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Abstract. A network of communicating FSMs (NCFSMs) is a useful
formalism to model complex concurrent systems, but its use demands
efficient analysis algorithms. We propose a new symbolic framework for
NCFMS verification and test generation. We explore the use of the
breadth-first search (BFS) and saturation algorithms to compute the
“unstable transitive closure” of transitions for the observable product
machine of an NCFSM. Our framework can verify properties such as
livelock freeness and includes a fully automatic test generation based on
mutation analysis. Being symbolic, our framework can efficiently man-
age a large number of mutants with moderate resource consumption and
derive a test suite to distinguish all non-equivalent first-order mutants.

1 Introduction

Concurrent systems, such as communication and multiprocessor systems, consist
of several components connected via FIFO queues and can be naturally modeled
as a network of communicating finite state machines (NCFSMs) where each
component is a communicating finite state machine (CFSM). While the state
space of an NCFSM with unbounded queues is infinite, the slow environment

assumption [8] satisfied by most systems avoids the need to manage infinite state
spaces. Our slow environment NCFSMs require a single global queue of size one.

Both structural and fault-based testing can be employed on NCFSMs. Ap-
proaches to structural testing either transform an NCFSM into a behaviorally
equivalent FSM, the observable product machine, or try to restrict the model
to allow only local transition tests, but suffer from state-space explosion [7] or
require an exhaustive search to generate executable test cases [6, 9]. Fault-based
testing adopts mutation analysis, which scales well in web applications and other
collaborative systems, but requires dealing with a large number of mutants and
must generate a distinguishing sequence for each non-equivalent mutant [13].

The lack of an efficient and fully automated verification and test derivation
framework for NCFSMs limits their applicability and results in large manual test-
ing efforts. As symbolic methods such as binary decision diagrams (BDDs) [3]
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have had great success in verification, we propose a framework for critical prop-
erty verification and test generation using a symbolic strategy and mutation
analysis. We use multiway decision diagrams (MDDs) [10] to compute the un-
stable transitive closure of the transition relation for the observable product ma-
chine, then employ verification techniques to check critical properties and provide
counter-examples. Finally, we generate first-order mutants through specification
mutant operators and use edge-value decision diagrams [5] to symbolically obtain
distinguishing sequences (a test suite) that “kill” all non-equivalent mutants.

The remainder of this paper is organized as follows. Sect. 2 provides some
background. Sect. 3 elaborates our symbolic framework and preprocessing algo-
rithms. Sect. 4 focuses on verification algorithms and Sect. 5 on automatic test
derivation algorithms. Sect. 6 gives experimental results. We conclude in Sect. 7.

2 Preliminaries

A CFSM Mk is a tuple (Sk,Xk,Yk, δk, λk, sk) where Sk is a finite set of local
states, Xk is a finite set of input symbols generated from the environment or
other CFSMs, Yk is a finite set of output symbols absorbed by the environment
or other CFSMs, δk : Sk × Xk → Sk is the local state transition function,
λk : Sk × Xk → Yk is the output function, and sk ∈ Sk is the initial state. If
δk(i, a) = j and λk(i, a) = b, we let i [Mk, a/b〉 j denote this local transition from
state i to j caused by input a and output b in Mk.

An NCFSM M consists of K CFSMs M1,M2, ...,MK with pairwise disjoint
sets of input symbols and a FIFO buffer β containing symbols in transit be-
tween CFSMs. The semantics of an NCFSM is defined by the product FSM
(S,X ,Y, δ, λ, sinit) where X =

⋃

1≤k≤K Xk, Y =
⋃

1≤k≤K Yk, S =({ǫ}∪Y∪X )×
S1×...×SK is the set of global states, δ : S×({ǫ}∪X )→S and λ : S×({ǫ}∪X )→Y
are the global state transition and output functions, respectively, which will be
defined later, and sinit=(ǫ, s1, ..., sK)∈S is the initial global state.

