A Symbolic Algorithm for ShorteseG Withess
Generation

Yang Zhao and Xiaoging Jin and Gianfranco Ciardo
Department of Computer Science and Engineering,
University of California, Riverside
Email: {zhaoy, jinx, ciardd@cs.ucr.edu

Abstract—Witness generation is a fundamental model checker employ an advanced algorithm for symbolic explorationysat
feature, but generating shortest withesses for akBG CTL formula ration [6], to efficiently build the EVMDD encoding the TCD.

has long been a difficult problem of both theoretical and practical The remainder of this paper is structured as follow: Sec-
relevance. We propose a symbolic approach to shortesEG :

witness generation based on edge-valued multi-way decisionion Il introduces the relevant background on CTL and the
diagrams. We employ a fixpoint symbolic iteration to compute Symbolic data structure we use. Section Ill presents our
the transitive closure enhanced with distance information, using approach, stressing the computation of the TCD using the
the saturation algorithm to cope with the high computational satyration algorithm. Section IV extends our approach to a
complexity of this approach. We also extend this approach 10 4.6 general class of shortest witness generation problems
tackling the shortest witness generation for other properties ad ion \V off . | Its. Wi lude thi

the shortest fair withess generation. Experimental results show Section V offers some experimental results. We conclude thi

that our approach can generate a shortest witness which could paper and outline future work in the last section.
not be found within acceptable time using previous algorithms.

Il. PRELIMINARIES

. INTRODUCTION A Kripke structure with disjunctively-partitioned nextase

Model checking aims at rigorously verifying the confor—funCtlon is a Wple(S, sinit, &, {Na:a €€}, A, L) where:
mance of a system to a given temporal property. Instead- S is the potential state space given by the cross-product
of merely giving “true” or “false” answers, current model ~ Sr X ---x Sy of the local state spaces &f (finite) sub-
checkers also return a possible execution of the systenrunde Models. Thus, each (global) stdtés a tuple(ir, ..., i1),
verification, called avitnessor counterexamplewhich, respec- whereiy, € Sy is a local state of thé*™ submodel.
tively, validatesor violatesthe property. Since the violation - Sinit € S is the (single) initial state.
of an expected property often reflects design errors in the- € is a set of (asynchronous) events.
system, counterexample generation is a valuable feature of Na:S—2° is the next-state function for eveate &, so
model checkers which helps debugging. Theoretically, it is thatN.(i) is the set of states that can be nondeterminis-
interesting to investigate practical algorithms that canegate tically reached in one step when evenfires in statei.

a shortest witness or counterexample. Practically, a short ~ We 16t N, (X) = U;cx Na(i) and N = U, ce Na-
counterexample is naturally more readable and helpful for- A is a set of atomic propositions.

engineers to understand and correct erroneous behavior in £ : S — 27 is a labeling function listing the atomic
the system. Thus, both theory and engineering requirements Propositions that hold in each state. L%t be the set of
motivate research in shortest witness generation. states where holds, {s € S : p € L(s)}.

Computational tree logic (CTL) [1] is widely used because Throughout this paped, j, andk denote single statest
of its simple yet expressive semantics. As we review in $actiand) denote sets of states; and 5 denote events; and,

[I-A, counterexample generation to a universal propertyloa p, andg denote atomic propositions. Also, while we assume
converted to an equivalent witness generation to an etiatena single initial state, our algorithm can be applied to syste
property, in the context of CTL. Thus, we only focus omith multiple initial states by simply adding a new “virtual
shortest witness generation. Many efforts [2][3][4][5]vka initial state”s;,;; and a new event with auxiliary transitions
been made on this topic. UnlikeX or EU witnesses, which from s;,;; to each initial state of the original system. Then,
are finite pathsEG witnesses are “lasso-shaped” [2], i.e., thefor EGp, we lets;,;; € S, and the shortest witness generated
contain a prefix leading to a cycle. Locating this cycle is th®r the modified system is equivalent to that of the original
crucial step in witness generation, and it is even more diffic system except for the first auxiliary transition.

to find a shortest (length of handle plus cycle) witness. The basic idea of symbolic algorithms is to map a set of

The approach in this paper falls into the class of symbolic atates to a symbolic structure; we use a multi-way decision
gorithms, since it employs decision diagrams. Specifically diagram (MDD) [7]. The state-space exploration can be exe-
utilize Edge-Valued Multi-way Decision Diagram (EVMDD)cuted implicitly by MDD manipulation instead of explicitly
to encode the Transitive Closure with Distance (TCD), artcaversing the transition graph. For simplicity, we do not

differentiate the notation between a set of stale®r next- | EGuitnessBFS (stateset P)is o P is the MDD encoding S,
state function\,, and their MDD encoding; what is meant is 1 stateset Q< EG(P); e witness exists only if sini: € Q
easily determined by the context 2 stateset X <0 e set of states in the witness
’ 3 stateset V< {Sinit}; e current frontier
A. Background and related work 4 while (¥ny =0)do
-)) 5 state i+ pick(Y); printi;
We assume readers are familiar with the semantics of 6 X+ X U{i}; Y<N(GENQ;
CTL [1]. Only a generator subset of CTL operators, e.d., 7 endwhile _
{EX,EU, EG}, needs to be implemented in a model checker, 8 i« pick(XNY); printi

as the all other CTL operators can be expressed using the Fig. 1.
generator set and ordinary boolean operators. The comespo

dence between counterexamples to univerg€l groperties
and witnesses to existentiaE™ properties is as follows:

BFS-based algorithm to generate a witnesEGp.

of state-space exploration and shorter witnesses. Stitie rof
these algorithms is guaranteed to find a shoifgStwitness.

a counterexample to is the same as a witness to . - .
AXp EX(—p) B. Edge-valued multi-way decision diagrams
AGp EF(—p) While BDDs and MDDs provide a compact encoding for
AlpUq] E[~qU(=p A =q)] V EG(—q) Boolean functions, we often need to represent integer func-
AFp EG(—p) tions defined on a large set of states, such as the distance

. . functi hich h its di f heainiti
Clarke et al. [2] proposed the first symbolic approach %Anctlon which maps each state to its distance from theainiti

) . . . : ates. Widely used Multi-terminal Binary Decision Diagis
CTL witness generation. Using symbolic breath-first searc TBDDs, and the similar Algebraic Decision Diagrams,

withess generations fdEX and EU can naturally guaranteeADDs) [10] or Multi-terminal Multi-way Decision Diagrams

minimality, but the problem is much more difficult for the(MTMDDs) are natural extensions of BDDs and MDDs to
EG operaor. A witness t&Gp is composed of a path from integer ranges. In this paper, however, we employ (additive
the initial state to a cycle, such that all states along tladih p Edge-Valued Multi-way Decision Diagrams (EVMDDs) [4],
and on the. cycle s_at|sfp. According to CTL semantics, 'f_ a which have the advantage of being more compact: [11] proves
state satisfieEGp, it must have a successor that also SatISfl?ﬁat an EVMDD never contains more nodes than the equivalent

EGp. Thus, we can incrementally build a path of SEHT\MDD under the same variable order. Furthermore, the

satistying EGp, which must finally lead to a state alreadysaturation algorithm can be used on EVMDDs to speed up

on the path, closing the cycle and resulting in a witnes fixpoint i : 41 sh for th : H
Figure 1 shows the pseudocode of this algorithm, which the Ixpoint iterations, as [4] showed for the computation o

%riktance functions, and as we show in Section Il for the
be easily implemented using BDDs or MDDs. A witnes .

. .) %omputation of TCD.
generation algc_)rlfchm for_ weakly faEQ was also proposed n Among the many variants of EVMDDs, we choose a spe-
[2] _bas_ed on this idea. S|n<_:e the_re might be m_ulfup_le SUCESSS i additive version, EVYMDD, whose normalization rules
satisfying EGp, .the algorithm 'S nondetermlmstlc_ and theallow us to encode partial integer functions where “undefine
length of the witness depends in general on which state

[. :
: has the semantics ob&”. Given L setsS = {0, ..., nx—1},
chosen at each step. We stress that, while the pseudocagle tse, | IEWMDD oC/erS _ Sij- ~><§1O’iS éqclj?rect};ed

a symbolic encoding, this algorithm is largely explicit, ias acyclic level-oriented edge-labeled multi-graph where:

follows a single specific path. Decision diagrams help very . i))
little, especially if A/(i) is a very small set for each . g llsltheoonlytermlnal node and is at leved. We write
AUV = U,

The work most related to ours was presented by Schuppan)))
et al. in [3][8], which proposed a framework to convert a ° A nonterminal ”‘?del is at some levek, with .szz.l’
liveness property to a reachability problem by performing a a"d hasu; outgoing edges, each labeled with a different
state-recording translationso that a shortest witness fBGp index W € S_’“ pointing to a Iower—leve! node, and
can then be generated using breadth-first search (BFS). The associated with a valyec NU{oo}. We writea.lvl = k,
bottleneck of this approach mainly lies in the BFS over the alix] = {p,b), b = ali].node, andp = a[iz].val. .
quadratic state space of the original system. Our previous® '1€r€ IS a single root node, at level L, with a “dan-
work [4] has shown that saturation can effectively speed up 9/N9 'ncoming edge associated with a valpe € N.
shortest trace generation. This paper extends the ided tf [4 We write {p*,r*) to denote the entire EWIDD.
the generation of shorteBGp witness. Instead of exploring aFor acanonicalform of EV*MDDs, assumed from now on,
quadratic state space using BFS like [8], we employ saturati We require that [4]:
usually more efficient than BFS for asynchronous systems, tos If a[i] = (00,b), thenb = Q.
build the TCD encoded as an EVMDD. o If afi] = (p,b) with p € N, thenb.lvl = a.lvl — 1.

Orthogonal to symbolic algorithms, explicit-state model « For each node at levelk > 0, there is an index; € Sk
checkers adopt techniques such as heuristic-guided sgrch s.t. afig].val = 0.
and crucial event identification [5] to shorten the genetate « There are noduplicate nodes, i.e., given two distinct
witnesses. These techniques aim at achieving both an efficie nodesa andb at level & > 0, there is an index; € Sy

evmdd Min(evmdd {p,p), evmdd (c,q))

1 int p<+ min{p,o}; level k «+ p.ll;

2 if p = oo then return (o,q);

3 if o = oo then return (p,p);

4 if p = g then return {(u,p); eincludes the case k = 0, i.e.
p=q=9Q

5 if InCache min({p, q, p—o, r)) then return (u,r); e Assume
p > o, if not, swap two parameters.

