
A Symbolic Algorithm for ShortestEG Witness
Generation

Yang Zhao and Xiaoqing Jin and Gianfranco Ciardo
Department of Computer Science and Engineering,

University of California, Riverside
Email: {zhaoy, jinx, ciardo}@cs.ucr.edu

Abstract—Witness generation is a fundamental model checker
feature, but generating shortest witnesses for anEG CTL formula
has long been a difficult problem of both theoretical and practical
relevance. We propose a symbolic approach to shortestEG
witness generation based on edge-valued multi-way decision
diagrams. We employ a fixpoint symbolic iteration to compute
the transitive closure enhanced with distance information, using
the saturation algorithm to cope with the high computational
complexity of this approach. We also extend this approach to
tackling the shortest witness generation for other properties and
the shortest fair witness generation. Experimental results show
that our approach can generate a shortest witness which could
not be found within acceptable time using previous algorithms.

I. I NTRODUCTION

Model checking aims at rigorously verifying the confor-
mance of a system to a given temporal property. Instead
of merely giving “true” or “false” answers, current model
checkers also return a possible execution of the system under
verification, called awitnessor counterexample, which, respec-
tively, validatesor violates the property. Since the violation
of an expected property often reflects design errors in the
system, counterexample generation is a valuable feature of
model checkers which helps debugging. Theoretically, it is
interesting to investigate practical algorithms that can generate
a shortest witness or counterexample. Practically, a shorter
counterexample is naturally more readable and helpful for
engineers to understand and correct erroneous behavior in
the system. Thus, both theory and engineering requirements
motivate research in shortest witness generation.

Computational tree logic (CTL) [1] is widely used because
of its simple yet expressive semantics. As we review in Section
II-A, counterexample generation to a universal property can be
converted to an equivalent witness generation to an existential
property, in the context of CTL. Thus, we only focus on
shortest witness generation. Many efforts [2][3][4][5] have
been made on this topic. UnlikeEX or EU witnesses, which
are finite paths,EG witnesses are “lasso-shaped” [2], i.e., they
contain a prefix leading to a cycle. Locating this cycle is the
crucial step in witness generation, and it is even more difficult
to find a shortest (length of handle plus cycle) witness.

The approach in this paper falls into the class of symbolic al-
gorithms, since it employs decision diagrams. Specifically, we
utilize Edge-Valued Multi-way Decision Diagram (EVMDD)
to encode the Transitive Closure with Distance (TCD), and

employ an advanced algorithm for symbolic exploration, satu-
ration [6], to efficiently build the EVMDD encoding the TCD.

The remainder of this paper is structured as follow: Sec-
tion II introduces the relevant background on CTL and the
symbolic data structure we use. Section III presents our
approach, stressing the computation of the TCD using the
saturation algorithm. Section IV extends our approach to a
more general class of shortest witness generation problems.
Section V offers some experimental results. We conclude this
paper and outline future work in the last section.

II. PRELIMINARIES

A Kripke structure with disjunctively-partitioned next-state
function is a tuple(S, sinit, E , {Nα :α∈E},A,L) where:

- S is the potential state space given by the cross-product
SL × · · · × S1 of the local state spaces ofL (finite) sub-
models. Thus, each (global) statei is a tuple(iL, ..., i1),
whereik ∈ Sk is a local state of thekth submodel.

- sinit ∈ S is the (single) initial state.
- E is a set of (asynchronous) events.
- Nα :S→2S is the next-state function for eventα ∈ E , so

thatNα(i) is the set of states that can be nondeterminis-
tically reached in one step when eventα fires in statei.
We letNα(X) =

⋃

i∈X Nα(i) andN =
⋃

α∈E Nα.
- A is a set of atomic propositions.
- L : S → 2A is a labeling function listing the atomic

propositions that hold in each state. LetSp be the set of
states wherep holds,{s ∈ S : p ∈ L(s)}.

Throughout this paper,i, j, andk denote single states;X
andY denote sets of states;α and β denote events; andf ,
p, and q denote atomic propositions. Also, while we assume
a single initial state, our algorithm can be applied to systems
with multiple initial states by simply adding a new “virtual
initial state” sinit and a new event with auxiliary transitions
from sinit to each initial state of the original system. Then,
for EGp, we letsinit ∈ Sp and the shortest witness generated
for the modified system is equivalent to that of the original
system except for the first auxiliary transition.

The basic idea of symbolic algorithms is to map a set of
states to a symbolic structure; we use a multi-way decision
diagram (MDD) [7]. The state-space exploration can be exe-
cuted implicitly by MDD manipulation instead of explicitly
traversing the transition graph. For simplicity, we do not

differentiate the notation between a set of statesX or next-
state functionNα and their MDD encoding; what is meant is
easily determined by the context.

A. Background and related work

We assume readers are familiar with the semantics of
CTL [1]. Only a generator subset of CTL operators, e.g.,
{EX,EU,EG}, needs to be implemented in a model checker,
as the all other CTL operators can be expressed using the
generator set and ordinary boolean operators. The correspon-
dence between counterexamples to universal “A” properties
and witnesses to existential “E” properties is as follows:

a counterexample to is the same as a witness to
AXp EX(¬p)
AGp EF(¬p)

A[pUq] E[¬qU(¬p ∧ ¬q)] ∨ EG(¬q)
AFp EG(¬p)

Clarke et al. [2] proposed the first symbolic approach to
CTL witness generation. Using symbolic breath-first search,
witness generations forEX and EU can naturally guarantee
minimality, but the problem is much more difficult for the
EG operator. A witness toEGp is composed of a path from
the initial state to a cycle, such that all states along that path
and on the cycle satisfyp. According to CTL semantics, if a
state satisfiesEGp, it must have a successor that also satisfies
EGp. Thus, we can incrementally build a path of states
satisfying EGp, which must finally lead to a state already
on the path, closing the cycle and resulting in a witness.
Figure 1 shows the pseudocode of this algorithm, which can
be easily implemented using BDDs or MDDs. A witness
generation algorithm for weakly fairEG was also proposed in
[2] based on this idea. Since there might be multiple successors
satisfying EGp, the algorithm is nondeterministic and the
length of the witness depends in general on which state is
chosen at each step. We stress that, while the pseudocode uses
a symbolic encoding, this algorithm is largely explicit, asit
follows a single specific path. Decision diagrams help very
little, especially ifN (i) is a very small set for eachi.

