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Abstract
Suitable open benchmark models help to assess, evaluate, and compare tools

and techniques, help the research community understand the nature and complexity
of the problems facing industrial practitioners, and also help industry to embrace
new techniques. We present two benchmark models from the automotive power-
train control domain. Each model has a unique level of complexity. The models
are intended to challenge the research community while maintaining a manage-
able scale. Also, we give our observations and discuss challenges for the research
community.

Category: Industrial Difficulty: High

1 Introduction
In an industrial model-based design context, different stages in the design cycle lead
to the creation of different models of the same underlying cyberphysical system. In
an automotive context, controller development usually follows such an iterative design
cycle. Control design models are often enhanced in a process known as refactoring that
typically introduces implementation details into the model, such as controller sampling
or effects of fixed point number representations (based on an original floating point
controller design). It is an implied requirement that the refactored model not introduce
any undesirable behavior compared to the original model; hence, the ability to test that
refactored models faithfully represent behaviors in the original model would be use-
ful. Formal analysis techniques such as verification rarely scale to the complexity and
size of the final implemented models. Thus, while refactoring in an industrial con-
text usually involves adding complexity to the model, in the context of formal analysis
techniques, refactoring might involve simplifying a complex model.

With this proliferation of models across the design cycle, it is essential to have
a formal notion of what it means for models to be conformant. Unfortunately, the
very definition of conformance is an open problem. For cyberphysical systems, while
researchers have used the notions of bisimulation relations [7] and behavior relations
[11], it is unclear whether these notions are effective for checking conformance for the
models that we consider. An alternative is to use notions of equivalence formulated in
temporal logics [3].
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In Sec. 2, we present a model for the powertrain control problem of regulating the
air-fuel (A/F) ratio [5]. The A/F ratio has direct implications on the rate of exhaust gas
emissions, driveability and fuel efficiency. Catalytic converters work most efficiently
to reduce the amount of undesirable exhaust gases when the A/F ratio is at the sto-
ichiometric value. The controller implemented in this model regulates the A/F ratio
to this set value. This model, while much simpler than an industrial model, contains
many features typical of an industrial system. The plant model has subsystems with
variable transport delays, highly nonlinear and nonpolynomial dynamics, and lookup
tables (LUTs) representing a data-driven physical model. The controller model has
feedback based on Proportional + Integral (PI) control, and two state estimators that
provide feedforward control. The model presented in Sec. 2 restricts the model pre-
sented in [10] to the normal mode of operation, but enhances the controller for this
mode. The enhancement consists of an open-loop estimator for a phenomenon known
as wall wetting that impacts the actual amount of fuel used during ignition.

In Sec. 3, we perform a series of model transformations to obtain a second, sim-
plified model in which the system is a finite-dimensional continuous-time dynamical
system with polynomial dynamics. The purpose of this model is to serve as a bench-
mark for formal verification techniques and to evaluate conformance with the original
model. In Sec. 4, we present a comparison of common control-theoretic properties
such as overshoot, undershoot, and settling time for both models when stimulated by
identical input signals. This comparison is by no means a formal conformance check,
but we hope to motivate development of metrics to measure the efficacy of automatic
model transformation and conformance checking techniques. Finally, we summarize
some of these research challenges for which the models presented herein could serve
as benchmarks.

2 A/F Ratio Control Model
In this section, we present an automotive air-fuel control model; in the sequel, we
present a simplified version of the model using a series of local, modular transforma-
tions. The model we present is a closed-loop model, i.e., it contains a model of the
plant and a model of the controller. The former encapsulates physical processes such
as throttle and intake manifold air dynamics, and fuel dynamics. The latter describes a
controller that incorporates two open-loop estimators implementing feedforward con-
trol and a PI controller implementing feedback control. For brevity, we present all the
equations in the appendix.

Throttle and Intake Manifold Dynamics. The throttle and intake manifold models
are taken from the Simulink Demo palette [2], which is based on the work by Crossley
and Cook [6]. For simplicity, we exclude the exhaust gas recirculation system. We
assume that the throttle angle θ (in degrees) and the engine speed n in rpm (or ω = n π

30
in rad/sec) are exogenous inputs to the model.

The rate at which the throttle plate introduces air into the intake manifold (denoted
ṁaf ) is a function that is a product of a function encoding geometric features of the
throttle (shown in Eq. 1) and a physical phenomenon involving the atmospheric and
intake manifold pressure p (See Eq. 2). The rate at which air exits the intake manifold
into the cylinder (denoted ṁc) is specified by the pumping polynomial (shown in Eq. 3),
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a function of p and the engine speed ω. According to the ideal gas law, the rate of
change of the manifold pressure is proportional to the difference of the rates at which
the air enters the manifold (ṁaf ) and exits the manifold (ṁc). This gives us the ODE
in Eq. 4.