Let Zint=X∩Y be the set of internal symbols that can appear in buffer β (we
underline these symbols, e.g., a). Let X \Y⊆Xext⊆X and Yext=Y\X be the set
of external input and external output symbols. Yext contains the output symbols
observable outside the system. Xext must contain all the symbols that only the
environment can place into the buffer β, thus X \Y, but it may include symbols
in Zint. Given i = (i1, ..., iK), define i|k:jk to be the vector (i1, ..., jk, ..., iK)
obtained by setting the kth component of i to jk. A (global) state (iβ , i1, ..., iK)
is stable if iβ = ǫ, we write it as i, otherwise it is unstable, we write as a.i, with
a ∈ Zint. Let Sst and Sunst be the set of reachable stable and unstable states,
respectively, and Srch=Sst ∪ Sunst. If ik [Mk, a/x〉 jk, λ and δ satisfy:

– δ(i,a)= i|k:jk and λ(i,a)=x, if a∈Xext, x∈Yext, written as i [M,a/x〉 i|k:jk , or
simply i [a/x〉 i|k:jk if M is clear from the context.

– δ(i,a)=x.i|k:jk and λ(i,a)=ǫ, if a∈Xext, x∈Zint, written as i [a/x〉x.i|k:jk .
– δ(a.i,ǫ)= i|k:jk and λ(a.i, ǫ)=x, if a∈Zint, x∈Yext, written as a.i [a/x〉 i|k:jk .
– δ(a.i,ǫ)=x.i|k:jk and λ(a.i,ǫ)=ǫ, if a∈Zint, x∈Zint, written as a.i [a/x〉x.i|k:jk .

The NCFSMs we study conform to the slow environment assumption [8]:
if the output symbol a of a CFSM can be absorbed by another CFSM as an



input symbol, then the system does not accept any other input symbol from the
environment until a has been consumed. A buffer of size one is sufficient under
this assumption, as β can only be empty or contain one symbol from Zint.

As neither unstable states nor the symbols in β are observable, we focus on
stable state transitions: if i [a/a(1)〉a(1).i(1)[a(1)/a(2)〉 · · · [a(n−1)/a(n)〉a(n).i(n)[a(n)/b〉 j,
where n≥ 1, i, j ∈ Sst, a ∈ Xext, a

(1)· · · a(n) ∈ Zint and b ∈ Yext, we merge this
sequence into a stable transition i [[a/b〉〉 j. We define the observable transition
function δobs and output function λobs, δobs(i, a) = j and λobs(i, a) = b if i [[a/b〉〉 j.
Then, we define the observable product machine Mobs of an NCFSM as a six-
tuple (Sst,Xext,Yext,δobs,λobs,sinit). Sect. 3 presents our symbolic algorithm to
generate Mobs, needed to verify NCFSM equivalence and used in test derivation
and test selection [12]. We let a1/b1, ..., an/bn∈(Xext×Yext)

∗ be a sequence from
state i ∈ Sst if λobs(i, a1a2· · ·an)=λobs(i, a1)λobs(δobs(i, a1), a2· · ·an)=b1b2· · ·bn.

2.1 Decision diagrams

Symbolic encodings such as BDDs [3] and MDDs [10] work well for formal veri-
fication. We use MDDs to encode boolean functions for sets and EV+MDDs [5]
to encode partial integer functions, where ∞ means “undefined”.

Given L domain variables vl (1 ≤ l ≤ L) having finite domain Vvl
and a

boolean range variable v0, ordered vL≻· · ·≻v1≻v0, a (quasi-reduced) MDD is
a directed acyclic edge-labeled graph where:

– Each node p is associated with a domain variable vl. We write p.v=vl.
– The terminal nodes are 0 and 1, and are the only nodes with 0.v=1.v=v0.
– A nonterminal node p with p.v=vl has, for each i∈Vvl

, an edge pointing to
node q, with q.v=vl−1 or q=0. We write p[i]=q. We must have at least one
p[i] 6=0.