The work most related to ours was presented by Schuppan
et al. in [3][8], which proposed a framework to convert a
liveness property to a reachability problem by performing a
state-recording translation, so that a shortest witness forEGp
can then be generated using breadth-first search (BFS). The
bottleneck of this approach mainly lies in the BFS over the
quadratic state space of the original system. Our previous
work [4] has shown that saturation can effectively speed up
shortest trace generation. This paper extends the idea of [4] to
the generation of shortestEGp witness. Instead of exploring a
quadratic state space using BFS like [8], we employ saturation,
usually more efficient than BFS for asynchronous systems, to
build the TCD encoded as an EVMDD.

Orthogonal to symbolic algorithms, explicit-state model
checkers adopt techniques such as heuristic-guided search[9]
and crucial event identification [5] to shorten the generated
witnesses. These techniques aim at achieving both an efficient

EGwitnessBFS(stateset P) is •P is the MDD encoding Sp
1 stateset Q←EG(P); •witness exists only if sinit ∈ Q
2 stateset X←∅; • set of states in the witness
3 stateset Y←{sinit}; • current frontier
4 while (X ∩ Y = ∅) do
5 state i←pick(Y); print i;
6 X←X ∪ {i}; Y←N (i) ∩Q;
7 endwhile
8 i←pick(X ∩ Y); print i;

Fig. 1. BFS-based algorithm to generate a witness forEGp.

of state-space exploration and shorter witnesses. Still, none of
these algorithms is guaranteed to find a shortestEG witness.

B. Edge-valued multi-way decision diagrams

While BDDs and MDDs provide a compact encoding for
Boolean functions, we often need to represent integer func-
tions defined on a large set of states, such as the distance
function which maps each state to its distance from the initial
states. Widely used Multi-terminal Binary Decision Diagrams
(MTBDDs, and the similar Algebraic Decision Diagrams,
ADDs) [10] or Multi-terminal Multi-way Decision Diagrams
(MTMDDs) are natural extensions of BDDs and MDDs to
integer ranges. In this paper, however, we employ (additive)
Edge-Valued Multi-way Decision Diagrams (EVMDDs) [4],
which have the advantage of being more compact: [11] proves
that an EVMDD never contains more nodes than the equivalent
MTMDD under the same variable order. Furthermore, the
saturation algorithm can be used on EVMDDs to speed up
the fixpoint iterations, as [4] showed for the computation of
distance functions, and as we show in Section III for the
computation of TCD.

Among the many variants of EVMDDs, we choose a spe-
cific additive version, EV+MDD, whose normalization rules
allow us to encode partial integer functions where “undefined”
has the semantics of “∞”. Given L setsSk = {0, ..., nk−1},
for L≥k≥1, an EV+MDD overS = SL×· · ·×S1 is a directed
acyclic level-oriented edge-labeled multi-graph where:

• Ω is the only terminal node and is at level0. We write
Ω.lvl = 0.

• A nonterminal nodea is at some levelk, with L≥k≥1,
and hasnk outgoing edges, each labeled with a different
index ik ∈ Sk, pointing to a lower-level nodeb, and
associated with a valueρ ∈ N∪{∞}. We writea.lvl = k,
a[ik] = 〈ρ,b〉, b = a[ik].node, andρ = a[ik].val.

• There is a single root noder∗, at levelL, with a “dan-
gling” incoming edge associated with a valueρ∗ ∈ N.
We write 〈ρ∗,r∗〉 to denote the entire EV+MDD.

For a canonical form of EV+MDDs, assumed from now on,
we require that [4]:

• If a[i] = 〈∞,b〉, thenb = Ω.
• If a[i] = 〈ρ,b〉 with ρ ∈ N, thenb.lvl = a.lvl − 1.
• For each nodea at levelk > 0, there is an indexik ∈ Sk

s.t. a[ik].val = 0.
• There are noduplicate nodes, i.e., given two distinct

nodesa and b at levelk > 0, there is an indexik ∈ Sk

 0
1 2 30

0 18 36 54

1 20
0 6

1 20
0 1 2

10
0 3

Ω

12

v4

v3

v2

v1

Fig. 2. An
EVMDD.

evmdd Normalize(evmdd .node a)

1 if a = Ω then return 〈0,Ω〉;
2 level k ← a.lvl ;
3 b← NewNode(k); • create a node at level k
4 for ik ∈ {0, ..., nk − 1} do
5 〈µ,s〉 ← Normalize(a[ik].node);
6 b[ik]← 〈µ+ a[ik].val,s〉;
7 endfor
8 ρ← min

{

b[ik].val : ik ∈ {0, ..., nk − 1}
}

9 for ik ∈ {0, ..., nk − 1} do
10 b[ik].val← b[ik].val − ρ

11 endfor
12 return 〈ρ,b〉;

Fig. 3. Pseudocode forNormalize.

s.t. a[ik] 6= b[ik].

An edge〈ρ,a〉 encodes the functionf〈ρ,a〉 : Sk×· · ·×S1 →
N ∪ {∞}, wherea.lvl = k, defined recursively as follows:

f〈ρ,a〉
(

ik, ..., i1
)

=

{

ρ if a = Ω
ρ+ fa[ik](ik−1, ..., i1) otherwise.

