo, or
S-TaLiRo exhausted a given simulation-run budget (1000 simulations) and was unable
to falsify the requirement. S-TaLiRo is unable to falsify most of the properties (either
transient or steady-state), which may indicate that the quality of the manual abstractions
that we performed vis-à-vis high-level requirements is reasonable. However, this can be
confirmed only after more rigorous conformance checking.

The tables also indicate that the requirement related to the transition out of the
power mode (32) is easily falsified for all three models. For all of the simulations ex-
plored by S-TaLiRo, once the system transitions from power mode back to normal,
we observe that the normalized error never remains within the designated error bound
within the specified settling time η. This is due to the large step in θin that is applied and
also because the λref changes instantaneously from 12.5 to 14.7 at the instant of the
transition, which causes a significant transient behavior. It is a challenge to design the
controller to behavior well in this scenario. Finally, we wish to remark that the require-
ments expressed in this paper are meant to convey the flavor of how desirable design
behavior may be expressed, and should not be interpreted as formal requirements that
are valid for actual industrial models. That said, in future work, we aspire to produce a
comprehensive suite of requirements that would comprise a benchmark suite to certify
desired behavior.

6 Analysis: Challenge Problems

Abstraction Techniques. We presented three models: the first created by control design
experts, and the second and third obtained by successive simplifications. The simpli-
fied models represent manual abstractions with no guarantees on fidelity across model
versions. Transformations with formal guarantees would be preferable; especially tech-
niques for transforming Simulink models into formal representations such as hybrid
automata. This is a stiff challenge as the semantics of the Simulink language are ob-
scure. For continuous-valued aspects of a Simulink model, we can perform numerical
linearizations automatically, but the resulting models are only valid near some operating
point. Existing works to transform Simulink models to hybrid automata typically focus
on small fragments or focus on discrete-time models [1, 25].

Reachable Set Estimation. Bounded-time reachability analysis techniques for hybrid
systems try to obtain overapproximations of the set of reachable states of the system
over a fixed time horizon, which are then used to prove system safety. Tools that address
this problem continue to mature [2, 3, 9, 16]. The SpaceEx tool [18] provides algorithms
currently limited to affine hybrid systems, while Flow* [9] can reason about a larger
class of dynamical systems by using higher order approximations. These and other tools

in this space face fundamental challenges related to the curse of dimensionality and
approximation error with its concomitant false positives.

Certain features of our models, for example the LUTs, exacerbate issues faced by
reachability analysis tools. Precise analysis of LUTs requires that each grid element of
the LUT be treated as a system mode, typically worsening the conservativeness of the
analysis. This is significant, as models of industrial systems often contain LUTs. The
variable transport delays indicate that system dynamics are given by a delay differential
equation (DDE); DDEs are not handled directly by current reachable set estimation
techniques. Finally, a practical limitation is that verification tools require systems to be
described in tool-specific formats.

Conformance Checking. As seen in this paper, we often have models representing
varying levels of system abstraction. In addition to manual abstractions created for for-
mal analysis, model refinements naturally occur during the development process. Re-
fined models usually include implementation details, e.g., controller output saturation
and fixed-point number formats. The general notion of checking behavioral proximity
of models is sometimes called conformance checking. What it means for two models to
be conformant is itself an open problem, as notions of logical equivalence are often in-
adequate in a hybrid setting. Previous work has focused on notions such as bisimulation
equivalence [19] using bisimulation functions. Existence of a bisimulation function is
a property of a model’s behaviors over an infinite time horizon, and could be a much
stronger notion of conformance than required. On the other hand, bisimulation relations
may not be a sufficient comparison; for example, there are examples where a stable sys-
tem is bisimilar to an unstable system [27]. A possible direction of research is to use
hybrid distance metrics [8] to establish conformance.

Stability proofs. Lyapunov techniques have been used for proving system stability [22].
A critical requirement of such analyses is a Lyapunov function. The problem of finding
Lyapunov functions for systems with nonpolynomial, hybrid dynamics, such as those
described in this paper is open. Furthermore, systems such as those shown in this paper
may not have an analytic form of the dynamics for proprietary components, or may
have features such as delays and look-up tables. Obtaining Lyapunov functions for both
stability proofs and more general verification tasks is a challenge.