– For canonicity, there are no duplicates : given two nonterminal nodes p and
q with p.v = q.v, there must be at least one i ∈ Vp.v such that p[i] 6= q[i].

A nonterminal MDD node p with p.v=vl encodes the set of tuples recursively
defined by Bp=

⋃

i∈Vvl

{i}·Bp[i], with terminal cases B0=∅, the empty set, and

B1={ǫ}, the empty tuple, where “·” indicates tuple concatenation.
To encode partial integer functions, we use a variant of the above. A normal-

ized EV+MDD [5] is a directed acyclic edge-labeled graph where:

– Ω is the only terminal node, with Ω.v=v0.
– A nonterminal node a with a.v = vl has, for each i ∈ Vvl

, an edge labeled
with ρ ∈ N∪{∞} pointing to node b. We write a[i] = 〈ρ,b〉, b = a[i].node,
and ρ = a[i].val. We must have b = Ω if ρ = ∞, b.v = vl−1 otherwise, and
at least one a[i].val = 0.

– For canonicity, there are no duplicates : given two nonterminal nodes a and b
with a.v = b.v, there must be at least one i ∈ Vp.v such that a[i] 6= b[i], i.e.,
a[i].node 6= b[i].node, or a[i].val 6= b[i].val, or both.

Given EV+MDD node a with a.v= vl and ρ∈N, 〈ρ,a〉 encodes the function
f〈ρ,a〉 :Vvl

×· · ·×Vv1
→ N∪{∞} recursively defined by f〈ρ,a〉=ρ+fa[vl], with base

case f〈ρ,Ω〉=ρ.



Fig. 1. System framework.

To make MDDs and EV+MDDs more compact and their manipulation more
efficient, edges can skip variables under various reduction rules [3, 17]. These
rules still ensure canonicity and implicitly define the meaning of these “long”
edges, but we do not discuss them further in the interest of clarity and brevity.

Or(a, b) and And(a, b) are two operators used to compute the MDD encoding
Ba∪Bb and Ba∩Bb. Analogously, Min(〈ρ,a〉, 〈σ,b〉), returns the EV+MDD encod-
ing min(f〈ρ,a〉, f〈σ,b〉), and Normalize puts an EV+MDD in canonical form [5].

2.2 Previous work

Structural test generation approaches for NCFSMs mostly fall into two classes.
One transforms an NCFSM into its Mobs [12] which may encounter state-space
explosion problem, then applies standard FSM test derivation techniques, such
as the W-method, Wp-method, and UIO-method. However, a high complexity
limits the applicability of these well-known approaches. More importantly, even
if all CFSMs are deterministic, minimal, completely specified, and strongly con-
nected, the resulting Mobs might not be. Mobs is deterministic and completely
specified iff M is livelock-free while, if Yext ⊂ Y, minimal and strongly con-
nected properties may be lost. In these cases, standard structural FSM-based
test derivation algorithms are not directly applicable.

The other category of approaches [6, 9, 11] avoids building Mobs and uses
instead branching coverage [11] or heuristic techniques [6]. These methods check
local transitions instead of global transitions, and reduce testing efforts under
the assumption that the system only has one fault. However, for some complex
models, exhaustive searches or heuristic algorithms must be employed.

Our work falls into the first class. Our fully symbolic techniques copes with
the large computational cost to generate Mobs for verification and test genera-
tion. Moreover, we adopt mutation analysis for test derivation, thus we do not
require Mobs to be minimal, completely specified, or strongly connected.