6 node r < NewNode(k);

7 for iy € Sk do

8 rlix] « Min({p — p + plix].val,plix].node),
(o — p + qlir].val,qlir].node));

evmdd Normalize(evmdd.node a)
if a = Q then return (0,2);
level k <+ a.lvl;
b < NewNode(k); e create a node at level k
for i, € {0,...,nx — 1} do
(1,8) < Normalize(alix].node);
blir] « {(p + alix].val,s);
endfor
p < min {blix].val : i € {0,...,np — 1}}
for i, € {0,...,nx — 1} do
10 blix).val < blix].val — p

O©CoO~NOUD WNPE

11 endfor 9 endfor
12 return (p.b); 10 (v,r)<« Normalize(r);
Fig. 2.~ An Fig. 3. Pseudocode faNormalize. 11 InsertUT(r); CacheAddwin({p,q,p —0,1));
EVMDD. 12 return (u + ~,r);
. . evmdd Sum(evmdd {p,p), evmdd (o,
s.t.alix] 7 blix]- 1 int p E— p+ U<;p p>level k <<—pq>l1)1l
An edge(p,a) encodes the functioffi, .y : Spx--- xS — 2 if p = oo or ¢ = oo then return {co,Q);
NU {oo}, wherea.lvl = k, defined recursively as follows: 3 if InCachesum((p; ¢, (7,7))) then return (u +v,r);
4 node 1 < NewNode(k);
. . p if a=0Q 5 for ix € Sk do
Fo.a (Z’“""’“):{ p+ fafiz(ik—1,...,41) otherwise 6 rlix] < Sum(plix], qlix]);
7 endfor
For example, Figure 2 shows a canonicalB¥DD encoding 8 (v,r) < Normalize(r);
f(vg,v3,v0,01) = 18v4 + 6vs + 3vy + vy, Where vy € 9 InsertUT(r); CacheAddsum ({p,q, (v,)));
10,1,2,3); 03,01 € {0,1,2)};00 € {0,1}. The above defi- | 10 "6 {u+7.r);
nition allows us to canonically encode any function fréhto Fig. 4. Pseudocode fat/in and Sum.

NU{co} with the exception of the constant function identically
equal tooo, for which we allow the special encodingo,2). function encoded by the E\MDD evaluates to the minimum
In a practical implementation, duplicated nodes are a¥bidpossible valuep*, for any state corresponding to such a path.
by maintaining aunique table UTand each node isormalized
before inserting it in the unique table to conform to the
canonical rule. FunctionVormalize in Figure 3 describes Section IlI-A provides an overview of our algorithm for
the procedure to normalize an EMDD; most manipula- shortestEG witness generation. Then, Section IlI-B describes
tion functions, however, work with and maintain normalizethe computation of TCD, the most critical step.
EVTMDDs, so only newly created nodes require normalization)
prior to inserting them in the unique table. A. Overview
Operations on integer functions can be efficiently imple- A witness toEGp in a finite-state system, often described
mented by EVMDD. Three EVFMDD operations are exten- aslasso-shaped witneq442], is an infinite path consisting of
sively used in our work: a finite prefix leading to a cycle, We provide the following
definition to discus€G witnesses in more detail:

IIl. SHORTESTEG WITNESS GENERATION

- Min: given two EV'MDDs (p,a) and (o,b), return an
EV+MDP (por) encoding fun<_:t|onmin(f<pya>,f<a,b>), Definition 1: Givenp € A, a finite acyclic pathr, =s;,i; —
wheremin(oo, p) = p is a special case. iy —---—i, is ap-stem of lengthn > 0 if s;5¢, 11, ..., 1 €

- Sum: given two E\ﬁMDDs {p,a) and (o,b), return an g - 3 (cyclic) pathm, : iy — -~ — i, — iy is a p-cycle of
EVFMDD (u,r) encoding functionf) + f(s.1)» Where lengthm > 1if iy,... . i, € S,. Let stem(p, i) be the set of

o0 4 p = oo is a special case. p-stems that terminate in stateand cycle(p, i) be the set of
- MinState: given an EVIMDD (p,a), return a statésuch ,, cycles that start in state whenp is understood, we simply
that f(, .y (i) is the minimum value of functiorf;,). write stem(i) and cycle(i). O

Figure 4 shows procedurégin and Sum. These algorithms ~ An EGp witness is composed of g-stem leading to &-
run recursively on each level, without having to enumeratgcle. We say that statk which terminates g-stem and
every state of a potentially huge state space. It is knowih [18Iso starts g-cycle is aknot The initial state is the knot
that the number of recursive calls of the geneXjaply oper- in witnesses which have thelength stems. fEGp holds in
ation, includingMin and Sum, for EVMDDs at most equals the initial state, a statk € S, induces a set of witnesses
those for MTMDDs representing the same function. Procedutgtness(k) = stem(k) x cycle(k), i.e., all combinations of
MinState is even simpler: since each nonterminal node mugtstems in stem (k) and p-cycles in cycle(k). A shortest
have at least one edge with an associated valug ofe can witness amonguitness(k) consists of a shortestem (k) and
simply follow any0-value path from the rodfp*,r*) to Q. The a shortestcycle(k). Hence, finding the shorteBGp witness

can be seen as the minimization problem [fetbe the length (edges) between these states are retained. All edges hive un

of path): weight, so the distance betweérand j equals TCD, (i, j).
Instead of using a distance matrix, however, we utilizela
min (min (|ms|) + min (|7rc|)) (1) level EVTMDD (r,t) to encode the distance between each pair
keS, \ wsestem(k) e €cycle(k) of states:

Given a knot staték, algorithms in [2], [4] can efficientl L . o ..
find the shortesttem (k) and cycle(k).[T]he[' (]jifficulty osin S (ndn i ion i) = TOD (),
finding a knot staté™* that induces a globally shortest withessvhere i,j € S,, and we interleave the levels fdr and
in Equation 1. This difficulty can be attributed to the lack of. To correlate local states with their submodels, the levels
algorithms able to compute the distance information betweef i;, and j; in 2L-level EVIMDD are referred to byky;
pairs of states in a huge state space. We attack the problamd 47, respectively (unprimed and primed levels are inter-
from this angle by computing TCD. leaved in our implementation), and we [EBuprimed (ky;) =

) Py

Definition 2: (Transitive Closure with Distance). Function U?gém;rcgﬁégu:ek{o buildr,¢) is analogous to a symbolic

. + : o e\
TCDp : § x § = N7 U {oo} is such thatTCD, (i,) is the implementation of Dijkstra’s algorithm. We start from the
length of a non-zero shortest paith— s; — so — -+ —] EV+MDD (r1,t;) encoding
wherei, s, sz, ...,j € Sp, and TCD,(i, j) = oc if no such to _
path exists. Let’CD""(i, j) be an extension of'CD,(i, j) Fosan (i) = { 1 if 3ac&, jeN.()
T1,t1 9 -

that: oo otherwise
TCDY™ (3. 7) — 0 if i=j (so thatry = 1 and all values associated with outgoing edges
)= TCD,(i,j) otherwise are either0 or oo), and useN,, to build a new EVMDD
1 N ((7,t)) satisfying
Also, let TCD,, " (i,j) = TCD,(j,). 0
. As the bas_e case€l'CD,(i,j) = 1 if i andj satisfy p and s ((ray (i,§) = min (min_(fr1(1,k)) ’oo>
j € N(i). Define kepre(j)

TCDS™ (3) £ TCD™ (i1, 1) wherepre(j) = {k € S, : j € N,(k)}. Then,(r,t) can be
P P updated:

TCDP'(i) £ TCD,(i, 1) (r.4) < Min({r,t), No((r,t))+1)

Formula 1 can then be rewritten as: We can iteratively updatér,t) for any eventa € &, until
. stem cycle achieving convergence. It is easy to prove that this pragedu
liggi(TCDp (k) + TCD** (k) always terminates and that the fixpoint is the answer to the al
é)éair shortest path problem, regardless of the order of egdat
as long as all next-state functions are considered oftengino
However, different orders might lead to huge variations in
the size of the EVMDDs encoding the intermediate results,
as well as the runtime. Saturation [6] has been shown to be
an effective fixpoint iteration scheme that tends to minamiz
peak memory consumption and accelerate convergence. We
first partition the events into {&.,...,&1}, wherea € &
iff & is thelowestlevel satisfying:
which encodes length of the shortest witness induced by’ gnzgégqgg:glég')sab;‘%};?? ’ .j;fll,)z‘ ; 5 ,tgll?neltsl,s
each statd € S, . . .o « does not change any local state at levels aligw® that
3) Extract a knot state that achieves the minimum value in Na(i . .) .
. . w(iL,...,i1) can be rewritten ag(ir,...,%k+1)} X
the resulting function. No(ins -1 01).

4) Find the shortest paths from the initial state to the knEt
_stem) and from the knot to itselp{cycle). These two - Nii = Uaee, Moo then Ni(X) can _be computed _only
w) bcycle) on nodes at level or belowk, evidencing the benefit of

aths form a shortest witness fBGp. . A .

A ph . TCD. is th P . q locality, which is widely enjoyed by asynchronous systems.
_Asthe comp_uta;c]lon 0 I pliSt g most twg_e an m?m%ryAnalogously, Ni({(7,t)) can also be computed locally and
!ntenswe stgp In the overall procedure, we discuss It iai et<’7’,t> can be updated solely considering nodes at or below level
In next section. ko, instead of recomputing the overall EMDD. Moreover,

B. Computing TCD we can repeatedly update,t) using Ny, ..., N until con-

. . . . o ergence, at which point we say that the nodessaterrated
Building TCD,, is essentially the classic all-pair shortes};n level k. () is saturatedon level k. iff

path problem in a modified graph from the original discrete-
state system where only states (verticesgjnand transitions Vi <k, (r,t) = Min((T,t), N;((,t))+1)

TCD, is a two-parameter function, thus must be encod
with a2L-level EVFMDD, while TCD3'*™ and TCD¥“'* are
single-parameter functions which can be encoded Witavel
EV*MDDs and are obtained fronT'CD,, through symbolic
manipulation. Thus, our algorithm f&G witness generation
consists of the following steps:

1) Build the2L-level EV*MDD encoding TCD,,.

2) Build L-level EV*MDDs encoding TCD;"™ and

TCD;?"CZC. Compute the sum of these two EMDDs,

ComputeTCD (mdd a)
1 evmdd (1,to) <~ EVMDDencode(N);
2 return T'CDSat(a, (1,t0));

evmdd TCDSat(mdd a,evmdd {u,n))
1 ifn = Q then return (u,Q);