References

1. A. Agrawal, G. Simon, and G. Karsai. Semantic translation of simulink/stateflow models
to hybrid automata using graph transformations. Electronic Notes in Theoretical Computer
Science, 109:43–56, 2004.

2. M. Althoff. Reachability analysis of nonlinear systems using conservative polynomialization
and non-convex sets. In Proceedings of Hybrid Systems: Computation and Control, pages
173–182, 2013.

3. M. Althoff, O. Stursberg, and M. Buss. Computing reachable sets of hybrid systems using
a combination of zonotopes and polytopes. Nonlinear Analysis: Hybrid Systems, 4(2):233–
249, 2010.

4. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. Journal of the
ACM, 43(1):116–146, 1996.

5. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verifcation of embedded systems.
IEEE Transactions on Software Engineering, 22(3):181–201, March 1996.

6. Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan. S-TaLiRo: A tool for tem-
poral logic falsification for hybrid systems. In Proceedings of Tools and Algorithms for the
Construction and Analysis of Systems, pages 254–257, 2011.

7. G. Behrmann, R. David, and K. G. Larsen. A tutorial on UPPAAL. In Formal Methods for
the Design of Real-time Systems, pages 200–236, 2004.

8. P. Caspi and A. Benveniste. Toward an approximation theory for computerised control. In
Proceedings of 2nd International Conference on Embedded Software, pages 294–304, 2002.

9. X. Chen, E. Abraham, and S. Sankaranarayanan. Flow*: An analyzer for non-linear hybrid
systems. In Proceedings of Computer Aided Verification, pages 258–263, 2013.

10. J. A. Cook, J. Sun, J. H. Buckland, I. V. Kolmanovsky, H. Peng, and J. W. Grizzle. Automo-
tive powertrain control - a survey. Asian Journal of Control, 8:237–260, 2006.

11. P. R. Crossley and J. A. Cook. A nonlinear engine model for drivetrain system development.
In International Conference on Control, volume 2, pages 921–925, 1991.

12. A. Donzé and O. Maler. Robust satisfaction of temporal logic over real-valued signals. In
Proceedings of Formal modeling and analysis of timed systems, pages 92–106, 2010.

13. A. Donzé, O. Maler, E. Bartocci, D. Nickovic, R. Grosu, and S. A. Smolka. On temporal
logic and signal processing. In Proceedings of Automated Technology for Verification and
Analysis, pages 92–106, 2012.

14. A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving SAT modulo ODE for hy-
brid systems analysis by combining different enclosure methods. In Proceedings of Software
Engineering and Formal Methods, pages 172–187, 2011.

15. A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In Proceedings of
Hybrid Systems: Computation and Control, pages 326–341, 2004.

16. G. Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. International
journal on Software Tools for Technology Transfer, 10(3):263–279, 2008.

17. G. Frehse, Z. Han, and B. Krogh. Assume-guarantee reasoning for hybrid i/o-automata by
over-approximation of continuous interaction. In Proceedings of IEEE Conf. on Decision
and Control, volume 1, pages 479–484, 2004.

18. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard,
T. Dang, and O. Maler. Spaceex: Scalable verification of hybrid systems. In Proceedings of
Computer Aided Verification, pages 379–395, 2011.

19. A. Girard and G. J. Pappas. Approximate bisimulation: A bridge between computer science
and control theory. European Journal of Control, 17(5-6):568–578, 2011.

20. L. Guzzella and C. Onder. Introduction to Modeling and Control of Internal Combustion
Engine Systems. Springer-Verlag, 2nd edition edition, 2010.

21. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s Decidable about Hybrid
Automata? Proceedings of the ACM Symposium on Theory of Computing, 57(1):94 – 124,
1998.