3 System framework and symbolic encoding

Both specification or implementation errors can cause system failures. Our sym-
bolic framework takes in an NCFSM model described in XML as the system
specification and aims at detecting both types of errors. It has two stages: veri-
fication and test derivation, as in Fig. 1. The verification stage checks three im-
portant properties of the specification: livelock freeness, strong connectedness,



and absence of dead transitions. If a check fails, counter-examples are generated
to help fixing the error. The test derivation stage generates a test suite using
mutation analysis, to test the consistency between the implementation under

test (IUT) and the specification.
Given an NCFSM with K component CFSMs and a system buffer, we use

an MDD with variables (wK , ..., w1, wb) to encode sets of global states. The first
K variables correspond to each CFSM local state, wb corresponds to the current
buffer content. A next-state function T :S×(X∪{ǫ})→S×(Y∪{ǫ}) encoded using
MDDs on 2(K+1) variables (wK ,w′

K ,...,w1,w
′
1,wb,w

′
b), captures the global state

transition function δ and output function λ, so that T (x,y)=(x′,y′) iff δ(x,y)=x′

and λ(x,y) = y′, where x and x′ are global states and y, y′ ∈ X ∪ Y ∪ {ǫ}. We
define Ts =

⋃

1≤k≤K Tk, where Tk encodes the next-state function of Mk. Thus,
T = Ts ∪ Tβ , where Tβ encodes the interaction with the environment.

Generation of the state-space Srch = {sinit} ∪ T (sinit) ∪ T 2(sinit) ∪ · · · is
often the first step in formal verification. Srch can be built by standard symbolic
state-space generation algorithms [4] and we can split it into Sst and Sunst based
on the status of the system buffer wb: if wb = ǫ, the state is stable, otherwise it
is unstable.

To compute the stable next-state function Tobs encoding δobs and λobs, we
first define the unstable transitive closure (UTC ): given Ts, UTC is the smallest
relation containing Ts and satisfying

(c.j, ǫ) ∈ Ts(b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC (a.h, ǫ) ⇒ (c.j, ǫ) ∈ UTC (a.h,ǫ),
(c.j, ǫ) ∈ Ts(b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC (h,a) ⇒ (c.j, ǫ) ∈ UTC (h, a),
(j, c) ∈ Ts(b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC (a.h, ǫ) ⇒ (j, c) ∈ UTC (a.h, ǫ),
(j, c) ∈ Ts(b.i, ǫ) ∧ (b.i, ǫ) ∈ UTC (h, a) ⇒ (j, c) ∈ UTC (h, a).

UTC captures all transition sequences in M that do not pass through stable
states. We use UTC to build Tobs, by applying the And operator (Sect. 2) to
select the elements with wb ∈ Xext and w′

b ∈ Yext, corresponding to input and
output symbols leading from stable to stable states. UTC is the most time and
memory consuming step in our framework. First, we define a ComRP operator
to calculate this composition effect of next-state functions, taking two 2(K+1)-
variable MDDs and returning the result composition 2(K+1)-variable MDD.
UTC can be obtained by repeatedly applying ComRP to Ts: UTC = Ts ∪
ComRP(Ts) ∪ ComRP2(Ts) ∪ · · · . Thus, UtcBfs performs a global fixpoint in
BFS style at Line 2-5 and uses ComRP with Line 26b in Fig. 2.

However, for asynchronous systems, saturation [4] is often orders of magni-
tude more efficient in memory and runtime than BFS algorithms, due to its effec-
tive utilization of locality (transitions in Tk only affecting ik ofMk and β) through
a series of light-weight recursions. Our saturation algorithm UtcSat chooses a
different iteration strategy to approach the fixpoint with exhaustive utilization of
locality. Thus, instead of taking Ts as one MDD, UtcSat uses its disjunctive form
asK MDDs and divides the whole procedure intoK phases. The kth phase starts
when the lower (k − 1)th phases end at Line 4-6 and extends the fixpoint using
Tk until node p is “saturated” (no more new states can be found) at Line 7-19.
If it finds new states during this phase, only these need to be resaturated by all
previous k−1 phases by using ComRP with Line 26s. Saturation works bottom-



mdd ComRP(mdd p,mdd r)

1 if r = 1 or p = 1 then • terminal
2 return p;
3 endif
4 mdd t←0, s←0;
5 if CHitComRP (p, r, t) then
6 return t; • cache hit
7 endif
8 if p.v = r.v then
9 for i,i′ ∈Vp.v s.t. p[i][i′] 6=0,r[i′] 6=