e a encodes S,

2 if InCachercpsat(a,n, (A\,r)) then return (A + p,7);
3 level k <+ n.ll;
4 node t < NewNode(k);
5 mddr < NU?LPT‘i"LGd(k)
6 fori,j € Sunprimea(r) S-t. n[i][j].val # co do
7 ifa[j] # 0then e constrain the path in a
8 tlillj]« TCDSat(alj], nlillj));
9 else
10 tfil[j]«=nlil5];
11 endif
12 endfor
13 for i € Sunprimeaqr) S-t. nli].val # oo do
14 repeat
15 for j,j' € Si s.t. nli][j].val #ocoAr[j][j'].node #£0 do
16 if a[j'] #0 then e constrain the path in a
17 (n.u) + TCDRelProdSat(alj'], nli][5], r[j1i"));
18 t[i][5'] « Min(t[i][5'], (n + 1,u)); eincr. distance
19 endif
20 endfor
21 until (\,t) does not change;
22 endfor
23 (A\t)«—Normalize(t);
24 InsertUT(t); CacheAddrcpsai(a,n, (\t));
25 return (A + u,t);

evmdd TCDRelProdSat(mdd a,evmdd (p,n), mdd r)
if n = Q then return (u,Q); e =1 in this case
if InCache rcpreiprodsat(a, n,r, (At)) then
return (A + p,t);
level k < n.lvl; nodet <+ NewNode(k);
for i € Sunprimea(r) S-t. nfi].val # oo do
for j?jl € SUnprimed(k) s.t. TL[’L] []}'U(Ll ‘/{OO /\T[J] [J/] #0 do
if a[7'] # 0 then e constrain the path in a
(n,u) TCDRetProdSat(alj'}, nfi[j], rlj][j');
tli][5") < Min(t[i][j"), (n,u));
endif
endfor
endfor
(A\,t) <= TCDSat(a, Normalize(t));
InsertUT(t); CacheAdd repreiprodsat (@, n, Ty (AE));
return (A + p,t);

O©CoO~NOOUAWNPRF

e
()

12
13
14
15

Fig. 5. Building TCDy.

We divide the iteration intd. phases according to the satura-

tion scheme. Thé'" phase begins only aftér t) is saturated

up to levelk — 1 and completes when it is saturated up to
level k. An important idea is that every time we compute 2)
Ni:({,t)), we expect to keep the results saturated up to level
k. TheseL-phase local fixpoint iterations execute bottom-up,

until reaching the global fixpoint.
Figure 5 shows the pseudocode to compiit€D,. This
algorithm augments the transitive closure algorithm of| [4y3

computing distances between state pairs instead of a simpld)
boolean reachability relation. MDD encodes the set of states

Sp. Lines 7-10 and 16-18 in procedufrBCDSat, and Lines

7-9 in procedurel'CDRelProdSat constrain all paths between
pairs of states to be along states in the set encoded by MDD
a. We assume that the MDDs encodifg/;, ..., N1} have
been computed and are globally available. As we use the QFI-
reduction rule [14],\V;. is an MDD with the root at levek.

The main procedure is a dual recursion betwd&riDSat
and TCDRelProdSat. TCDSat computes the fixpoint in the
k't phase. In Line 17, it call§'CDRelProdSat on lower levels
to computeN; ((7,t)). TCDRelProdSat computes\y, ((7,t))
recursively and saturate the results at the end (Line 13) and
thus returns a saturated result; this reflects the idea okagg
sively computing local fixpoints on nodes as soon as they have
been created. According to our experience [4], [6], [13is th
scheme greatly speeds up convergence and reduces memory
requirements in intermediate results for typical asynobts
systems.

While the saturation scheme exploits asynchronous event
locality to speed up iterations, our algorithm does not isgo
any requirement on the system under verification. For system
where no natural asynchronous partition of the transiteda-r
tion exists, such as fully synchronous systems, our alyorit
is still applicable by lettingV;, = A" and an empty\;, for
1<k< L. In this case, the algorithm degrades to a stepwise
procedure always operating from the top level, but stilldfgs
from the efficiency of EVMDDs. In our experience, using an
asynchronous partition and saturation, when possiblelltses
in much faster runtime than using the monolithic next-state
function and the stepwise procedure.

IV. DISCUSSION

In this section, we discuss two extensions of our approach
proposed above. First, we apply the idea in the above section
to shortest witness generation for other properties ini@ect
IV-A. Then, we tackle fairness i&G.

A. Shortest witness generation beyds@

We extend the approach of Section Il to shortest witness
generation (SWG) for more general properties of the f&nn
where) is a path formula and& does not necessarily have
to be a CTL property. The resulting withesses also constitut
shortest counterexamples fAr1).

Reviewing our TCD-based algorithm for short&sp wit-
ness generation, we can summarize the following steps:

1) Represent the length of a witness as an function, usually
the sum of severalitness segment$his is the objective

of the minimization problem we need to solve and the
minimal value is the shortest length of witnesses.
Encode the objective function with an EMDD based

on TCD, usually the sum of several EMDDs, each of
which corresponds to a witness segment.

Find a minimum solution usingMinState from
EVTMDD encoding the objective function. The solution
can be several states “inducing” the shortest witness.
Build each witness segment, which is a shortest path
between two states, and connect these segments sequen-
tially to obtain a shortest witness.

