
Stochastic Local Search for
Falsification of Hybrid Systems?

Jyotirmoy Deshmukh1, Xiaoqing Jin1, James Kapinski1, Oded Maler2

1 Toyota Technical Center
{jyotirmoy.deshmukh, xiaoqing.jin, jim.kapinski}@tema.toyota.com,

2 Verimag
Oded.Maler@imag.fr

Abstract. Falsification techniques for models of embedded control systems au-
tomate the process of testing models to find bugs by searching for model-inputs
that violate behavioral specifications given by logical and quantitative correctness
requirements. A recent advance in falsification is to encode property satisfaction
as a cost function based on a finite parameterization of the (bounded-time) in-
put signal, which allows formulating bug-finding as an optimization problem. In
this paper, we present a falsification technique that uses a local search technique
called Tabu search to search for optimal inputs. The key idea is to discretize the
space of input signals and use the Tabu list to avoid revisiting previously encoun-
tered input signals. As local search techniques may converge to local optima, we
introduce stochastic aspects such as random restarts, sampling and probabilisti-
cally picking suboptimal inputs to guide the technique towards a global optimum.
Picking the right parameterization of the input space is often challenging for de-
signers, so we allow dynamic refinement of the input space as the search pro-
gresses. We implement the technique in a tool called SITAR, and show scalability
of the technique by using it to falsify requirements on an early prototype of an
industrial-sized automotive powertrain control design.

1 Introduction

Embedded control governing safety-critical aspects in medical devices, avionics and
automotive systems are increasingly being designed using the model-based develop-
ment (MBD) paradigm. The early phase of MBD involves rapid iterations to check the
correctness of the control software or to check the feasibility of a new control algo-
rithm. Design models are usually closed-loop models, i.e., a plant model in a feedback
loop with a controller model. Plant models represent the dynamic, physical behavior of
the environment that is to be controlled (e.g., an engine, a powertrain system, a human
heart, an avoinics power-distribution system). Controllers are modeled as a reactive
computer program interacting in real-time with the plant, and are typically designed
in a visual block-diagram based language such as Simulink R©. The closed-loop system
also has exogenous inputs, usually modeling user events or other disturbances from the
environment. As fixing software issues in late design stages is expensive, identifying
such bugs in the early phase of the design cycle is valuable.
? Oded Maler’s research was supported in part by the ANR project CADMIDIA and Toyota.

Closed-loop models can be modeled as hybrid dynamical systems, and it is well-
known that for even simple hybrid systems, the verification problem is highly unde-
cidable [4, 11]. Prevalent practice in industry is extensive model-based testing, where
control designers use heuristics and previous experience to pick a set of test input sig-
nals and system parameters to stimulate the system-under-test. Modeling environments
usually have numerical simulation to estimate the system behavior for such inputs. De-
signers typically perform a finite number of such simulations over the chosen set of
inputs and parameters, and identify undesirable behaviors by manual inspection of the
resulting outputs. These techniques are incomplete in the sense that they provide no
guarantees on whether a bug is found; however, they significantly increase the possibil-
ity of identifying problems early in the system design.

Recently developed falsification techniques seek to automate this process in many
ways. First, they allow the designer to express correct behavior as a set of logical or
quantitative requirements on the inputs and outputs in a machine-checkable format.
Second, they allow formulating the search for errors as an optimization problem by
encoding property satisfaction by a function that maps a given input/output signal and a
logical requirement to a real number. A recent development is the advent of quantitative
semantics for real-time temporal logics. Fainekos and Pappas define a robust semantics
for metric temporal logic (MTL) [10], which allows to quantify how much a signal
satisfies a specification. Similarly, Donzé and Maler define robust semantics for signal
temporal logic (STL), which permits a similar analysis [8].

A core step in falsification is thus to find a (bounded-time) input signal that min-
imizes the cost function. Falsification tools typically rely on a global optimization al-
gorithm to perform this task. Most falsification techniques, are often ineffective when
the cost function is nonconvex or discontinuous, or if the underlying model has dis-
continuous dynamic behavior. The S-TaLiRo tool has several algorithms to perform
global optimization including simulated annealing, ant-colony optimization, and the
cross-entropy method among others [15, 2, 18, 3]. The Breach [7] tool provides a simi-
lar framework but uses nonlinear-simplex optimization, also known as the Nelder-Mead
algorithm. Other falsification tools such as those based on the RRT algorithm [16, 17,
9], multiple-shooting [20], combined global and local search [14] and gradient descent-
based local search [1] have also shown promise in exploring hybrid state-spaces and
complex, nonlinear cost surfaces.

In this paper, we continue the quest to find an effective global optimization algo-
rithm. In particular, we focus on addressing models whose structure reflects typical
control designs found in industrial systems. Common features of these systems include:
presence of Boolean combinations of predicates on real-valued input signals (typically
to decide an operating mode of the system), discrete switching influenced strongly by
the shape of the input signal and to a lesser extent by the state of the sytem, and highly
nonlinear and occasionally discontinuous dynamics in the plant models. We present an
adaptation of a discrete optimization technique known as Tabu search to address sys-
tems with such features, and make a case for the effectiveness of our technique with
experimental evidence.

Tabu search is a meta heuristic applied to a lower-level heuristic method used to
solve an optimization problem. It essentially restricts the search of a discrete decision

space so that particular valuations of the decision variables are not revisited once they
have been evaluated using a data structure known as the Tabu list. The technique has
been applied to integer programming problems and is mainly used to prevent cycling
that would eventually occur while searching finite spaces [6].