For example, Figure 2 shows a canonical EV+MDD encoding
f(v4, v3, v2, v1) = 18v4 + 6v3 + 3v2 + v1, where v4 ∈
{0, 1, 2, 3}; v3, v1 ∈ {0, 1, 2}; v2 ∈ {0, 1}. The above defi-
nition allows us to canonically encode any function fromS to
N∪{∞} with the exception of the constant function identically
equal to∞, for which we allow the special encoding〈∞,Ω〉.

In a practical implementation, duplicated nodes are avoided
by maintaining aunique table UT, and each node isnormalized
before inserting it in the unique table to conform to the
canonical rule. FunctionNormalize in Figure 3 describes
the procedure to normalize an EV+MDD; most manipula-
tion functions, however, work with and maintain normalized
EV+MDDs, so only newly created nodes require normalization
prior to inserting them in the unique table.

Operations on integer functions can be efficiently imple-
mented by EV+MDD. Three EV+MDD operations are exten-
sively used in our work:

- Min: given two EV+MDDs 〈ρ,a〉 and 〈σ,b〉, return an
EV+MDD 〈µ,r〉 encoding functionmin(f〈ρ,a〉, f〈σ,b〉),
wheremin(∞, ρ) = ρ is a special case.

- Sum: given two EV+MDDs 〈ρ,a〉 and 〈σ,b〉, return an
EV+MDD 〈µ,r〉 encoding functionf〈ρ,a〉+f〈σ,b〉, where
∞+ ρ =∞ is a special case.

- MinState: given an EV+MDD 〈ρ,a〉, return a statei such
that f〈ρ,a〉(i) is the minimum value of functionf〈ρ,a〉.

Figure 4 shows proceduresMin andSum. These algorithms
run recursively on each level, without having to enumerate
every state of a potentially huge state space. It is known [10]
that the number of recursive calls of the genericApply oper-
ation, includingMin andSum, for EVMDDs at most equals
those for MTMDDs representing the same function. Procedure
MinState is even simpler: since each nonterminal node must
have at least one edge with an associated value of0, we can
simply follow any0-value path from the root〈ρ∗,r∗〉 toΩ. The

evmdd Min(evmdd 〈ρ,p〉, evmdd 〈σ,q〉)
1 int µ← min{ρ, σ}; level k ← p.lvl ;
2 if ρ =∞ then return 〈σ,q〉;
3 if σ =∞ then return 〈ρ,p〉;
4 if p = q then return 〈µ,p〉; • includes the case k = 0, i.e.

p = q = Ω
5 if InCacheMin(〈p, q, ρ−σ, r〉) then return 〈µ,r〉; •Assume

ρ ≥ σ, if not, swap two parameters.
6 node r ← NewNode(k);
7 for ik ∈ Sk do
8 r[ik]← Min(〈ρ− µ+ p[ik].val ,p[ik].node〉,
〈σ − µ+ q[ik].val ,q[ik].node〉);

9 endfor
10 〈γ,r〉←Normalize(r);
11 InsertUT (r); CacheAddMin(〈p, q, ρ− σ, r〉);
12 return 〈µ+ γ,r〉;

evmdd Sum(evmdd 〈ρ,p〉, evmdd 〈σ,q〉)
1 int µ← ρ+ σ; level k ← p.lvl ;
2 if ρ =∞ or σ =∞ then return 〈∞,Ω〉;
3 if InCacheSum(〈p, q, 〈γ,r〉〉) then return 〈µ+ γ,r〉;
4 node r ← NewNode(k);
5 for ik ∈ Sk do
6 r[ik]←Sum(p[ik], q[ik]);
7 endfor
8 〈γ,r〉←Normalize(r);
9 InsertUT (r); CacheAddSum(〈p, q, 〈γ,r〉〉);

10 return 〈µ+ γ,r〉;

Fig. 4. Pseudocode forMin andSum .

function encoded by the EV+MDD evaluates to the minimum
possible value,ρ∗, for any state corresponding to such a path.

III. SHORTESTEG WITNESS GENERATION

Section III-A provides an overview of our algorithm for
shortestEG witness generation. Then, Section III-B describes
the computation of TCD, the most critical step.

A. Overview

A witness toEGp in a finite-state system, often described
as lasso-shaped witness[12], is an infinite path consisting of
a finite prefix leading to a cycle, We provide the following
definition to discussEG witnesses in more detail:

Definition 1: Given p ∈ A, a finite acyclic pathπs=sinit→
i1→· · ·→ in is a p-stem of lengthn ≥ 0 if sinit, i1, . . . , in ∈
Sp; a (cyclic) pathπc : i1 → · · · → im → i1 is a p-cycle of
lengthm ≥ 1 if i1, . . . , im ∈ Sp. Let stem(p, i) be the set of
p-stems that terminate in statei and cycle(p, i) be the set of
p-cycles that start in statei; whenp is understood, we simply
write stem(i) andcycle(i). ✷

An EGp witness is composed of ap-stem leading to ap-
cycle. We say that statek which terminates ap-stem and
also starts ap-cycle is aknot. The initial state is the knot
in witnesses which have the0-length stems. IfEGp holds in
the initial state, a statek ∈ Sp induces a set of witnesses
witness(k) = stem(k)× cycle(k), i.e., all combinations of
p-stems in stem(k) and p-cycles in cycle(k). A shortest
witness amongwitness(k) consists of a shorteststem(k) and
a shortestcycle(k). Hence, finding the shortestEGp witness

can be seen as the minimization problem (let|π| be the length
of pathπ):

min
k∈Sp

(

min
πs∈stem(k)

(|πs|) + min
πc∈cycle(k)

(|πc|)

)

(1)

Given a knot statek, algorithms in [2], [4] can efficiently
find the shorteststem(k) andcycle(k). The difficulty lies in
finding a knot statek∗ that induces a globally shortest witness
in Equation 1. This difficulty can be attributed to the lack of
algorithms able to compute the distance information between
pairs of states in a huge state space. We attack the problem
from this angle by computing TCD.