3)

statei,, € F,, for eachF,,. To simplify the discussion, we
Sinit H Sinit only explain how to generate shortest fair withessE@true,
@ 4 b) as the same idea can be extended to other properties. The

complexity of this problem is proven to be NP-complete in [2]
We employ the idea in [8] by adding fairness flagS; as
Fig. 6. A witness folEF(r A EG=s). a submodel in TCDS; can be considered asrabit array,
o o where:*" bit indicates whether th&" fairness constraint has
In SWG forEG, the objective function is Formula 1, the sumyeen, fyjfilled on a path. Let €S; be the initial state where

of stem and cycle. The central step is to find the minimal pits are0, and T € S; be the state where all bits aie
solution, knotk*, inducing the shortest witness. The extensios 4| constraints are fulfilled. Define the operatift (£, m)

of this approach to a complete framework able to handle @l get themt™ bit to 1. The new TCD. denoted by’ CDf
path formulas is non-trivial anq bgyonq the scope of thipap g pe expressed as an integer functionog, f), encoding
Instead, we present the basic idea in an informal way, e |ength of the shortest path that starts,irends inj, and

discussing the following two widely used properties. satisfies the fair constraints indicatedbyI’CD’ can be build
e Witnesses for E(GFp). We introduce functionCycleDist ~ recursively by the following rule, using a similar algorithas
based onT'CD: the one discussed above:

i _) TCD(, 1) ifi=] jeN() = TCDI (3,5, 1) =1
CycleDist (i,) { TCD(,j) + TCD'(i,j) otherwise

A min (TCD!(i,j,f)=d = TCD’(i,k,f)=d+1
where TCD = TCD .. Then, we need to find a state pair €V~ (&)

(k, p), wherek is the knot, which connects the stem and the TCD’(i,j,f)=d Aje Fmn = TCD!(i,j, Set(f,m))=d+1
cycle, andp € S, which belongs to the cycle. Each witnesses
consists of three segments: paths fregm; to k, from k to p,
and fromp to k. The objective function for the minimization

problem is min (7CD**™ (k) + TCD’ (k,k, T)).
keS

: stem , .
keg,lgésp (TCD (k) + CycleDist(k, p)), 2)

Now the problem can be converted to witness generation
without fair constraints. The minimization objective is:

The resulting witness can be mapped to the original system
by filtering out n auxiliary steps setting fairness flag. This
approach shares the same complexity with that in [8], and
retains the benefits of using EWIDDs and saturation.

e Witnesses forE[F(r A G—s)]. These are counterexamples

to CTL properties of the formAG(r — AFs), which describe V. EXPERIMENTAL RESULTS

liveness: once a process issues a requekt it will be We implemented the proposed approach MAR [15]
eventually satisfieds]. Witnesses folE[F(r A G—s)] reflect and report experimental results running on an Intel Xeon
possible starvation in the system. For notational consiste 2 53GHz workstation with 36GB RAM under Linux 2.6.18.
with the previous section, lgt = —s. We also implemented the BFS-based algorithm of Figure 1
There are two types of witnesses for this property, as shoysing MDD in $/ART. We compare our results with those from
in Figure 6, where each circle denotes a state and solid blagls verification tool SAL [16]. Petri net models foM&RT
circles denote states i§,. We can solve these two casesyere converted to models in the SAL input language. The
separately and then find a global minimal result. In the firgésults from these algorithms are in the following columns:
case, Figure 6(a), a witness consists of paths fspm to a o “ QUART-TCD” : the TCD-based algorithm we propose. If it
stater € S, and fromr to a knotk, on ap-cycle, and such completes in the time limit, it returns a shortest witnesthwi
thatp holds along the path betweerandk. In this case, there |ength L*, used as an oracle for the other algorithms.
are three witness segments and the minimization objedive § “sa| -BMC” : Bounded model checker in SAL. We have
min (TCDstem(r) n TCD;””(r, k) + TCD;ycle(k)). two sets of ru_ntimes, by setting the bourgl to L* fan_d
r.keS, L* — 1 respectively, so that SAL-BMC tackles a satisfiable
In the second case, Figure 6(b), the stem leads to alot OF unsatisfiable SAT problem, respectively.
a p-cycle that contains a statec S,.. This case is similar to ®“ SYART-BFS”: MDD-based witness generation implemented
the SWG problem foEGFp, except for replacing’CD with in SVART according to the algorithm in Figure 1. For the BFS-
TCD, in CycleDist, to constrain the cycles t6,. A shortest Pased algorithm, we run two sets of experiments. In Column

witness for this case can then be generated accordingly. 100 runs’, we run the BFS-based algorith0 times and
list the length of the shortest witness generated amongethes

B. Shortest fair witness 100 runs, as well as the total runtime for the0 runs. In

In this section, we considdaBiichi fairness which can be subcolumn 7.” and “time” respectively. In Column “runs till
specified withn > 0 sets of statesri, F»,...,F,. A fair shortest”, since we know* from the $/ART-TCD, we run the
witness is a path leading to fair cycle, which contains a BFS-based algorithm repeatedly until it generates one ®f th

The minimal solution(k*, p*) induces a shortest witness,
consisting of three shortest witness segments.

shortest withesses. The number of runs and runtimes refui Results of cqn 20
to generate the shortest witness using the BFS-basedthlgori 100 —+—BFSruntime --#- BFSwitness length [2
are listed in subcolumnsR” and “time”, respectively. Also | .
here we set a runtime limit of one hour. Since the BFS-bas L 200
algorithm is randomized, the results in subcolum®¥ ‘and 100 -y
“time” are the average ovel00 experiments. ;
e “SAL-WMC” : BDD-based symbolic model checker in
SAL. It generates a witness of lengthwithout optimization.
The comparison metrics are runtime (columns “time”, a
measured in seconds) and length of the generated witne
Table | presents results on eight models, including mutu
exclusion protocols geterson and bakery in [17]), leader
election protocol feader), the dining philosopher problem
(phil), a closed queue networkegn), an arbiter protocol | ;g4 : : : : :
(arbiter), a factory automation modek¢nban), and the two ! 1o 100 1000 10000 100000
robin and slot protocols [18]. The sizes of the state spacesig. 7. Runtime and witness length of the BFS-based algorithmgr.
of these models are parameterized by an intégeihe first