In applying Tabu search, we handle the continuous input signals by discretizing the
solution space. In Section 3, we explain how the algorithm locally searches in a neigh-
borhood of an input signal (i.e., neighboring points on the discrete parameterization of
the input signals) and follows a descent direction obtained by stochastically approxi-
mating the gradient of the cost function. Naı̈ve local search techniques can converge to
local optima. Also, an interesting case is when the output signals are Boolean or if their
values are closely dependent on some internal Boolean conditions in the models. Here,
the cost function has “plateaus” and “narrow valleys,” i.e., the surface of the function to
be optimized has regions that are flat with narrow regions where the cost is significantly
lower. By adding stochastic aspects such as random restarts, and allowing the algorithm
to pick sub-optimal inputs with a small probability, we allow the Tabu search to escape
local optima and increase its chances of reaching the global optimum.

A key consideration for us is the ease of use of the tool by control designers; hence,
we avoid techniques that seek user annotations to assist extraction of the underlying hy-
brid structure of the model [5]. Furthermore, when engineers use falsification tools like
S-TaLiRo or Breach, they must parameterize the space of inputs to their models for the
tools to work. This parameterization is usually in the form of a list of uniformly spaced
control points, i.e., a list of times at which the optimizer is free to pick a value for the in-
put signal. For the intermediate times, a suitable interpolation scheme is used to define
a continuous input signal. A key challenge in using such tools is that the verification en-
gineers need to have good insight into how many control points to choose. If too many
control points are chosen, then the input search space becomes large, and the efficiency
of the optimizer suffers. On the contrary, if too few control points are chosen, then the
tool may be unable to find problematic behaviors that rely on having flexibility in the
shape of the input signal. In Section 4, we show how we can allow designers to specify
a coarse discretization of the input space, and we provide a mechanism to automatically
refine the discretization to incrementally increase the accuracy of the optimization.

We have implemented stochastic local Tabu search with refinements in a tool named
SITAR. In Section 5, we show how we use SITAR in a falsification framework and
demonstrate its efficacy on a range of benchmarks, starting from toy models that pose
challenges to existing falsification engines to industrial-sized benchmarks. Finally, we
conclude with some promising future directions in Section 6.

2 Preliminaries

We denote the system under test S. We assume that S is given by some model of an
embedded control system and is equipped with a simulator, which is capable of com-
puting typed output sequences generated by S under a given typed input sequence. A
typed input sequence is a sequence of time-value pairs, where the values lie in a set
known as the domain. We note that input domains can be finite, i.e., finite subsets of
sets such as Z and B, or could be compact (i.e., bounded and closed) subsets of sets

such as R. LetW =W1× . . .×Wm, where eachWi ⊆ R is a dense domain. Let V be
a subset of the Cartesian product of some finite domains. Then, in general, the domain
of values is U = W × V . Let UT be the set of all input sequences over time bound T .
An input sequence is defined as:

u = (u0, t0), (u1, t1), · · · , (uN , tN),

where ui ∈ U , ti ≤ ti+1 for each 0 ≤ i < N , and tN ≤ T . Note that input sequences
are often used to represent continuous-time signals; sequences can be used to repre-
sent a strictly discrete-time signal or can be used to represent the parameterization of a
continuous-time signal3. We similarly define Y as an output set and YT as the set of all
output sequences. Outputs are given as a sequence

y = (y0, t̃0), (y1, t̃1), · · · , (yM , t̃M),

where yi ∈ Y , t̃i ≤ t̃i+1 for each 0 ≤ i < M , and t̃M ≤ T . We use the notation
S(u) to mean the output sequence given by S under input u. Note that the sequence of
time instants associated with a given u, ti, does not necessarily match the time instants
associated with the corresponding y, t̃i.

We define a property that should hold for S in terms of a property function. Let
ϕ : UT × YT → R be a function that maps an input and output sequence to a real
value that determines whether system S under a given input sequence satisfies the de-
sired property. Positive valuations of ϕ indicate that the desired property is satisfied and
negative values of ϕ indicate that the desired property is not satisfied. Furthermore, the
magnitude of the valuation indicates how much the property is satisfied. This function
provides the cost used by an optimization tool to search for input sequences that give
rise to output sequences that demonstrate incorrect behavior from S. The falsification
problem can then be cast as the following optimization problem.

min
u∈UT

ϕ(u,y) subject to y = S(u) (1)

Any assignment of the decision variable u that produces a negative value from the cost
function is an input sequence that demonstrates a behavior from S that fails to satisfy
the desired property defined by ϕ.

3 Stochastic Local Tabu Search

Local search is the discrete/combinatorial variant of steepest-descent, gradient-based
methods for solving global optimization problems, such as the optimization problem
indicated in (1). Local search is based on defining a distance function on the solution
space, where typically the distance between two points is related to the number of mod-
ifications needed to transform one point into the other. The neighborhood of a point is
typically the set of neighbors at distance 1 or some subset of this set. A key feature of

3 For inputs representing continuous functions over dense time, the actual input signal to S is
obtained by interpolating across the sequence u using a user-specified interpolation scheme.

Tabu search (a variant of local search) is to utilize a data structure called a Tabu list, to
avoid repeated computations on visited points. In this section, we present a modification
of the Tabu search procedure that allows systematic exploration of a finite parameteri-
zation of the input sequences of a model with the goal of falsifying a given quantitative
property specification. We first introduce some required terminology.

3.1 Discretization and Neighborhoods

Note that, in general, the space of input sequences UT is infinite. Without loss of gen-
erality, we can assume that the dense input domain (W) is the set [0, umax]

m. For ease
of exposition, we will start with a discretized representation of signals and a fixed dis-
cretization scheme. We assume a time step ε and space increment δ. See Fig. 1 (a) for
an illustration.