Definition 2: (Transitive Closure with Distance). Function
TCDp : S × S → N

+ ∪ {∞} is such thatTCDp(i, j) is the
length of a non-zero shortest pathi → s1 → s2 → · · · → j

where i, s1, s2, . . . , j ∈ Sp, andTCDp(i, j) = ∞ if no such
path exists. LetTCD triv

p (i, j) be an extension ofTCDp(i, j)
that:

TCD triv
p (i, j) =

{

0 if i= j

TCDp(i, j) otherwise

Also, let TCD−1
p (i, j) = TCDp(j, i). ✷

As the base case,TCDp(i, j) = 1 if i and j satisfy p and
j ∈ N (i). Define

TCDstem
p (i) , TCD triv

p (sinit, i)

TCDcycle
p (i) , TCDp(i, i)

Formula 1 can then be rewritten as:

min
k∈Sp

(TCDstem
p (k) + TCDcycle

p (k)),

TCDp is a two-parameter function, thus must be encoded
with a2L-level EV+MDD, while TCDstem

p andTCDcycle
p are

single-parameter functions which can be encoded withL-level
EV+MDDs and are obtained fromTCDp through symbolic
manipulation. Thus, our algorithm forEG witness generation
consists of the following steps:

1) Build the2L-level EV+MDD encodingTCDp.
2) Build L-level EV+MDDs encoding TCDstem

p and
TCDcycle

p . Compute the sum of these two EV+MDDs,
which encodes length of the shortest witness induced by
each statek ∈ Sp.

3) Extract a knot state that achieves the minimum value in
the resulting function.

4) Find the shortest paths from the initial state to the knot
(p-stem) and from the knot to itself (p-cycle). These two
paths form a shortest witness forEGp.

As the computation ofTCDp is the most time and memory
intensive step in the overall procedure, we discuss it in detail
in next section.

B. Computing TCD

Building TCDp is essentially the classic all-pair shortest
path problem in a modified graph from the original discrete-
state system where only states (vertices) inSp and transitions

(edges) between these states are retained. All edges have unit
weight, so the distance betweeni and j equalsTCDp(i, j).
Instead of using a distance matrix, however, we utilize a2L-
level EV+MDD 〈τ ,t〉 to encode the distance between each pair
of states:

f〈τ,t〉(iL, jL, iL−1, jL−1, . . . , i1, j1) = TCDp(i, j),

where i, j ∈ Sp, and we interleave the levels fori and
j. To correlate local states with their submodels, the levels
of ik and jk in 2L-level EV+MDD are referred to byk2l
and k′2l, respectively (unprimed and primed levels are inter-
leaved in our implementation), and we letUnprimed(k2l) =
Unprimed(k′2l) = k.

The procedure to build〈τ ,t〉 is analogous to a symbolic
implementation of Dijkstra’s algorithm. We start from the
EV+MDD 〈τ1,t1〉 encoding

f〈τ1,t1〉(i, j) =

{

1 if ∃α ∈ E , j ∈ Nα(i)
∞ otherwise

(so thatτ1 = 1 and all values associated with outgoing edges
are either0 or ∞), and useNα to build a new EV+MDD
Nα(〈τ ,t〉) satisfying

fNα(〈τ,t〉)(i, j) = min

(

min
k∈pre(j)

(

f〈τ,t〉(i,k)
)

,∞

)

wherepre(j) = {k ∈ Sp : j ∈ Nα(k)}. Then, 〈τ ,t〉 can be
updated:

〈τ ,t〉 ← Min(〈τ ,t〉,Nα(〈τ ,t〉)+1)

We can iteratively update〈τ ,t〉 for any eventα ∈ E , until
achieving convergence. It is easy to prove that this procedure
always terminates and that the fixpoint is the answer to the all-
pair shortest path problem, regardless of the order of updates,
as long as all next-state functions are considered often enough.
However, different orders might lead to huge variations in
the size of the EV+MDDs encoding the intermediate results,
as well as the runtime. Saturation [6] has been shown to be
an effective fixpoint iteration scheme that tends to minimize
peak memory consumption and accelerate convergence. We
first partition the eventsE into {EL, . . . , E1}, whereα ∈ Ek
iff k is the lowest level satisfying:

• if α is enabled (disabled) in(iL, . . . , i1) ∈ S, then it is
enabled (disabled) in any(jL, . . . , jk+1, ik, . . . , i1) ∈ S,

• α does not change any local state at levels abovek, so that
Nα(iL, . . . , i1) can be rewritten as{(iL, . . . , ik+1)} ×
Nα(ik, . . . , i1).