0

do
10 if r.v = r[i′].v then
11 for j ∈ Vr.v do
12 s← ComRP(p[i][i′], r[i′][j]);
13 t[i][j]← Or(t[i][j], s);
14 endfor
15 else • r[i′]’s edge skips 1 variable
16 s← ComRP(p[i][i′], r[i′]);
17 t[i][i′]← Or(t[i][i′], s);
18 endif
19 endfor
20 else • r’s edges skip 2 variables
21 for i, i′ ∈ Vp.v s.t. p[i][i′] 6= 0 do
22 s← ComRP(p[i][i′], r);
23 t[i][i′]← Or(t[i][i′], s);
24 endfor
25 endif

26b t←UniIns(t); • for UtcBfs

26s t←UtcSat(UniIns(t)); • for UtcSat

27 CAddComRP (p, r, t); • store in

cache
28 return t;

mdd UtcSat(mdd p)

1 if p.v = v0 then return z; • terminal
2 mdd t←0, s←0;
3 if CHitUtcSat(z, t) then return t;
4 for i, i′∈Vp.v s.t. p[i][i′] 6=0 do
5 t[i][i′]←UtcSat(p[i][i′]);
6 endfor • saturate all lower variables
7 repeat • local fixpoint iteration
8 for i, i′∈Vp.v, r∈Ts s.t. t.v = r.v,

p[i][i′] 6= 0, r[i′] 6= 0 do
9 if r.v = r[i′].v then

10 for j ∈ Vr.v s.t. r[i′][j] 6= 0 do
11 s← ComRP(p[i][i′], r[i′][j]);
12 t[i][j]← Or(t[i][j], s);
13 endfor
14 else • r[i′]’s edge skips 1 variable
15 s← ComRP(p[i][i′], r[i′]); • 26s
16 t[i][i′]← Or(t[i][i′], s);
17 endif
18 endfor
19 until t does not change;
20 t←UniIns(t); • for canonicity
21 CAddUtcSat(z, t); • store result in cache
22 return t;

mdd UtcBfs(mdd Ts)

1 mdd z←Ts, s←0, zp ← 0;
2 repeat • global fixpoint iteration
3 zp ← z;
4 z←Or(zp,ComRP(zp,Ts)); • 26b
5 until z = zp; return z;

Fig. 2. The ComRP operator, the UtcBfs, and the UtcSat algorithms.

up and the result of local fixpoint for the Kth phase converges to the same global
fixpoint as BFS. An operation cache avoids wasteful recomputations (Procedures
CAdd and CHit are used to insert and retrieve computed results). Newly created
nodes are inserted in a unique table (Procedure UniIns) to ensure MDD canonic-
ity by avoiding duplicates. Our experience shows that the larger K is, the greater
improvement saturation achieves. After building UTC , we obtain its restriction
to stable transitions as Tobs={(a.i, b.j) ∈ UTC : i, j∈Sst, a∈Xext, b∈Yext}.

4 Symbolic NCFSM verification

Symbolic livelock check. An NCFSM does not terminate if it reaches a live-
lock (a cycle of unstable transitions): a(1).i(1)[a(1)/a(2)〉 · · · a(n).i(n)[a(n)/a(1)〉a(1).i(1).
Since livelock is a fatal design error, we need to guarantee livelock-freeness before
test generation. If an NCFSM contains livelocks, the MDD encoding UTC has
transitions where the “from” global state is the same as the “to” global state,
and the input symbol equals the output symbol and belongs to Zint. Thanks



evmdd PairRP(evmdd 〈µ,p〉,mdd g1,mdd g2)
1 if g1.v=wb or g2.v=wb then
2 return 〈µ,MDD2EV (g1)〉; • g1 = g2
3 if CHitPairRP (p, g1, g2, 〈λ,r〉) then return〈λ+ µ,r〉;
4 node t← 0;
5 for i, i′∈Vp.v, s.t. p[i].val 6=∞∧ g1[i][i