Definition 1 (Uniform δ-Discretization of Input Domain). For a given δ, let ` =⌊
umax

δ

⌋
. Let ∆u(δ,W) denote a uniform grid overW , i.e., ∆u(δ,W) = {j · δ | 0 ≤ j ≤

`}m. A uniform δ-discretization of the input domain U is then defined as ∆u(δ,U) =
∆u(δ,W)× V .

Definition 2 (Uniform (δ, ε)-Discretization of Input Sequence Space). Let τ =
⌊
T
ε

⌋
.

We abuse notation and let ∆u(ε, T) denote a uniform discretization of time, i.e., ∆u(ε, T)
= {j · ε | 0 ≤ j ≤ τ}. A uniform (δ, ε)-discretization of UT , denoted ∆u(δ, ε,UT) is
defined as the finite set of sequences û of the form (û0, t̂0), . . . , (ûN , ˆtN), where for
each i, ûi ∈ ∆u(δ,U), and t̂i ∈ ∆u(ε, T).

Having fixed the search-space, we define distance and neighborhoods in this space.
For the finite input domain V , we assume that there is function NV(v) mapping each
element v ∈ V to a set of neighbors in V . For example, if V is the following set of
integers: {1, 3, 5, 8}, then NV(5) may be defined as {3, 8}.

Definition 3 (Neighborhood in Input Domain). Consider a u = (w1, . . . wm, v) ∈
∆u(δ,U). For a given δ, the (i, δ,W)-neighbor of u is defined as:

nbW(i, δ, u) = (w1, . . . , wi + δ, . . . , wm, v).

Let D = {−δ,+δ}. TheW-neighborhood of u is defined as:

NW,δ(u) =

m⋃
i=1

⋃
δ∈D

nbW(i, δ, u).

We abuse notation and let the V-neighborhood of u be defined as:

NV(u) = {(w1, . . . , wm, v′) | v′ ∈ NV(v)}.

Finally, we define the neighborhood of u,NW,δ,V(u) =NW,δ(u)∪NV(u), and say that
u′ is a neighbor of u if u′ ∈ NW,δ,V(u).

t

u

(a)

t1 t2 t3 t4 tτt0

u′1 u′4

u0 u1 u2 u3

u4 u5

ε
δ

t

u

(b)

t0 t1 t2 T t

u

(c)

t0 t1 t2 Tt3

Fig. 1. Fig. (a) shows an instance of ∆u(δ, ε,UT). For the input sequence u =
(u0, t0),(u1, t1),(u2, t2),(u3, t3),(u4, t4),(u5, tτ), the sequences u1 = (u0, t0), (u′1, t1),
(u2, t2), (u3, t3), (u4, t4), (u5, tτ) and u2 = (u0, t0), (u1, t1), (u2, t2), (u3, t3), (u′4, t4),
(u5, tτ), are two neighbors, shown in blue and red resp. Fig. (b) and (c) show an instance of
∆nu(δ, ε,UT), where (c) shows a refinement of the space in (b) by adding a new time (t3).

Definition 4 (Neighborhood in Input Sequences). Given an input sequence u, its j-
neighborhood NUT (j,u) is the set of sequences:

NUT (j,u) = {(u0, t0), · · · , (u′j , tj), · · · , (uN , tN) | u′j ∈ NW,δ,V(uj)}.

Given a time horizon T , the neighborhood of u is defined as:

NW,δ,V,ε(u) =
⋃

0≤j≤τ

NUT (j,u).

For an illustration of neighbors, see Fig. 1. Uniform discretizations provide a simple
way to define a quantization of the decision space for the falsification problem, but it
produces a decision space that increases exponentially as δ decreases, and it does not
provide the flexibility to define a refinement of the decision space in specific regions.
To address these deficiencies, we define a generalization of the uniform discretization
notions that permits uneven discretizations. See Fig. 1(b) for an illustration.

Definition 5 (Nonuniform δ-Discretization of the Input Domain). Let δ be a nonuni-
form grid over the input domain, i.e., δ = (Ŵ1, . . . , Ŵm), where each Ŵi is a finite set
of elements ofWi. A nonuniform δ-discretization of U , denoted as ∆nu(δ,U) is the set
Ŵ1 × . . .× Ŵm × V .

Definition 6 (Nonuniform (δ, ε)-Discretization of the Input Sequence Space). Let
ε denote a nonuniform discretization of the time domain, where ε is a finite set of
elements from [0, T]. Given a nonuniform δ-discretization of U , and ε, a nonuniform
(δ, ε)-discretization of UT , denoted ∆nu(δ, ε,UT), is a finite set of input sequences û
= (û0, t̂0), . . . , (ûN , ˆtN), such that for all i, ûi ∈ ∆nu(δ,U) and t̂i ∈ ε.

The notion of neighborhoods easily extends to nonuniformly distributed input spaces
and input sequence spaces, and we denote them as NW,δ,V and NW,δ,V,ε(u) respec-
tively.