Cylinder and Exhaust. The air-fuel path aspects, including the cylinder and exhaust
dynamics, are largely based on the development described in [9]. There is a variable
delay ∆(mc, n) in transporting the exhaust gas produced by the engine to the oxygen
(O2) sensor. This delay depends on the air mass into the cylinder mc and the engine
speed in rpm n. The delayed A/F ratio passes through two first-order transfer functions,
representing the exhaust gas transport dynamics and the O2 sensor dynamics. The
output of the transfer functions is the measured A/F ratio, denoted λm(t). In Eq. 5, we
give the ODE govering λm(t).

Wall Wetting. This subsystem models dynamics of fuel injection, wall film deposition,
and evaporation in the manifold. Based on the dynamics described in [9], we obtain
the dynamic relation between the rate at which fuel is injected into the manifold (ṁψ)
with the actual rate at which it is aspirated into the cylinder (ṁϕ) (Eqs. 6-7).

Controller. The controller contains three parts, the first two are feedforward compo-
nents that estimate the manifold pressure (p) and the amount of liquid fuel that has
collected on the manifold wall (mf ). The third is a Proportional + Integral (PI) feed-
back controller. The objective of the controller is to determine the rate of fuel that
should be injected into the manifold, also known as the fuel command (Fc).

The two feedforward estimators are open-loop. The estimator for the manifold
pressure is based on a measurement of ṁaf or the inlet air mass flow rate. In a real
system, such an estimator is a carefully designed system that compensates for phe-
nomena such as sensor noise; for example an extended Kalman filter. For simplicity,
we choose an “almost perfect” observer, i.e., we assume almost perfect knowledge of
the pumping polynomial (modulo some multiplicative error factor) to observe state p
(intake manifold pressure), and use the observer state (denoted pe) to compute the es-
timated air mass flowing into the cylinder. The air mass flow estimator dynamics are
given by Eqs. 8 and 9.

The feedforward estimator for mf is based on the Aquino model for the wall wet-
ting dynamics [4]. The estimator uses a lookup table to characterize the parameters in
the Aquino model. The dynamics of the estimator are given by Eqs. 10 and 11.

The PI controller dynamics are given by Eq. 12 and the output of the controller is
given by Eq. 13. The controller is compliant with a standard published by the Math-
Works Automotive Advisory Board (MAAB), which is used by the automotive indus-
try. We use Version 3.0 of the MAAB standard for the model [1].

Error Factor Correction. A constant error factor, c24, is included in the oxygen sen-
sor measurement. Also, the inlet air mass flow rate ṁaf is measured by the controller;
a constant error factor, c23, is included in this measurement. The fuel command pro-
duced by the controller (Fc) and the actual fuel produced by the actuator (ṁψ) may
be different due to actuator error; a multiplicative fuel injector actuator error c25 is
included to account for this (i.e., ṁψ = c25Fc).
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3 Model Transformations
In this section, we present a simplification of the system dynamics described in Sec. 2.
We present the simplification as a set of transformations that can be applied in some
order.

Subsystem Deletion. This is the simplest of transformations, but requires designer
insight. Some subsystems model physical phenomena that have an effect on the sys-
tem dynamics but can be ignored for the purposes of designing a basic control law
for the system. For instance, we remove the wall wetting subsystem, which has the
effect of producing an imprecise but useful representation of the dynamics associated
with the control loop. Neglecting the wall wetting dynamics will surely cause the sim-
plified model to behave somewhat differently as compared to the original model; the
designer’s intuition dictates whether or not the difference is significant. Also, as an ef-
fect of removing the wall wetting subsytem, we also remove the feedforward observer
in the controller compensating for the fuel dynamics.

First-order Approximation. In this transformation, we replace a higher-order filter
with a first-order filter; the time constant of the first-order filter is selected to be com-
parable to the dominant time constant of the original filter. This is a standard model
order reduction technique. In our application, we replace the sensor dynamics and the
transport dynamics by a single first order filter.

Finitization. In this transformation, we replace infinite dimensional components such
as variable transport delays with finite, first-order approximations. In our application,
we have a variable transport delay representing the time it takes for the exhaust gases
to reach the A/F sensor. We remove this delay and approximate its effect by increasing
the time constant of the first-order filter described above.