three columns list the model names, the parameters, and @he right y-axis) shows the shortest length of witnesseadou
sizes of state spaces. For comparison, the thin solid line and the dotted line mark
A bounded model checker can find the shortest witnegife runtime SART-TCD and L*, respectively. We can see
using binary search; this requires running a SAT solv@at runtime grows almost linearly, and many runs (recat th
O([log2L*]) times, to both generate a shortest counterexafpe x-axis is in logarithmic scale) are needed to find a short
ple and prove that no shorter counterexamples exist. Thas, {yitness. Within the given runtime, theM&RT-BFS produces
sum of the runtimes foB =L* and B=L"—1 is a reasonable mych longer witnesses than thd48T-TCD. This is analogous
lower bound for the runtime required by SAL-BMC to findio simulation-based verification, which, while it providgsod
a shortest witness. The results in ColumMABT-TCD” and coverage for simple designs, requires unacceptable raatim
“SAL-BMC” shows that SAL-BMC achieves obvious Speedupeach corner cases in Comp|ex deggﬁ‘%ﬂ\{-BFS rand0m|y
over SIART-TCD only on kanban, but performs much worse chooses the next step at each iteration, just as in unguided
in robin, slot and cqn. Even provided withL* as the bound, simulation. If there are only a few witnesses, ainls and
SAL-BMC still requires much more time to find the Witnes%anban, MART-BFS can find a shortest witness in few runs
in these three models. These results demonstrate the efficiewith high probability, although, even in these cases, itncan
of our approach. prove that there is no shorter witness without exhaustively
SAL-WMC and 3/ART-BFS are based on the same idea, bgearching all possible witnesses. If there are many wiggess

use different data structures, i.e.., BDDs vs. MDDs. Neittfer SVART-BES m|ght instead on|y be able to generate very |0ng
them can guarantee shortest witnesses. HoweMARISBFS witnesses even after a long runtime, as Figure 7 illustrates
runs much faster than SAL-WMC, due to the efficiency ahis case the ART-TCD becomes a better choice to generate

our MDD library and of our encoding of next-state functionsg short witness, indeed a guaranteed shortest witness.
It is not surprising that 'ART-BFS runs orders of magnitude

faster than BART-TCD because computing TCD is much more

expensive than the image computations W\ -BFS. On the VI. CONCLUSION AND FUTURE WORK

other hand, BART-TCD generates much shorter witness for

slot, arbiter and cgn than $IART-BFS. Thanks to EYMDD We presented a saturation-based algorithm for shoE€st

and saturation, \RT-TCD completes on complex modelswitness generation. We proposed a symbolic techniqueg usin

with more than10'° states and, ongn andphils, it runs even EV*MDDs to compute the Transitive Closure with Distance

faster than SAL-WMC, which does not attempt to minimizéTCD), which compactly represents distances between each

the witness length. pair of states. Then, the shortdsG witness can be identi-
For cqn and arbiter, SVART-TCD generates much shorterfied symbolically. We also extended this approach to tackle

witnesses than SAL, whileMBRT-BFS fails to find a shortest shortest witness generation for other properties and estort

witness within the time limit. Figure 7 illustrates how thdair witness generation.

runtime increases and the shortest length of withessesdfoun Computing TCD is the bottleneck in our approach. Tech-

decreases as the BFS-based algorithm runs repeatedly miggies to speed up this computation should be investigated,

cumulatively in modekqgn20. Similar results can be observedtluding dynamic variable ordering. Coupled with EMDDs,

in arbiter, but we do not show it here because of spadbe transitive closure provides an elegant way of analyzing

limitations. The x-axis (in logarithmic scale) indicatégtotal quantitative properties of traces in complex asynchronous

number of runs, the solid line (associated with the left isax systems, such as probabilistic model checking, which we

shows the total runtime, and the dotted line (associated winhtend to investigate in future work.

: L 150
10 B

F 100

Runtime {in second)
o
a
Shortest witness found

01

50

001 ¢

0

SVART-TCD SAL-BMC SAL-WMC SVART-BFS

Model N SS R . time time . 100 runs runs till shortest
L time B=L* | B=L*-1 L time L] time R] time

6 1.12 x 107 3 7.93 0.0 0.1 18 10.37 3 | <0.01 2.96 | <0.01

kanban 8 1.33 x 108 3 67.86 0.1 0.1 10 16.85 3 | <0.01 3.00 | <0.01
10 1.00 x 10° 3 441.28 0.1 0.1 10 62.09 3 < 0.01 2.97 < 0.01

3 8.49 x 102 15 0.47 0.1 8.56 15 0.03 15 0.03 3.36 < 0.01

leader 4 1.15 x 10% 20 34.60 0.47 1017.33 59 0.80 20 0.18 11.75 0.03
5 1.50 x 10° 25 | 4746.63 4.14 TO 149 14.30 25 0.52 100.67 0.58

10 1.86 x 10° 4 0.05 0.08 0.04 38 0.32 4 0.04 21.91 0.01

phils 20 3.46 x 1012 4 0.26 0.05 0.25 47 42.07 4 0.06 24.90 0.02
100 4.96 x 1092 4 45.58 0.57 35.98 - TO 4 0.13 26.85 0.06