In the sequel, we describe an implementation of the stochastic local Tabu search
method that can be configured to use either uniform or nonuniform discretizations of

Algorithm 1: Stochastic Local Tabu Search over given discretization of UT .
Input: Model S, Input Sequence u, grid over input domain δ, time domain discretization

ε, Property function ϕ, maxLocalImprovements, maxRestarts
Output: Minimum cost cmin, Minimizing input umin

1 cmin,cprev :=∞ ; i, j := 0; TabuList := ∅
2 while i < maxRestarts do
3 while j < maxLocalImprovements do
4 TabuList.add(u)
5 y := Simulate(S,u) ; c := ϕ(u,y)
6 if c < cmin then cmin:=c; umin:=u
7 neighborsVisited := 0
8 while neighborsVisited < maxNeighbors do
9 k := 0

10 do
11 unb := pickNeighbor(δ, ε,u) ; k := k + 1
12 while unb ∈ TabuList ∧ k < |NW,δ,V,ε(u)|
13 if unb = ∅ then break

14 neighborsVisited := neighborsVisited+ 1
15 ynb := Simulate(S,unb), cnb := ϕ(unb,ynb)
16 TabuList.add(unb)
17 if StoppingCondition(cnb) then halt
18 if cnb < cmin ∨ with probability Psubopt then
19 cmin := cnb ; umin := unb

20 u := umin

21 if slowConvergence(cmin, cprev) ∨ localOptimum(c, cmin) then
22 break

23 j := j + 1; cprev := cmin

24 do
25 u := pickRandomInput(δ, ε,UT)
26 while u 6∈ TabuList

27 i := i+ 1

the decision space. In Algorithm 1, we show the basic steps of the search algorithm.
The innermost while-loop (Lines 8-19) implements a stochastic local search scheme,
augmented with a Tabu-list. A run of this while-loop to completion is called a single
local improvement. The main steps executed in the loop are as follows: (1) Select a
neighbor of the current input u (Line 11) that is not in the Tabu list. (2) Evaluate the
cost of unb (by running a simulation with unb as input and computing the value of
ϕ(unb,S(unb))) (Line 15). (3) Add each unb not previously in the Tabu list to the
list (Line 16). (4) Once the desired number of neighbors have been visited, pick the
minimal-cost neighbor as the next point in the search (Line 19). (5) Terminate when the
stopping condition is reached (Line 17); typically this is cnb < 0. The while-loop from
Line 3 to Line 23 iterates over the maximum number of local improvements permitted.
The number maxLocalImprovements provides the user control over how much they
wish to utilize the stochastic gradient-descent. A larger number is useful when the sur-

face of the cost function is smooth, while a smaller number is better to use when the
cost function is highly discontinuous or with sharp valleys (as gradient-descent has less
chance of success in this scenario). The outermost while-loop (Lines 2-27) iterates over
the maximum number of random restarts permitted. We explain the purpose of random
restarts in Sec. 3.3.

3.2 Local Search by Stochastic Gradient-Descent

The size of the neighborhood for a given point is 2m|V|τ and depending on m, |V|,
τ =

⌊
T
ε

⌋
, and the cost of simulation, it might be too large to explore the entire neigh-

borhood in each step. The procedure for selecting a subset of the neighborhood is
stochastic: we sequentially sample up to maxNeighbors number of neighbors of u
from NW,δ,V,ε(u). The actual sampling is effected by randomly selecting a j, and for
the chosen uj , randomly picking either a V-neighbor or aW-neighbor from NV(uj) or
NW,δ(uj). If the latter is picked, theW-neighbor nbW(i, δ, uj) is obtained by randomly
picking an i ∈ [0,

⌊
umax

δ

⌋
] and a δ ∈ {+δ,−δ}. The random choice can be performed

based on any distribution function on the set of i, j indices or on the V-neighborhood.
In our implementation, we use uniform random sampling. This general technique of ob-
taining a stochastic approximation of the gradient is called the finite-difference stochas-
tic approximation (FDSA) method [19], and is the technique currently implemented in
our tool. The algorithm then moves to the neighbor with the lowest cost in the neigh-
borhood (thus performing the steepest descent along the stochastically approximated
gradient). If there is no neighbor with a lower cost, the algorithm infers that a local
optimum has been reached (Line 21).

3.3 Random restarts and Stochasticity

Like any local search method there is a risk of getting stuck in a local optimum. We use
two mechanisms to help the search procedure escape a local optimum:

1. We introduce jumps in the search procedure stochasitcally: If the algorithm de-
tects a local optimum or slow convergence, or once it has exhausted the maximum
permitted local improvements, it restarts the local search from a randomly chosen
point in the input search space that is not in the Tabu list (Line 21).

2. In the phase where the algorithm is performing local search, we allow the algorithm
to select a neighbor that is not optimum with a small probability (Line 18) in spirit
of techniques such as simulated annealing [13].

To provide the control over termination of the algorithm, we permit the user to limit
the number of random restarts (maxRestarts). Together, maxRestarts, maxNeighbors,
and maxLocalImprovements influence the number of simulations performed by the
algorithm. The performance of Algorithm 1 depends on several factors. The size of the
search space influences how much we can explore it in finite time. Given a time hori-
zon T , the search space defined by ∆u(δ, ε,UT) or ∆nu(δ, ε,UT) is finite and of size
O(τm|V|`), i.e., it depends exponentially on m, the dimension of the dense input do-
main, maximum number of neighbors in the finite input domain (which in the worst

Algorithm 2: Input Search Space Refinement Procedure
Input: Model S, Initial grid over input domain δ0, Initial grid over time domain ε0,

Property function ϕ, User-defined parameters: maxRefinements,
maxLocalImprovements, maxRestarts

Output: Minimum cost cmin, Minimizing input umin

1 refinementNum := 0
2 δ, ε := δ0, ε0
3 u := pickRandomInput(δ, ε,UT)
4 while refinementNum < maxRefinements do

5 (cmin,umin) := StochasticLocalTabuSearch

S,u,δ, ε, ϕ,maxLocalImprovements,
maxRestarts

6 if cmin < 0 then
7 Report violation found, violating input: umin

8 else

9
δ, ε,u, TabuList,
maxLocalImprovements

:= Refine

(
δ, ε,u, TabuList,
maxLocalImprovements

)
10 refinementNum := refinementNum+ 1

case is |V| − 1), and exponentially in ` or the number of discretizations of the signal
domain, and linearly in τ , i.e., the length of the input sequence. The efficiency of the
operations depends on the inner-most loop of the procedure, which includes application
of the mutation operations, the cost of running a single simulation and the size of the
neighborhood (which determines the number of simulations in each step).