Let Nk =
⋃

α∈Ek
Nα, then Nk(X) can be computed only

on nodes at level or belowk, evidencing the benefit of
locality, which is widely enjoyed by asynchronous systems.
Analogously,Nk(〈τ ,t〉) can also be computed locally and
〈τ ,t〉 can be updated solely considering nodes at or below level
k2l, instead of recomputing the overall EV+MDD. Moreover,
we can repeatedly update〈τ ,t〉 usingNk, . . . ,N1 until con-
vergence, at which point we say that the nodes aresaturated
on levelk. 〈τ ,t〉 is saturatedon levelk iff

∀j ≤ k, 〈τ ,t〉 ≡ Min(〈τ ,t〉,Nj(〈τ ,t〉)+1)

ComputeTCD(mdd a) • a encodes Sp
1 evmdd 〈1,t0〉←EVMDDencode(N);
2 return TCDSat(a, 〈1,t0〉);

evmdd TCDSat(mdd a, evmdd 〈µ,n〉)
1 if n = Ω then return 〈µ,Ω〉;
2 if InCacheTCDSat(a, n, 〈λ,r〉) then return 〈λ+ µ,r〉;
3 level k ← n.lvl ;
4 node t← NewNode(k);
5 mdd r ← NUnprimed(k)

6 for i, j ∈ SUnprimed(k) s.t. n[i][j].val 6=∞ do
7 if a[j] 6= 0 then • constrain the path in a

8 t[i][j]←TCDSat(a[j], n[i][j]);
9 else

10 t[i][j]←n[i][j];
11 endif
12 endfor
13 for i ∈ SUnprimed(l) s.t. n[i].val 6=∞ do
14 repeat
15 for j,j′∈Sl s.t. n[i][j].val 6=∞∧r[j][j′].node 6=0 do
16 if a[j′] 6=0 then • constrain the path in a

17 〈η,u〉←TCDRelProdSat(a[j′], n[i][j], r[j][j′]);
18 t[i][j′]← Min(t[i][j′], 〈η + 1,u〉); • incr. distance
19 endif
20 endfor
21 until 〈λ,t〉 does not change;
22 endfor
23 〈λ,t〉←Normalize(t);
24 InsertUT (t); CacheAddTCDSat(a, n, 〈λ,t〉);
25 return 〈λ+ µ,t〉;

evmdd TCDRelProdSat(mdd a, evmdd 〈µ,n〉,mdd r)

1 if n = Ω then return 〈µ,Ω〉; • r = 1 in this case
2 if InCacheTCDRelProdSat(a, n, r, 〈λ,t〉) then
3 return 〈λ+ µ,t〉;
4 level k ← n.lvl ; node t← NewNode(k);
5 for i ∈ SUnprimed(k) s.t. n[i].val 6=∞ do
6 for j, j′ ∈ SUnprimed(k) s.t. n[i][j].val 6=∞∧r[j][j′] 6=0 do
7 if a[j′] 6= 0 then • constrain the path in a

8 〈η,u〉←TCDRelProdSat(a[j′], n[i][j], r[j][j′]);
9 t[i][j′]← Min(t[i][j′], 〈η,u〉);

10 endif
11 endfor
12 endfor
13 〈λ,t〉 ← TCDSat(a,Normalize(t));
14 InsertUT (t); CacheAddTCDRelProdSat(a, n, r, 〈λ,t〉);
15 return 〈λ+ µ,t〉;

Fig. 5. BuildingTCDp.

We divide the iteration intoL phases according to the satura-
tion scheme. Thekth phase begins only after〈τ ,t〉 is saturated
up to level k − 1 and completes when it is saturated up to
level k. An important idea is that every time we compute
Nk(〈τ ,t〉), we expect to keep the results saturated up to level
k. TheseL-phase local fixpoint iterations execute bottom-up,
until reaching the global fixpoint.

Figure 5 shows the pseudocode to computeTCDp. This
algorithm augments the transitive closure algorithm of [13] by
computing distances between state pairs instead of a simple
boolean reachability relation. MDDa encodes the set of states
Sp. Lines 7-10 and 16-18 in procedureTCDSat , and Lines

7-9 in procedureTCDRelProdSat constrain all paths between
pairs of states to be along states in the set encoded by MDD
a. We assume that the MDDs encoding{NL, . . . ,N1} have
been computed and are globally available. As we use the QFI-
reduction rule [14],Nk is an MDD with the root at levelk.

The main procedure is a dual recursion betweenTCDSat

andTCDRelProdSat . TCDSat computes the fixpoint in the
kth phase. In Line 17, it callsTCDRelProdSat on lower levels
to computeNk(〈τ ,t〉). TCDRelProdSat computesNk(〈τ ,t〉)
recursively and saturate the results at the end (Line 13) and
thus returns a saturated result; this reflects the idea of aggres-
sively computing local fixpoints on nodes as soon as they have
been created. According to our experience [4], [6], [13], this
scheme greatly speeds up convergence and reduces memory
requirements in intermediate results for typical asynchronous
systems.

While the saturation scheme exploits asynchronous event
locality to speed up iterations, our algorithm does not impose
any requirement on the system under verification. For systems
where no natural asynchronous partition of the transition rela-
tion exists, such as fully synchronous systems, our algorithm
is still applicable by lettingNL = N and an emptyNk for
1≤ k <L. In this case, the algorithm degrades to a stepwise
procedure always operating from the top level, but still benefits
from the efficiency of EV+MDDs. In our experience, using an
asynchronous partition and saturation, when possible, results
in much faster runtime than using the monolithic next-state
function and the stepwise procedure.

IV. D ISCUSSION

In this section, we discuss two extensions of our approach
proposed above. First, we apply the idea in the above section
to shortest witness generation for other properties in Section
IV-A. Then, we tackle fairness inEG.

A. Shortest witness generation beyondEG

We extend the approach of Section III to shortest witness
generation (SWG) for more general properties of the formEψ,
whereψ is a path formula andEψ does not necessarily have
to be a CTL property. The resulting witnesses also constitute
shortest counterexamples forA¬ψ.

Reviewing our TCD-based algorithm for shortestEGp wit-
ness generation, we can summarize the following steps:

1) Represent the length of a witness as an function, usually
the sum of severalwitness segments. This is the objective
of the minimization problem we need to solve and the
minimal value is the shortest length of witnesses.

2) Encode the objective function with an EV+MDD based
on TCD, usually the sum of several EV+MDDs, each of
which corresponds to a witness segment.