22. H. Khalil. Nonlinear Systems. Prentice Hall PTR, 2002.
23. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,

2(4):255–299, 1990.
24. N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata. Information and Computation,

185(1):105 – 157, 2003.
25. K. Manamcheri, S. Mitra, S. Bak, and M. Caccamo. A step towards verification and synthesis

from Simulink/Stateflow models. In Hybrid Systems: Computation and Control, pages 317–
318, 2011.

26. Mathworks Automotive Advisory Board. Control Algorithm Modeling Guidelines Using
MATLAB, Simulink, and Stateflow, 2012.

27. P. Prabhakar, G. E. Dullerud, and M. Viswanathan. Pre-orders for reasoning about stability.
In Proceedings of Hybrid Systems: Computation and Control, pages 197–206, 2012.

28. S. Sankaranarayanan and G. E. Fainekos. Falsification of temporal properties of hybrid
systems using the cross-entropy method. In Proceedings of Hybrid Systems: Computation
and Control, pages 125–134, 2012.

29. A. A. Stotsky. Automotive Engines: Control, Estimation, Statistical Detection. Springer,
2009.

30. The MathWorks, Inc. Simulink User’s Guide. Natick, MA, 2012.

Symbol Value Description

c1 0.41328 Constant from Ideal Gas Law
c2 −0.366 Coefficient for Pumping polynomial
c3 0.08979 Coefficient for Pumping polynomial
c4 −0.0337 Coefficient for Pumping polynomial
c5 0.0001 Coefficient for Pumping polynomial
c6 2.821 Coefficient for θ̂ polynomial
c7 −0.05231 Coefficient for θ̂ polynomial
c8 0.10299 Coefficient for θ̂ polynomial
c9 −0.00063 Coefficient for θ̂ polynomial
c10 1.0 Atmospheric pressure (bar)
c11 14.7/12.5 λref /λpwrref
c13 0.04 Proportional gain for controller
c14 0.14 Integral gain for controller

Table 3: Model Parameters

n mc 1− κ(·) τ(·)
1000 0.1 0.80 0.40
1500 0.1 0.70 0.30
2000 0.1 0.70 0.35
2500 0.1 0.80 0.30
3000 0.1 0.90 0.20
1000 0.2 0.70 0.22
1500 0.2 0.66 0.22
2000 0.2 0.65 0.40
2500 0.2 0.73 0.35
3000 0.2 0.85 0.50
1000 0.3 0.66 0.20
1500 0.3 0.66 0.22
2000 0.3 0.63 0.50
2500 0.3 0.66 0.40
3000 0.3 0.80 0.35
1000 0.4 0.60 0.35
1500 0.4 0.60 0.30
2000 0.4 0.60 0.45
2500 0.4 0.60 0.50
3000 0.4 0.70 0.40

(a) LUTs for 1−κ(·) and
τ(·)

n mc Delay

800 0.05 0.25
1000 0.05 0.20
1500 0.05 0.20
2000 0.05 0.20
3000 0.05 0.20
800 0.15 0.30

1000 0.15 0.25
1500 0.15 0.20
2000 0.15 0.20
3000 0.15 0.20
800 0.20 0.40

1000 0.20 0.30
1500 0.20 0.20
2000 0.20 0.20
3000 0.20 0.20
800 0.25 0.80

1000 0.25 0.60
1500 0.25 0.40
2000 0.25 0.30
3000 0.25 0.20

(b) Delay LUT

Table 4: Look-up Tables

Symbol Value Description

c15 13.893 Coefficient for A/F polynomial
c16 −35.2518 Coefficient for A/F polynomial
c17 20.7364 Coefficient for A/F polynomial
c18 2.6287 Coefficient for A/F polynomial
c19 −1.592 Coefficient for A/F polynomial
c20 −2.3421 Coefficient for square root polynomial
c21 2.7799 Coefficient for square root polynomial
c22 −0.3273 Coefficient for square root polynomial
c12 0.9 Pressure est. error factor
c23 1.0 MAF sensor error factor
c24 1.0 O2 sensor error factor
c25 1.0 Fuel inj. actuator error factor
c26 4.0 First-order transfer fun. const.

Table 5: Polynomial Approximation Coefs., Error Tolerances