4 Search Space Refinement

We intend our technique to be used by designers who may not have good insight into
the optimal discretization of the input space needed to find a falsifying (u,y) pair. A
conservative assumption is that designers start with a coarse discretization of the input
space. There are distinct advantages to starting with a coarse level of discretization: as
the cardinality of the decision space is given by τm|V|`, larger values of δ and ε result
in a smaller search space; however, in most cases, the initial discretization is too coarse
to be able to find the (u,y) with the optimal cost. To address this, our tool supports
automatic and heuristic refinement of the discretization of the input space. We describe
this procedure in Algorithm 2. In Algorithm 2, the key procedure is Refine. This is a
heuristic step to increase the number of elements in the quantized search space. The
Refine procedure currently supports the following heuristics:

1. Naı̈ve Refinement: For uniform discretization, in each refinement iteration, we can
set δ = δ

2 , ε = ε
2 . Note this quadratically increases the search space for each input

dimension in each iteration, and can cause an exponential blowup in the number of
refinements.

2. Input Domain Random Refinement: For a given discretization ∆nu(δ, ε,UT), we
choose (at random) an index i, and for the corresponding dense input domain Ŵi ∈

δ, we add at random a new value in [0,umax] to Ŵi. In other words, we increase
the number of quantization levels in the ith dense input domain.

3. Time Domain Largest Gap Refinement: For a given discretization ∆nu(δ, ε,UT),
where ε = {t0, . . . , tN} and tN = T , we find the index j corresponding to the
largest time-gap in ε, and add a time-point there. Formally, j = argmax

0≤j≤N−1
{tj+1−tj |

tj , tj+1 ∈ ε}. Then, we add the time-point 1
2 (tj+ tj+1). E.g., if ε = {0.0, 1.1, 5.3,

7.3, 10.0}, then we add the time 3.2 to ε. We can combine this heuristic with the
heuristic above or the one below. (See Fig. 1 (c) for an illustration).

4. Input Domain Largest Gap Refinement: We can use a similar scheme as the above
heuristic to refine the input domain for a particular dense input domain. We first
choose (at random) an index i, and then for the corresponding input domain Ŵi ∈
δ, we add a value to Ŵi where the distance between adjacent elements is the largest.

Definition 7 (Dense Neighborhoods). Given a point u = (w0, . . . , wm, v) in the input
domain U and a δ, a dense neighborhood of u is defined as follows:

DNW,δ(u) = {(w0 + δ0, . . . , wm + δm, v) | |δi| ≤ δ}.

Given an input sequence u = (u0, t0), . . . , (uN , tN), and a time perturbation step
ε, a dense neighborhood of the input sequence u is defined as follows:

DNW,δ,ε(u) = {(u′0, t0+ε0), . . . , (u′N , tN+εN) | u′j ∈ DNW,δ(uj) and ∀j : |εj | ≤ ε}.

Definition 8 (Robust Violation). We say that an input u = (u0, t0), · · · , (uN , tN)
robustly violates a property ϕ if the following conditions hold:

1. The model interprets u as a piecewise constant function4 uc over [t0, tN], where
uc is defined s.t. ∀j ∈ [0, N − 1], ∀t ∈ [tj , tj+1), uc(t) = uj , and uc(tN) = uN .

2. y = S(u) ∧ ϕ(u,y) < 0,
3. ∃δ∗ > 0, ε∗ > 0, s.t. ∀u′ ∈ DNW,δ∗,ε∗(u) it is true that y′ = S(u′) ∧ ϕ(u′,y′) < 0.

In other words, a violation is robust if for a given input sequence that violates the
property, all sufficiently nearby input sequences also violate the property. In the fol-
lowing theorem, we characterize the asymptotic behavior of Algorithm 2. The inputs to
Algorithm 2 include user-defined constants maxLocalImprovements, maxRestarts,
and maxRefinements; we show that as the user makes these constants arbitrarily large,
the probability of finding a robust violation goes to 1.

Theorem 1. If the given system S has an input u∗ that robustly violates the property
ϕ, then as the choice for the parameters maxLocalImprovements, maxRefinements,
and maxRestarts tend to ∞, with a suitable refinement scheme, the probability that
Algorithm 2 finds an input u′ such that ϕ(u′,y′) < 0, where y′ = S(u′), tends to 1.