10 2.30 x 10% 40 0.07 5.35 TO 43 0.35 40 0.04 1.08 | <0.01

robin 20 4.71 x 107 80 0.30 321.24 TO 83 8.42 80 0.27 1.06 0.01
30 || 7.24 x 1010 || 120 0.78 | 3957.47 TO || 120 | 152.07 | 120 0.65 1.04 0.03

5 5.38 x 10% 17 2.26 11.95 5.18 131 0.17 21 0.10 3620.16 4.16

slot 6 5.75 x 10° 20 11.08 0.84 142.49 182 0.78 25 0.24 | 93411.96 | 243.99

7 6.22 x 106 23 46.00 | 4197.17 611.84 483 2.43 46 0.51 - TO

10 2.04 x 107% 10 0.26 1.27 2.45 37 0.1 20 0.05 - TO

arbiter 15 9.83 x 10° 15 19.31 33.01 49.71 74 0.44 39 0.11 — TO
20 4.19 x 107 20 | 2625.28 | 1597.63 1025.43 107 0.91 58 0.32 - TO

20 || 1.93 x 1017 40 9.76 | 5682.55 2542.93 - TO | 150 2.51 - TO

cqn 30 1.66 x 1017 60 183.20 TO TO - TO | 322 10.17 - TO

40 || 1.51 x 10?3 80 | 3322.41 TO TO - TO | 625 25.97 - TO

peterson 2 2.28 x 102 11 0.11 0.02 0.08 12 0.06 12 | <0.01 866.04 0.05
3 1.47 x 10% 24 477.29 7.84 244.54 37 0.61 37 0.32 - TO

bakery 2 1.11 x 103 11 0.27 0.04 0.10 11 0.1 22 0.04 1100.66 0.10
3 1.39 x 10° - TO N/A N/A 161 2.71 65 2.21 N/A N/A

TABLE |
RESULTS FOREG WITNESS GENERATION
REFERENCES checking without BDDs,” inProc. TACAS Springer, 1999, pp. 193—
207.
: [13] Y. Zhao and G. Ciardo, “Symbolic CTL model checking of asyronous
1 E}e’\g's,cjl_grgk;' O. Grumberg, and D. A. Pelelliodel Checking MIT systems using constrained saturation,Pioc. ATVA ser. LNCS 5799.

Springer, 2009, pp. 368-381.

[14] M. Wan and G. Ciardo, “Symbolic state-space generatibragyn-
chronous systems using extensible decision diagramsPrat. SOF-
SEM ser. LNCS 5404. Springer, 2009, pp. 582-594.

. ’ o [15] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanwdlcal and
model checking of LTL with past,” irProc. TACASser. Lecture Notes stochastic modeling with SMART Perf. Eval, vol. 63, pp. 578-608,

in Computer Science, vol. 3440. Springer, 2005, pp. 493-509. 2006
4] ? Clarcéol_and R. Sl_mlnlcfeahnu, “Usmgheglge—vallzul\jd genlsimﬁﬁlms [16] L. de Moura, S. Owre, H. RueR, J. Rushby, N. Shankar, Me&o
or symbolic generation of shortest paths,"Rroc. FMCAD ser. LNCS and A. Tiwari, “SAL 2,” in Proc. CAV, ser. Lecture Notes in Computer

[2] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao, “Effent gen-
eration of counterexamples and witnesses in symbolic modekaiw”
in 32nd Design Automation Conference (DAC,98995, pp. 427-432.

[3] V. Schuppan and A. Biere, “Shortest counterexamples fonimlic

2517. Springer, 2002, pp. 25“6_273'. . Science, vol. 3114. Springer, Jul. 2004, pp. 496-500.

[5] S. Kashyap and V. K. Garg, “Producing short counterex@siplsing [17] R. pehnek, “BEEM: benchmarks for explicit model checkers Firo-
crucial events”,” inProc. CAV ser. CAV "08. Springer, 2008, pp. ceedings of the 14th international SPIN conference on Mobetking
491-503. _ o software Springer, 2007, pp. 263—267.

[6] G. Ciardo, R. Marmorstein, and R. Siminiceanu, “The satam 18] G. Ciardo et al, “SMART: Stochastic Model checking Ana-
algorithm for symbolic state space exploratioigbftware Tools for lyzer for Reliability and Timing, User Manual’ available at
Technology Transfewol. 8, no. 1, pp. 4-25, 2006. http://www.cs.ucr.edutciardo/SMART/.

[7] T.Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincetli, “Multi-
valued decision diagrams: theory and applicationgfiltiple-Valued
Logic, vol. 4, no. 1-2, pp. 9-62, 1998.

[8] V. Schuppan and A. Biere, “Efficient reduction of finiteast model
checking to reachability analysisSoftware Tools for Technology Trans-
fer, vol. 5, no. 2, pp. 185-204, March 2004.

[9] J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and ISeue,
“Heuristic-guided counterexample search in FLAVERS,Pimceedings
of the 12th ACM SIGSOFT twelfth international symposium amnBa-
tions of software engineeringer. SIGSOFT '04/FSE-12. ACM, 2004,
pp. 201-210.

[10] Y.-T. Lai and S. Sastry, “Edge-valued binary decisigagdams for multi-
level hierarchical verification,” irProceedings of the 29th Conference
on Design Automatian IEEE Computer Society Press, Jun. 1992, pp.
608-613.

[11] P. Roux and R. Siminiceanu, “Model Checking with Edgésed De-
cision Diagrams,” inProceedings of the Second NASA Formal Methods
Symposium (NFM 2010), NASA/CP-2010-216218ASA, April 2010,
pp. 222-226.

[12] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic med