After repeated applications of the above transformations, we obtain the ODE in
Eq. 15 for the A/F ratio.

Polynomialization. This set of transformations involves using polynomial approxima-
tions of nonpolynomial expressions in the model. We observe that this process can be
applied in a nested fashion, i.e., each nonpolynomial subexpression in a model could
be replaced with a polynomial, or it could be applied in a global fashion, i.e., an entire
expression representing the RHS of an ODE (which could contain both polynomial and
nonpolynomial subexpressions) could be replaced by a polynomial. While the global
method of polynomialization may be preferable, as it can provide a Taylor series ap-
proximation of the vector field, it is often more practical to employ the nested method,
since this method is more amenable to industrial models, where the approximation can
be applied directly to individual subsystems rather than an analytic representation of
the vector field. We also note that polynomialization fixes a maximum degree k for the
polynomial, and is usually over a certain range of values for the underlying variables;
we call this the domain. Finally, we need a metric to measure the error between a
nonpolynomial expression and its polynomial replacement. We typically use nonlinear
least-squares fitting. In our application, we apply the polynomialization transformation
as follows:

1. We aproximate the square root function on the RHS of Eq. 4 with a second
degree polynomial function (shown in Eq. 14), which is accurate in the domain
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0.5 ≤ p ≤ 1.0.
2. We replace the rational function on the RHS of Eq. 15 with a degree 2 polynomial

function, which is accurate in the domain 1.0 ≤ ṁc ≤ 20.0 and 0.5 ≤ Fc ≤ 1.2.

Discrete-to-Continuous Transformation. Here, we replace a discrete-time subsystem
with a continuous-time version. This requires that we ignore sampling effects (such
as in the controller) and obtain the smoothed dynamics. We obtain continuous-time
formulations for the PI controller, and the cylinder mass airflow estimator.

Simplified Model. Applying the above transformations, we obtain the polynomial
system representation shown in Eqs. 16-20.

4 Conformance Analysis
Note that the models presented in Sections 2 and 3 have 2 inputs: the engine speed
n (in rpm) and the throttle angle θ (in degrees). We consider an experimental setup
where n is fixed; this reflects a test scenario for real engines where the speed is held
constant by a dynamometer. We allow the throttle angle to be a pulse train signal
of duration 30 seconds, with a period of 10 seconds, an initial delay of 3 seconds, a
pulse-width of 5 seconds, a minimum amplitude of 8.8◦, and a maximum amplitude in
[8.8◦, 90◦]. Engine speeds in [1000, 2000] rpm correspond to the operating range for
which the model transformation is valid. In order to compare the two models, we pick
three engine speeds within this range, and perform 100 simulations, such that for each
simulation n is fixed, and the pulse amplitude is selected randomly in a Monte Carlo
fashion.

We define the normalized A/F ratio µ as (λ−14.7)
14.7 , where λ is the A/F ratio. As

regulating µ to 1 is the control objective, we compare the models on the basis of this
signal. We use control-theoretic properties of µ, such as the maximum overshoot,
minimum undershoot, and settling time as criteria for comparison. We define a settling
region of ±1% of the reference value for µ (which is 1.0) for the cases where the engine
speed is [1000, 1500] rpm. For higher speeds we use a settling region of ±2%. We also
measure the RMS error between the signal µc for the complex model, and the signal
µs for the simplified model.

Table 1 presents the results from the model comparison tests. Observe that, for low
engine speeds, the two models exhibit comparable behavior for all three criteria, and
the RMS error between the two µ signals is low. At the higher speeds, the model fidelity
considerably degrades. This can be partly ascribed to the RHS of the ODE in Eq. 17
being a polynomialization of the RHS of the ODE in Eq. 15. This approximation
is valid for a certain range of ṁc and Fc values, both of which are functions of ω.
Further, the polynomialization is performed in a nested fashion. In future work, it
would be interesting to refactor the simplified model so as to extend the valid ranges of
operation and polynomialize the global expressions.

We now briefly discuss the key challenge problems for conformance checking.

Conformance Metrics. Identifying effective metrics is difficult. It is unclear whether
a single metric over the space of signals could serve as the definition for behavioral
conformance. Our experience suggests that the notion of conformance should be
application-specific.
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Table 1: Comparison between a complex control model (Sec. 2) and its transformation
to a polynomial dynamical system (16).
Engine Overshoot Undershoot Settling Time RMS
Speed M1 M2 %∆ M1 M2 %∆ M1 M2 %∆ error

1000 0.12 0.12 0.2 -0.13 -0.13 3.5 0.00 0.00 0.0 1.60
1500 0.16 0.21 31.2 -0.15 -0.23 58.4 0.86 0.77 10.4 2.32
2000 0.89 0.37 58.4 -0.98 -0.42 56.5 1.29 0.74 42.6 7.28

Systematic transformations. Transformations preserving transient and stability char-
acteristics would be valuable. One direction is to evaluate nonlinear model order re-
duction techniques [8] and the metrics used therein.