Proof. Due to lack of space, we give only a proof sketch for the case when we choose
the naı̈ve refinement scheme. Let u∗ = (u0, t0), . . . , (uL, tL) for some L, where tL =
T , and let δ∗ and ε∗ be values that satisfy Condition 3 from Def. 8. We first show that as
we increase maxRefinements, there is some (large enough) refinementNum (Line 10)
for which the refinement generates uniform discretization ∆u(δ, ε,UT), such that

4 We can also use piecewise linear interpolation to define uc.

1. For every point ti in u∗, there is a corresponding point tj in ∆u(δ, ε,UT) such that
|tj − ti| < ε∗. (Note that the number of time-points in ∆u(δ, ε,UT) may be much
larger than L);

2. Let uj = (w1
j , . . . , w

i
j , . . . , w

m
j , vj). Then, ∀j, i there is a (ω1, . . . , ωm, v) in ∆u(δ,U)

such that |wij − ωi| < δ∗, and vj = v.
Next we show that at this level of discretization, the algorithm can asymptotically find
an input sequence u′ in DNW,δ∗,ε∗(u

∗), which guarantees that ϕ(u′,y′) < 0. The
following observations are used to complete the proof: Under Condition 1 in Def. 8,
any L-length sequence of the form (u0, t0), . . . , (uL, tL) in u∗, can be found embed-
ded in a sequence over more time points. For any given ∆u(δ, ε,UT), there is a finite
number of input sequences. The Tabu list ensures progress as it disallows visiting the
same sequence twice; thus, the probability that a certain neighbor in DNW,δ∗,ε∗ is not
picked goes to zero as the user-defined parameters maxLocalImprovements→∞ and
maxRestarts→∞.

5 Experimental Results

SITAR S-TaLiRo
Model Requirement ∆ |U|,|ε| Falsi- Time Sim. |T | Falsi- Time Sim.

fied? (sec) fied? (sec)

(2); ζ=0.024 U 4,3 y 23 18 7 y 13 5
AFC (2); ζ=0.028 U 4,3 y 3 2 7 y 19 7

(2); ζ=0.032 U 4,3 y 102 71 7 n 79 32

MRS (3) NU 35,3 y 50 233 40 n 745 1000
(3) U 35,3 y 241 2058 40 n 2121 3000

(5) NU 3,2∗ y 17 206 2 n 141 2000
RD (5) U 3,3∗ y 47 575 4 n 141 2000

(5) U 3,4∗ y 28 575 8 y 1 17

(6); ζ = ζ1 U 3,3 y 3996 18 6 y 2448 6
PTAC (6); ζ = ζ2 U 3,3 y 8424 31 6 y 21348 51

(6); ζ = ζ3 U 3,3 y 8784 39 6 y 26568 71

Table 1. Results of comparison between SITAR approach and S-TaLiRo tool. For model RD, we
allow refinement of the control points of the input state space, we report the initial control points
in the table and mark these with a ∗.

We implemented Algorithm 2 with support for refinement heuristics and both uni-
form and nonuniform discretization in a tool named SITAR (StochastIc Tabu-search
And Refinement). We present the results of comparing the performance of our method
with a state-of-the-art falsification tool S-TaLiRo on multiple academic and industrial
system models. For each model, we give requirements in temporal logic and compare
the performance of SITAR and S-TaLiRo.

We pick S-TaLiRo for comparison as our tool SITAR shares several features with S-
TaLiRo: (1) both tools use a property function ϕ to guide the search over the input space
(S-TaLiRo uses robustness degree of a requirement specified using Metric Temporal

Logic), (2) both tools support a finite parameterization of the input sequence space, (3)
both tools use heuristic global optimization relying on black-box simulations of a given
Simulink R©model. A key difference is that S-TaLiRo allows a fixed parameterization
of the input signals, where users choose a number uniformly spaced time-points in the
time domain (known as control points), and the optimizer is free to pick any input value
in the range [0, umax] for each dense input dimension. In contrast SITAR also uses a
grid over the dense input domain, and search is restricted to be over the grid elements.
Further, SITAR supports automatic refinement of the input discretization and allows
nonuniform control points in the time domain.

In the results reported in the sequel, we highlight the input sequence discretization
method (∆), which is either uniform (U) or nonuniform (NU), size of the input sequence
discretization (|U|), number of control points in time domain (|T |), the result of whether
faslficiation was successful, total computation time, and the total number of simulations
(Sim.). For comparison between SITAR and S-TaLiRo, we use a fixed number of control
points for three of the four cases and demonstrate the refinement capability of SITAR on
one model. All requirements used are of the form �I(y < c) (specifying that over the
interval I , the output signal y remains less than c). We use a property function similar
to the robust satisfaction degree of STL [8].

5.1 Air-Fuel Control System (AFC)

Our first case study is an automotive air-fuel control (AFC) model [12]. The model is
a representation of a closed-loop embedded control system, and contains several chal-
lenging features that are commonly found in industrial systems. It consists of a plant
that describes physical phenomena such as fuel injection dynamics, exhaust gas trans-
port dynamics, and sensor dynamics. While some aspects of the plant dynamics are de-
rived using first principles, others aspects are captured with multi-dimensional lookup
tables. One challenging aspect of the system dynamics from an analysis perspective is
the presence of a variable transport delay; this effectively models dynamics contain-
ing a delay differential equation. The controller contains two parts: (1) an open-loop
feedforward observer, and (2) a Proportional + Integral (PI) controller that regulates the
air-fuel (A/F) ratio. For detailed description of this model, please refer to [12]. The con-
troller has several modes, but for the purpose of this case study, we restrict ourselves to
the normal mode of operation.

The paper [12] describes a safety requirement in the normal mode: in the time range
[Tnom, Thoz] the normalized A/F ratio should remain within a given threshold ζ.The
requirement can be described in temporal logic as following:

�[Tnom,Thoz]y < ζ. (2)

We use minti∈[Tnom,Thoz](ζ − y(ti)) as the property function. The results shown in
Table 1 show that both SITAR and S-TaLiRo can falsify the property for all three choices
of the ζ parameter for the requirement. Two out of three requirements can be falsified
by S-TaLiRo faster than SITAR. For the case when ζ = 0.028, SITAR outperforms S-
TaLiRo. The main lesson from this case study is that, although SITAR uses an essentially
discrete optimization based technique, it can still search over a continuous state space
relatively well.