3) Find a minimum solution usingMinState from
EV+MDD encoding the objective function. The solution
can be several states “inducing” the shortest witness.

4) Build each witness segment, which is a shortest path
between two states, and connect these segments sequen-
tially to obtain a shortest witness.

sinit

r
i sinit r

i (b)(a)

Fig. 6. A witness forEF(r ∧ EG¬s).

In SWG for EG, the objective function is Formula 1, the sum
of stem and cycle. The central step is to find the minimal
solution, knotk∗, inducing the shortest witness. The extension
of this approach to a complete framework able to handle all
path formulas is non-trivial and beyond the scope of this paper.
Instead, we present the basic idea in an informal way, by
discussing the following two widely used properties.

• Witnesses forE(GFp). We introduce functionCycleDist

based onTCD :

CycleDist(i, j) =

{

TCD(i, i) if i = j

TCD(i, j) + TCD−1(i, j) otherwise,

whereTCD = TCD true . Then, we need to find a state pair
(k,p), wherek is the knot, which connects the stem and the
cycle, andp ∈ Sp, which belongs to the cycle. Each witnesses
consists of three segments: paths fromsinit to k, from k to p,
and fromp to k. The objective function for the minimization
problem is

min
k∈S,p∈Sp

(

TCDstem(k) + CycleDist(k,p)
)

, (2)

The minimal solution(k∗,p∗) induces a shortest witness,
consisting of three shortest witness segments.

• Witnesses forE[F(r ∧G¬s)]. These are counterexamples
to CTL properties of the formAG(r → AFs), which describe
liveness: once a process issues a request (r), it will be
eventually satisfied (s). Witnesses forE[F(r ∧ G¬s)] reflect
possible starvation in the system. For notational consistency
with the previous section, letp = ¬s.

There are two types of witnesses for this property, as shown
in Figure 6, where each circle denotes a state and solid black
circles denote states inSp. We can solve these two cases
separately and then find a global minimal result. In the first
case, Figure 6(a), a witness consists of paths fromsinit to a
stater ∈ Sr and fromr to a knotk, on ap-cycle, and such
thatp holds along the path betweenr andk. In this case, there
are three witness segments and the minimization objective is:

min
r,k∈Sp

(

TCDstem(r) + TCD triv
p (r,k) + TCDcycle

p (k)
)

.

In the second case, Figure 6(b), the stem leads to a knotk on
a p-cycle that contains a stater ∈ Sr. This case is similar to
the SWG problem forEGFp, except for replacingTCD with
TCDp in CycleDist , to constrain the cycles toSp. A shortest
witness for this case can then be generated accordingly.

B. Shortest fair witness

In this section, we considerBüchi fairness, which can be
specified withn > 0 sets of statesF1,F2, . . . ,Fn. A fair
witness is a path leading to afair cycle, which contains a

stateim ∈ Fm for eachFm. To simplify the discussion, we
only explain how to generate shortest fair witness forEGtrue,
as the same idea can be extended to other properties. The
complexity of this problem is proven to be NP-complete in [2].

We employ the idea in [8] by adding afairness flagSf as
a submodel in TCD.Sf can be considered as an-bit array,
whereith bit indicates whether theith fairness constraint has
been fulfilled on a path. Let⊥∈Sf be the initial state where
all bits are0, and⊤ ∈ Sf be the state where all bits are1,
as all constraints are fulfilled. Define the operationSet(f ,m)
to set themth bit to 1. The new TCD, denoted byTCDf ,
can be expressed as an integer function on(i, j, f), encoding
the length of the shortest path that starts ini, ends inj, and
satisfies the fair constraints indicated byf . TCDf can be build
recursively by the following rule, using a similar algorithm as
the one discussed above:

j∈N (i)⇒ TCDf (i, j,⊥) = 1

∧ min
j∈N−1(k)

(TCDf (i, j, f))=d⇒ TCDf (i,k, f)=d+1

∧TCDf (i, j, f)=d ∧ j∈Fm ⇒ TCDf (i, j,Set(f ,m))=d+1

Now the problem can be converted to witness generation
without fair constraints. The minimization objective is:

min
k∈S

(

TCDstem(k) + TCDf (k,k,⊤)
)

.

The resulting witness can be mapped to the original system
by filtering out n auxiliary steps setting fairness flag. This
approach shares the same complexity with that in [8], and
retains the benefits of using EV+MDDs and saturation.

V. EXPERIMENTAL RESULTS

We implemented the proposed approach in SMART [15]
and report experimental results running on an Intel Xeon
2.53GHz workstation with 36GB RAM under Linux 2.6.18.
We also implemented the BFS-based algorithm of Figure 1
using MDD in SMART. We compare our results with those from
the verification tool SAL [16]. Petri net models for SMART
were converted to models in the SAL input language. The
results from these algorithms are in the following columns:
• “ SMART-TCD” : the TCD-based algorithm we propose. If it
completes in the time limit, it returns a shortest witness with
lengthL∗, used as an oracle for the other algorithms.
• “SAL-BMC” : Bounded model checker in SAL. We have
two sets of runtimes, by setting the boundB to L∗ and
L∗ − 1 respectively, so that SAL-BMC tackles a satisfiable
or unsatisfiable SAT problem, respectively.
• “ SMART-BFS”: MDD-based witness generation implemented
in SMART according to the algorithm in Figure 1. For the BFS-
based algorithm, we run two sets of experiments. In Column
“100 runs”, we run the BFS-based algorithm100 times and
list the length of the shortest witness generated among these
100 runs, as well as the total runtime for the100 runs. In
subcolumn “L” and “time” respectively. In Column “runs till
shortest”, since we knowL∗ from the SMART-TCD, we run the
BFS-based algorithm repeatedly until it generates one of the

shortest witnesses. The number of runs and runtimes required
to generate the shortest witness using the BFS-based algorithm
are listed in subcolumns “R” and “time”, respectively. Also
here we set a runtime limit of one hour. Since the BFS-based
algorithm is randomized, the results in subcolumns “R” and
“time” are the average over100 experiments.
• “SAL-WMC” : BDD-based symbolic model checker in
SAL. It generates a witness of lengthL without optimization.