Abstractions for Verification. Model transformations that generate abstract models
that conservatively respect properties such as the reachable state space, and more gen-
eral temporal properties are valuable for verification efforts.
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Appendix

A: Equations for Original Model
In this section, we outline the equations for the model described in Sec. 2. We use the
notation ẋ for a variable representing flow rate that is an algebraic function of state
variables and inputs; we use dx/dt to represent the derivative of a state variable, which
is expressed as a function of x and other state variables and inputs.

The function encoding the geometry of the throttle is given as a function of the
throttle angle θ:

θ̂ = c6 + c7θ + c8θ
2 + c9θ

3. (1)

The inlet air mass flow rate ṁaf is then given by the product of the above function,
and a function encoding a physical phenomenon relating the atmospheric pressure (c10)
to the intake manifold pressure p:

ṁaf = 2θ̂

√
p

c10
−
(
p

c10

)2

. (2)

The pumping polynomial is a function of the engine speed ω (in rad/sec) and the
intake manifold pressure p:

ṁc = c12
(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)
. (3)

Finally, the ODE for the intake manifold pressure is described as follows:

dp

dt
= c1

2θ̂

√
p

c10
−
(
p

c10

)2

− c12
(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
) . (4)

The ODE governing the measured A/F ratio λm is given below. Recall that ∆(mc, n)
is a variable delay that depends on the air mass entering the cylinder, and the engine
speed n in rpm. The lookup table for ∆(mc, n) is given in Table 4.

d2λm(t)

dt2
=

1

0.002

[
−0.12

dλm(t)

dt
− λm(t) + λc(t− ∆(mc, n))

]
. (5)

The mass of the fuel flowing into the cylinder is given by:

ṁϕ = (1 − κ(ω,mc))ṁψ +
mf

τ(ω,mc)
, (6)

where ṁϕ is the fuel mass flow rate into the cylinder, ṁψ is the fuel mass flow rate
into the intake manifold. The dynamic equation for the mass of fuel stored in the fuel
film, mf , is given by:

7



d

dt
mf = κ(ω,mc)ṁψ − mf

τ(ω,mc)
. (7)

Equations (6) and (7) are taken from [9] Equations 2.60 and 2.61.
In the model 1 − κ(·) and τ(·) are given as 2D lookup tables. These lookup tables

are estimated values taken from [9] Figure 2.21, and presented in Table 5. The table
axes are air mass entering the cylinder (mc) and engine speed (n).

The state equation for the manifold pressure estimator is

pe[k + 1] = pe[k] + 0.01 · c1 ·
(

ˆ̇maf [k] −(
c2 + c3ω[k]pe[k] + c4ω[k]pe[k]2 + c5ω[k]2pe[k]

) )
, (8)

where the X[k] is the signal X sampled at time increment k, and ˆ̇maf [k] = c23ṁaf [k]
is the measured value of ṁaf modified by an error factor (c23). The output of the air
mass estimator component is

ˆ̇mc[k] = c2 + c3ω[k]pe[k] + c4ω[k]pe[k]2 + c5ω[k]2pe[k]. (9)

The state equation for the wall wetting dynamics estimator is given by

fw[k] = P (ω[k − 1])fw[k − 1] +R(ω[k − 1])Fc[k − 1], (10)

where fw is the estimated amount of liquid fuel on the manifold wall, and Fc[k − 1] is
the previous value of the fuel command. P (·) and R(·) are given as 1D lookup tables
in Table 6 based on engine speed (n). The output of the estimator is given by:

fi[k] =

ˆ̇mc[k]
c11

− (1 − P (ω[k]))fw[k]

1 −R(ω[k])
. (11)

The feedback PI controller update equation is given by

i[k + 1] = i[k] + c24λ[k] − c11. (12)

The controller output command is given by

Fc[k] = (1 + c13(c24λ[k] − c11) + c14i[k])fi[k]. (13)

B: Equations for Simplified Model
The polynomial approximation of the square root expression in (4) is given below:

√
p

c10
−
(
p

c10

)2

≈ c20p
2 + c21p+ c22. (14)
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After applying various transformations (except polynomialization) we obtain the
following:

dλ

dt
= c26

(
c12 ·

(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
)

c25 · Fc
− λ

)
. (15)

We now give the polynomial ODEs describing the simplified model.

d

dt
p = c1

(
2θ̂

(
c20p

2 + c21p+ c22
)
− c12

(
c2 + c3ωp+ c4ωp

2 + c5ω
2p
))

(16)

d

dt
λ = c26

(
c15 + c16c25Fc + c17c

2
25F

2
c + c18ṁc + c19ṁcc25Fc − λ

)
(17)

d

dt
pe = c1

(
2c23θ̂

(
c20p

2 + c21p+ c22
)
−

(
c2 + c3ωpe + c4ωp

2
e + c5ω

2pe
))

(18)

d

dt
i = c14 (c24λ− c11) , (19)

where Fc is given by:

Fc =
1

c11
(1 + i+ c13(c24λ− c11))

(
c2 + c3ωpe + c4ωp

2
e + c5ω

2pe
)
, (20)

and ṁc is given by (3).

C: Model Parameters and Lookup Tables
List of model parameters (constants):
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Table 2: Model Parameters.
Param Value Unit Description
c1 0.41328 RT/Vm
c2 −0.366 Coefficient for Pumping polynomial
c3 0.08979 Coefficient for Pumping polynomial
c4 −0.0337 Coefficient for Pumping polynomial
c5 0.0001 Coefficient for Pumping polynomial
c6 2.821 Coefficient for f(θ) polynomial
c7 −0.05231 Coefficient for f(θ) polynomial
c8 0.10299 Coefficient for f(θ) polynomial
c9 −0.00063 Coefficient for f(θ) polynomial
c10 1.0 bar Atmospheric pressure
c11 14.7/12.5 Desired air-fuel ratio (all other modes / power mode)
c12 0.9 Manifold pressure estimate error factor
c13 0.05 Proportional gain for PI controller
c14 0.03 Integral gain for PI controller
c15 13.893 Coefficient forA/F polynomial
c16 −35.2518 Coefficient forA/F polynomial
c17 20.7364 Coefficient forA/F polynomial
c18 2.6287 Coefficient forA/F polynomial
c19 −1.592 Coefficient forA/F polynomial
c20 −2.3421 Coefficient for square root polynomial
c21 2.7799 Coefficient for square root polynomial
c22 −0.3273 Coefficient for square root polynomial
c23 1.0 MAF sensor constant error factor
c24 1.0 Oxygen sensor constant error factor
c25 1.0 Fuel injector actuator error factor
c26 4.0 First-order transfer function constant
u1 degrees Throttle angle
u2 rad/sec Engine speed

Table 3: Intermediate variables.
State Unit Description
ṁ g/s Air mass flow
ṁc g/s Air flow to cylinder
û1 Output of throttle angle polynomial
Fc g/s Commanded fuel
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Table 4: Delay LUT.
n mchrg Delay

800 0.05 0.25
1000 0.05 0.20
1500 0.05 0.20
2000 0.05 0.20
3000 0.05 0.20
800 0.15 0.30
1000 0.15 0.25
1500 0.15 0.20
2000 0.15 0.20
3000 0.15 0.20
800 0.20 0.40
1000 0.20 0.30
1500 0.20 0.20
2000 0.20 0.20
3000 0.20 0.20
800 0.25 0.80
1000 0.25 0.60
1500 0.25 0.40
2000 0.25 0.30
3000 0.25 0.20

Table 5: LUTs for 1 − κ(·) and τ(·).
n mc 1 − κ(·) τ(·)

1000 0.1 0.80 0.40
1500 0.1 0.70 0.30
2000 0.1 0.70 0.35
2500 0.1 0.80 0.30
3000 0.1 0.90 0.20
1000 0.2 0.70 0.22
1500 0.2 0.66 0.22
2000 0.2 0.65 0.40
2500 0.2 0.73 0.35
3000 0.2 0.85 0.50
1000 0.3 0.66 0.20
1500 0.3 0.66 0.22
2000 0.3 0.63 0.50
2500 0.3 0.66 0.40
3000 0.3 0.80 0.35
1000 0.4 0.60 0.35
1500 0.4 0.60 0.30
2000 0.4 0.60 0.45
2500 0.4 0.60 0.50
3000 0.4 0.70 0.40

Table 6: LUTs for P (·) and R(·).
n P (·) R(·)

1000 0.4 0.5
2000 0.65 0.95
3000 0.5 0.9

11