5.2 Mode-specific Reference Selection Model (MRS)

In [9], the authors observe that current falsification tools became trapped at a local op-
timum due to the structure of the model, which contains complex discrete and temporal
behaviors. The model selects an operating mode based on a region in the dense input
state space. The mode is defined as a Boolean combination of conditions arising from
8 input signals w1, . . . , w8 being compared to a threshold. The output is some function
of a ninth input w9, with a different function for each operating mode. The range for
inputs in w1, . . . , w8, is [0, 100] and the range for w9 is [−5, 5]. The safety property
requires the output y to remain above −8. The temporal logic requirement is defined as
follows, and the property function can be derived as before:

�[τ,Thoz](yi > −8). (3)

In the above, we use τ = 5.1 seconds, and T = 10 seconds. According to [9], in
order to falsify the requirement, the system has to select the mode corresponding to the
satisfaction of the following condition:∧

i∈[1..4]

(
(w2i(t) > 90) ∧ (w2i−1(t) < 10)

)
. (4)

The probability of hitting the right combination of the wi values that falsify the
property is 10−8 (8 inputs, and for each input there is a probability of 1

10). Given
the right combination, a tool such as S-TaLiRo can quickly falsify the requirement.
However, it is not practical to expect that the designer to provide this insight to the
tool, as a Boolean circuit of arbitrary complexity could be embedded in the given
Simulink R©model. In our opinion, the value of the falsification tool is to automatically
explore the search space to identify the problematic input sequences with minimal user
input.

As shown in Table 1, SITAR can falsify the requirement. When we discretize the
input space in a nonuniform fashion, SITAR can falsify the requirement in less than one
minute. Here, we choose the the partition for wi where i ∈ [1, ..., 8] as {0, 10, 90, 100}
and {−5, 0, 5} for w9. One may claim that through this nonuniform discretization, we
give extra information to the search algorithm; however, we argue that this information
is related to the domain of the inputs and representative operating conditions, and such
knowledge can be provided by design engineers with relative ease. Even with uniform
gridding, SITAR is still able to falsify the requirement, with a moderate increase in com-
puting time. For this example, S-TaLiRo (using the simulated annealing optimization
heuristic) could not find a falsifying input sequence after 3000 simulations.

5.3 Rate Detection (RD) System

Next, we describe the performance of the SITAR algorithm with refinement. We choose
to use a simplified model originating from a rate detection system. The rate detection
system checks if the rate of decrease of the signal is within a certain threshold [ζ1, ζ2]
in a given time window [τ1, τ2], and if yes, causes the output y to be less than −0.001.
For different values of ζ1, ζ2, τ1, τ2 the difficulty of finding the violating input varies.

0 1 2 3 4 5 6 7 8
−10

0

20

40

60
55

28

1.13 −5.94

Refinement

R
ob

us
tn

es
s

Fig. 2. The robustness value changes during the refinement process.

We picked the values [ζ1, ζ2] = [2.2, 3.2] and [τ1, τ2] = [5, 7], which present a reasonable
level of difficulty for both SITAR and S-TaLiRo.

The safety requirement can be expressed as

�[τ,Thoz](y ≥ −0.001). (5)

Here, τ = 0.1 is some initial time where the output behavior is ignored. For a fal-
sifier like S-TaLiRo that uses a fixed parameterization of the input state space if the
falsifier fails to find a falsifying input sequence using an initial input parameterization,
the algorithm may be run again using an input parameterization corresponding to a finer
resolution in the time domain. This approach is inefficient for this example, because it
is not possible to find a falsifying input sequence unless discrete time instants exist
near the required window of [τ1, τ2], meaning computational effort is wasted on pa-
rameterizations of the time domain that are too coarse (and thus cannot possibly result
in falsifying traces for this example). This explains why S-TaLiRo fails if the number
of input parameters is less than 8, in Table 1. When using the appropriate number of
input parameters, S-TaLiRo can trivially falsify the requirement; however, knowing the
appropriate number of parameters requires significant user insight.

On the other hand, SITAR dynamically refines the discretization of the input space
as needed. If combined with nonuniform input discretization, the SITAR algorithm can
falsify the requirement in less than 20 seconds. In Fig. 2, we show how the robustness
value decreases over the 8 refinement steps. Although SITAR could be trapped in a local
optimum (in refinements 4 to 7), it eventually escapes from the local optimum and
falsifies the requirement. Even with a uniform input discretization, as SITAR introduces
time discretization, it can find a falsifying input sequence.

5.4 Powertrain Air Control (PTAC) System

To illustrate the scalability of our algorithm, we consider a powertrain air control sub-
system (PTAC). This is a prototype model, developed during the early design phase of
an advanced powertrain project. It has a complex, high fidelity plant model that is able to
generate accurate simulation results, which correlates closely with data collected from
the actual powertrain components. The controller contains logic for two of the system’s
electronic control units (ECU). Because of the complexity of the model, simulations
are computationally expensive (simulating 1 second of real operation requires almost
5 seconds, so 5x slower). Although simulation is usually light-weight, in this case, it

is crucial for the falsification tool to use fewer simulations. The safety requirement for
this system, obtained from design engineers, is expressed as follows in temporal logic:

�[τ,T](y < ζ). (6)

Due to proprietary reasons, we suppress the values of ζ. As shown in the last few rows
in Table 1, both S-TaLiRo and SITAR can falsify all requirements successfully. We use
three values of threshold ζ1, ζ2, and ζ3, where ζ1 < ζ2 < ζ3. Note that falsifying
the requirement becomes harder with increasing ζ value. For the last two values of
ζ, SITAR can falsifiy the requirements much faster, using less than half the time and
a lower number of simulations. When ζ = ζ1, S-TaLiRo can falsify the requirement
faster, partly because SITAR performs thrice the number of simulations.