′] 6=0 do
6 for j,j′∈Vp.v s.t. g2[j][j

′] 6=0∧ p[i][j].val 6=∞ do
7 evmdd 〈η,u〉←PairRP(p[i][j],g1[i][i

′],g2[j][j
′]);

8 t[i′][j′]← Min(t[i′][j′], 〈η,u〉);
9 endfor

10 endfor
11 〈λ,t〉 ← Normalize(t);
12 UniIns(t); •For canonicity
13 CAddPairRP (p, g1, g2, 〈λ,t〉);
14 return 〈λ+ µ,t〉;

seq TCGen(evmdd r,
mdd G, evmdd fdis, seq a/x)

1 seq tr ← a/x;
2 while r.val > 0 do
3 for Gb/y ∈ G do
4 if t ∈ f−1

dis(fdis(r)−
1) ∧ r=Gb/y(t) then

5 r ← t;• predecessor
6 tr ← b/y · tr;
7 break;
8 endif
9 endfor

10 endwhile
11 return tr

Fig. 3. Algorithms for the PairRP operator and test case generation.

to our MDD encoding, we can find all reachable states originating a livelock
by And -ing Srch and the “from” global states of the UTC . We not only verify
livelock freeness, but also generate sequences from sinit to all livelocks, which is
similar to distinguishing sequence generation, discussed in the next section.

Symbolic strong connectedness check. Many traditional FSM-based test
derivation algorithms require the FSM to be strongly connected. While our ap-
proach does not require this property, strong connectedness can be checked in
our framework. An NCFSM is strongly connected iff the initial state sinit is
reachable from every reachable state i ∈ Sst. To check this property, we build
the MDD for T −1, defined by i[a/x〉j∈T ⇔ j[x/a〉i∈T −1, by switching the “from”
and “to” variables. Then, we perform a backward state-space search from sinit
along T −1 and build the set of reachable states S−1

st using BFS or saturation.
The global state space is strongly connected iff Sst = S−1

st ∩Srch. Note that T
−1

might be non-deterministic even if T is deterministic, but this does not hinder
the applicability of symbolic state-space exploration.

Symbolic dead transition check. Transition ik [Mk, a/b〉 jk is dead if it does not
contribute to building Mobs. Dead transitions reflect wasteful designs or useless
functions, which should be reported to the designer. As Srch = Sst ∪ Sunst is
available, dead transitions can be detected symbolically. For each ik [Mk, a/b〉 jk,
we can first check if Sunst contains an unstable state with wk = ik and wb = a; if
it does, ik [Mk, a/b〉 jk is not dead. Otherwise, if a ∈ Xext, we check if Srch contains
a stable state with wk = ik; if it does, ik [Mk, a/b〉 jk is not dead, since a can be
received from the environment in that state. Otherwise, ik [Mk, a/b〉 jk is dead.

5 Symbolic NCFSM test derivation

Given specification NCFSM M , we apply the following mutant operators, cor-
responding to possible error classes, to generate a set of first-order mutants U .

– Alter the initial state: create a mutant by changing one of the local states
in the initial state sinit. This generates

∑

1≤k≤K(|Sk| − 1) mutants.



– Alter the output of a local transition: create a mutant by changing
local transition i [Mk, a/b〉 j to i [Mk, a/b

′〉 j, for b′ ∈ Yk \ {b}. This generates
∑

1≤k≤K |δk|(|Yk|−1) mutants, where |δk| is the number of local transitions
in Mk, thus |δk| = |Xk|·|Sk| if the model is completely specified.

– Alter the destination state of a local transition: create a mutant by
changing local transition i [Mk, a/b〉 j to i [Mk, a/b〉 j′, where j′ ∈ Sk \ {j}. This
generates

∑

1≤k≤K |δk|(|Sk| − 1) mutants.