The comparison metrics are runtime (columns “time”, all
measured in seconds) and length of the generated witness.
Table I presents results on eight models, including mutual
exclusion protocols (peterson and bakery in [17]), leader
election protocol (leader), the dining philosopher problem
(phil), a closed queue network (cqn), an arbiter protocol
(arbiter), a factory automation model (kanban), and the two
robin and slot protocols [18]. The sizes of the state spaces
of these models are parameterized by an integerN . The first
three columns list the model names, the parameters, and the
sizes of state spaces.

A bounded model checker can find the shortest witness
using binary search; this requires running a SAT solver
O(⌈log2L

∗⌉) times, to both generate a shortest counterexam-
ple and prove that no shorter counterexamples exist. Thus, the
sum of the runtimes forB=L∗ andB=L∗−1 is a reasonable
lower bound for the runtime required by SAL-BMC to find
a shortest witness. The results in Column “SMART-TCD” and
“SAL-BMC” shows that SAL-BMC achieves obvious speedup
over SMART-TCD only onkanban, but performs much worse
in robin, slot andcqn. Even provided withL∗ as the bound,
SAL-BMC still requires much more time to find the witness
in these three models. These results demonstrate the efficiency
of our approach.

SAL-WMC and SMART-BFS are based on the same idea, but
use different data structures, i.e., BDDs vs. MDDs. Neitherof
them can guarantee shortest witnesses. However, SMART-BFS
runs much faster than SAL-WMC, due to the efficiency of
our MDD library and of our encoding of next-state functions.
It is not surprising that SMART-BFS runs orders of magnitude
faster than SMART-TCD because computing TCD is much more
expensive than the image computations in SMART-BFS. On the
other hand, SMART-TCD generates much shorter witness for
slot , arbiter andcqn than SMART-BFS. Thanks to EV+MDD
and saturation, SMART-TCD completes on complex models
with more than1010 states and, oncqn andphils, it runs even
faster than SAL-WMC, which does not attempt to minimize
the witness length.

For cqn and arbiter, SMART-TCD generates much shorter
witnesses than SAL, while SMART-BFS fails to find a shortest
witness within the time limit. Figure 7 illustrates how the
runtime increases and the shortest length of witnesses found
decreases as the BFS-based algorithm runs repeatedly and
cumulatively in modelcqn20. Similar results can be observed
in arbiter, but we do not show it here because of space
limitations. The x-axis (in logarithmic scale) indicates the total
number of runs, the solid line (associated with the left y-axis)
shows the total runtime, and the dotted line (associated with

Fig. 7. Runtime and witness length of the BFS-based algorithmon cqn.

the right y-axis) shows the shortest length of witnesses found.
For comparison, the thin solid line and the dotted line mark
the runtime SMART-TCD and L∗, respectively. We can see
that runtime grows almost linearly, and many runs (recall that
the x-axis is in logarithmic scale) are needed to find a short
witness. Within the given runtime, the SMART-BFS produces
much longer witnesses than the SMART-TCD. This is analogous
to simulation-based verification, which, while it providesgood
coverage for simple designs, requires unacceptable runtimes to
reach corner cases in complex designs. SMART-BFS randomly
chooses the next step at each iteration, just as in unguided
simulation. If there are only a few witnesses, as inphils and
kanban, SMART-BFS can find a shortest witness in few runs
with high probability, although, even in these cases, it cannot
prove that there is no shorter witness without exhaustively
searching all possible witnesses. If there are many witnesses,
SMART-BFS might instead only be able to generate very long
witnesses even after a long runtime, as Figure 7 illustrates. In
this case the SMART-TCD becomes a better choice to generate
a short witness, indeed a guaranteed shortest witness.

VI. CONCLUSION AND FUTURE WORK

We presented a saturation-based algorithm for shortestEG
witness generation. We proposed a symbolic techniques using
EV+MDDs to compute the Transitive Closure with Distance
(TCD), which compactly represents distances between each
pair of states. Then, the shortestEG witness can be identi-
fied symbolically. We also extended this approach to tackle
shortest witness generation for other properties and shortest
fair witness generation.

Computing TCD is the bottleneck in our approach. Tech-
niques to speed up this computation should be investigated,in-
cluding dynamic variable ordering. Coupled with EV+MDDs,
the transitive closure provides an elegant way of analyzing
quantitative properties of traces in complex asynchronous
systems, such as probabilistic model checking, which we
intend to investigate in future work.