6 Conclusions and Future Work

Conclusion: Given a model of an embedded control system, and a (quantifiable) prop-
erty over its input/output behaviors, we present a technique to find robust violations
of the property. The key idea is to transform the problem of searching over an infinite
set of timed input sequences to the system to a finite search over a discretized version
of the input space using a Tabu list to avoid repeated computations. The search pro-
ceeds in the fashion of a stochastic gradient descent, with random restarts to perturb the
system away from local optima. We wrap the search procedure in an outer loop that dy-
namically refines the input space discretization. This removes the burden of providing
a clever discretization from the system designers, shifting it to the refinement heuris-
tics employed by the tool. Our technique shows promise on industrial-sized benchmark
problems, as well as toy problems that pose a challenge to existing falsification tools.

Future Work: In this paper, the technique to perform stochastic gradient descent in-
volves computing finite differences of a point’s cost with its neighbors’ costs (k+1 val-
uations for a k-dimensional space). Each cost computation requires a simulation with
the neighboring sequence as input. We can instead use the simultaneous perturbation
stochastic approximation technique (SPSA), where the effect of a gradient descent is
converged upon using a stochastic result [19]. In the SPSA approach, only 3 valuations
are made, regardless of the dimension. Each computation of a cost function requires a
simulation; thus, the SPSA scheme would help reduce the number of simulations.

In our current implementation, the Tabu list is stored as a simple list data structure in
MATLAB R©; an alternative is to use spatial data structures such as k-d trees. Currently,
the random restarts in our technique are chosen based on a uniform random distribution
over the points in the discretization of the input space. An interesting direction to pursue
is that of coverage metrics such as the star-discrepancy metric [9] to cover the input
sequence space.

Acknowledgments: The authors would like to thank the anonymous reviewers for con-
structive feedback that helped improve this paper.

References

1. H. Abbas and G. Fainekos. Linear hybrid system falsification through local search. In
Automated Technology for Verification and Analysis, pages 503–510. 2011.

2. Y. S. R. Annapureddy and G. E. Fainekos. Ant Colonies for Temporal Logic Falsification of
Hybrid Systems. In Proc. of IECON, pages 91–96, 2010.

3. Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-TaLiRo: A Tool
for Temporal Logic Falsification for Hybrid Systems. In Proc. of Tools and Algorithms for
the Construction and Analysis of Systems, pages 254–257, 2011.

4. E. Asarin and O. Maler. Achilles and the tortoise climbing up the arithmetical hierarchy.
JCSS, 57(3):389–398, 1998.

5. H. A. Bardh Hoxha and G. Fainekos. Using S-TaLiRo on industrial size automotive models.
In Worskhop on Applied Verification for Continuous and Hybrid Systems, 2014.

6. J.-F. Cordeau, G. Laporte, A. Mercier, et al. A Unified Tabu Search Heuristic for Vehicle
Routing Problems with Time Windows. J. Oper. Res. Soc., 52(8):928–936, 2001.

7. A. Donzé. Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid Systems.
In Proc. of Computer Aided Verification, pages 167–170, 2010.

8. A. Donzé and O. Maler. Robust Satisfaction of Temporal Logic over Real-Valued Signals.
In Proc. of Formal Modeling and Analysis of Timed Systems, pages 92–106, 2010.

9. T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh. Efficient guiding
strategies for testing of temporal properties of hybrid systems. In Proc. of NASA Formal
Methods, pages 127–142. 2015.

10. G. E. Fainekos and G. J. Pappas. Robustness of Temporal Logic Specifications for
Continuous-Time Signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

11. T. Henzinger, P. Kopke, A. Puri, and P. Varaiya. What’s Decidable about Hybrid Automata?
In Proc. of the Symposium on Theory of Computing, pages 373–382, 1995.

12. X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and K. Butts. Powertrain Control Verification
Benchmark. In Proc. of Hybrid Systems: Computation and Control, pages 253–262, 2014.

13. S. Kirkpatrick, M. Vecchi, et al. Optimization by simmulated annealing. Science,
220(4598):671–680, 1983.

14. J. Kuřátko and S. Ratschan. Combined global and local search for the falsification of hybrid
systems. In Formal Modeling and Analysis of Timed Systems, pages 146–160. 2014.

15. T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta, and G. J. Pappas.
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems.
In Proc. of Hybrid Systems: Computation and Control, pages 211–220, 2010.

16. E. Plaku, L. E. Kavraki, and M. Y. Vardi. Hybrid systems: from verification to falsification
by combining motion planning and discrete search. Formal Methods in System Design,
34(2):157–182, 2009.

17. E. Plaku, L. E. Kavraki, and M. Y. Vardi. Falsification of ltl safety properties in hybrid
systems. Software Tools for Technology Transfer, 15(4):305–320, 2013.

18. S. Sankaranarayanan and G. E. Fainekos. Falsification of Temporal Properties of Hybrid
Systems using the Cross-Entropy Method. In Proc. of Hybrid Systems: Computation and
Control, 2012.

19. J. C. Spall. Introduction to Stochastic Search and Optimization. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 2003.

20. A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski. Multiple shooting, cegar-
based falsification for hybrid systems. In Proceedings of the 14th International Conference
on Embedded Software, page 5, 2014.