Model N SS
SMART-TCD SAL-BMC SAL-WMC SMART-BFS

L∗ time
time time

L time
100 runs runs till shortest

B=L∗ B=L∗
−1 L time R time

kanban

6 1.12× 107 3 7.93 0.0 0.1 18 10.37 3 < 0.01 2.96 < 0.01
8 1.33× 108 3 67.86 0.1 0.1 10 16.85 3 < 0.01 3.00 < 0.01

10 1.00× 109 3 441.28 0.1 0.1 10 62.09 3 < 0.01 2.97 < 0.01

leader

3 8.49× 102 15 0.47 0.1 8.56 15 0.03 15 0.03 3.36 < 0.01
4 1.15× 104 20 34.60 0.47 1017.33 59 0.80 20 0.18 11.75 0.03
5 1.50× 105 25 4746.63 4.14 TO 149 14.30 25 0.52 100.67 0.58

phils

10 1.86× 106 4 0.05 0.08 0.04 38 0.32 4 0.04 21.91 0.01
20 3.46× 1012 4 0.26 0.05 0.25 47 42.07 4 0.06 24.90 0.02

100 4.96× 1062 4 45.58 0.57 35.98 – TO 4 0.13 26.85 0.06

robin

10 2.30× 104 40 0.07 5.35 TO 43 0.35 40 0.04 1.08 < 0.01
20 4.71× 107 80 0.30 321.24 TO 83 8.42 80 0.27 1.06 0.01
30 7.24× 1010 120 0.78 3957.47 TO 120 152.07 120 0.65 1.04 0.03

slot

5 5.38× 104 17 2.26 11.95 5.18 131 0.17 21 0.10 3620.16 4.16
6 5.75× 105 20 11.08 0.84 142.49 182 0.78 25 0.24 93411.96 243.99
7 6.22× 106 23 46.00 4197.17 611.84 483 2.43 46 0.51 – TO

arbiter

10 2.04× 104 10 0.26 1.27 2.45 37 0.1 20 0.05 – TO
15 9.83× 105 15 19.31 33.01 49.71 74 0.44 39 0.11 – TO
20 4.19× 107 20 2625.28 1597.63 1025.43 107 0.91 58 0.32 – TO

cqn

20 1.93× 1011 40 9.76 5682.55 2542.93 – TO 150 2.51 – TO
30 1.66× 1017 60 183.20 TO TO – TO 322 10.17 – TO
40 1.51× 1023 80 3322.41 TO TO – TO 625 25.97 – TO

peterson
2 2.28× 102 11 0.11 0.02 0.08 12 0.06 12 < 0.01 866.04 0.05
3 1.47× 104 24 477.29 7.84 244.54 37 0.61 37 0.32 – TO

bakery
2 1.11× 103 11 0.27 0.04 0.10 11 0.1 22 0.04 1100.66 0.10
3 1.39× 105 – TO N/A N/A 161 2.71 65 2.21 N/A N/A

TABLE I
RESULTS FOREG WITNESS GENERATION.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. MIT
Press, 1999.

[2] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao, “Efficient gen-
eration of counterexamples and witnesses in symbolic model checking,”
in 32nd Design Automation Conference (DAC 95), 1995, pp. 427–432.

[3] V. Schuppan and A. Biere, “Shortest counterexamples for symbolic
model checking of LTL with past,” inProc. TACAS, ser. Lecture Notes
in Computer Science, vol. 3440. Springer, 2005, pp. 493–509.

[4] G. Ciardo and R. Siminiceanu, “Using edge-valued decision diagrams
for symbolic generation of shortest paths,” inProc. FMCAD, ser. LNCS
2517. Springer, 2002, pp. 256–273.

[5] S. Kashyap and V. K. Garg, “Producing short counterexamples using
“crucial events”,” in Proc. CAV, ser. CAV ’08. Springer, 2008, pp.
491–503.

[6] G. Ciardo, R. Marmorstein, and R. Siminiceanu, “The saturation
algorithm for symbolic state space exploration,”Software Tools for
Technology Transfer, vol. 8, no. 1, pp. 4–25, 2006.

[7] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Multi-
valued decision diagrams: theory and applications,”Multiple-Valued
Logic, vol. 4, no. 1–2, pp. 9–62, 1998.

[8] V. Schuppan and A. Biere, “Efficient reduction of finite state model
checking to reachability analysis,”Software Tools for Technology Trans-
fer, vol. 5, no. 2, pp. 185–204, March 2004.

[9] J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and S.Leue,
“Heuristic-guided counterexample search in FLAVERS,” inProceedings
of the 12th ACM SIGSOFT twelfth international symposium on Founda-
tions of software engineering, ser. SIGSOFT ’04/FSE-12. ACM, 2004,
pp. 201–210.

[10] Y.-T. Lai and S. Sastry, “Edge-valued binary decision diagrams for multi-
level hierarchical verification,” inProceedings of the 29th Conference
on Design Automation. IEEE Computer Society Press, Jun. 1992, pp.
608–613.

[11] P. Roux and R. Siminiceanu, “Model Checking with Edge-valued De-
cision Diagrams,” inProceedings of the Second NASA Formal Methods
Symposium (NFM 2010), NASA/CP-2010-216215. NASA, April 2010,
pp. 222–226.

[12] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model

checking without BDDs,” inProc. TACAS. Springer, 1999, pp. 193–
207.

[13] Y. Zhao and G. Ciardo, “Symbolic CTL model checking of asynchronous
systems using constrained saturation,” inProc. ATVA, ser. LNCS 5799.
Springer, 2009, pp. 368–381.

[14] M. Wan and G. Ciardo, “Symbolic state-space generation of asyn-
chronous systems using extensible decision diagrams,” inProc. SOF-
SEM, ser. LNCS 5404. Springer, 2009, pp. 582–594.

[15] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu, “Logical and
stochastic modeling with SMART,”Perf. Eval., vol. 63, pp. 578–608,
2006.

[16] L. de Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea,
and A. Tiwari, “SAL 2,” in Proc. CAV, ser. Lecture Notes in Computer
Science, vol. 3114. Springer, Jul. 2004, pp. 496–500.

[17] R. Peĺanek, “BEEM: benchmarks for explicit model checkers,” inPro-
ceedings of the 14th international SPIN conference on Modelchecking
software. Springer, 2007, pp. 263–267.

[18] G. Ciardo et al., “SMART: Stochastic Model checking Ana-
lyzer for Reliability and Timing, User Manual,” available at
http://www.cs.ucr.edu/∼ciardo/SMART/.