Given a mutant M of specification M (“a” indicates quantities related to the
mutant), we seek a sequence a1/b1,. . ., an/bn that kills this mutant, if not equiv-
alent to M , where each ai/bi pair corresponds to an input symbol and the cor-
responding expected output in M . Let α = a1a2 · · · an−1 and β = b1b2 · · · bn−1,
then λobs(s,α)=β=λobs(s,α) and λobs(δobs(s, α), an) = bn 6= λobs(δobs(s, α), an).

If the state pair set is P = Sst × Sst, define the next-state-pair function G=
{Ga/b :a∈X , b∈Y} and the distinguishable-state-pairs D={Da/b :a∈X , b∈Y}:

Ga/b = {
(

(a.i, b.j), (a.i, b.j)
)

: (a.i, b.j) ∈ Tobs ∧ (a.i, b.j) ∈ Tobs},
Da/b = {(a.i, b.i) : ∃(a.i, b.j) ∈ Tobs ∧ ∃(a.i, b.j) ∈ Tobs ∧ b 6= b},

which can be built through symbolic operations on Sst, Tobs, and Tobs.
Our test derivation algorithm takes in input the set U of mutants, the stable

next-state function Tobs, and pinit = (iinit, iinit). For each mutant M , we first
run the current test suite to check whether an existing test kills M . If not, we
build Tobs and encode the next-state-pair function G and the distinguishable-
state-pairs D. Fig. 3 shows the PairRP operator that is analogous to state-space
exploration except that we explore pairs of states (one fromM , one fromM), and
keep track of the distance of each such pair from pinit by using a 2(K+1)-variable
EV+MDD to encode the distance function fdis : P → N ∪ {∞} s.t. fdis(p) =
min{d : p∈Gd(pinit)}. Thus, fdis(p)=∞ iff p has not yet been reached in the
exploration, initialized with fdis(pinit) = 0 and fdis(p) =∞ for p 6= pinit. We
also define the reverse function f−1

dis(d) = {p : fdis(p)=d}, where d ∈ N.
The algorithm uses a BFS algorithm to generate the distance function for

reachable state pairs until the search reaches a distinguishing state pair perr in
D. perr is used to generate a sequence as a new test case which is added to
the test suite C. Then, the algorithm TCGen in Fig. 3 use f−1

dis(d) to generate
a sequence leading M and M from pinit to perr. This is the same approach
proposed in [5] to generate the shortest path to a target state, except that now
we target a pair of states perr. Starting from p at distance n, there must exist
a predecessor q, i.e., satisfying p = G(q), at distance n− 1, as Line 4. Thus, we
keep reducing the distance value until reaching pinit, at distance 0. If no such
pair perr is instead reachable, M is equivalent to M , and the algorithm builds
a fixpoint Prch containing all the pairs of states that can be reached from pinit

by providing the same input sequence to both M and M . Finally, the algorithm
eliminates test cases subsumed by other test cases, to form a minimal test suite.

6 Experimental results

We implemented the proposed framework using our MDD library [17], and re-
port experimental results on an Intel Xeon 2.53GHz workstation with 36GB



Model Mutants Test Suite UTC bfs UTC sat Totbfs Totsat

M K Tot NE Num Avg time time mem time mem time

Ideal models

Mse 3 96 96 27 3.19 0.053 s 0.021 s 3.63 M 0.427 s 3.42 M 0.235 s

Mhs 3 81 81 16 2.81 0.044 s 0.018 s 3.60 M 0.301 s 3.30 M 0.158 s

Not ideal and real models

M
′

se 3 90 90 23 3.30 0.039 s 0.014 s 3.28 M 0.245 s 3.10 M 0.192 s

M
′

hs 3 77 77 13 3.08 0.041 s 0.012 s 3.24 M 0.252 s 3.00 M 0.126 s

Mhcs 4 179 157 12 11.17 0.17 s 0.03 s 7.01 M 1.00 s 6.54 M 0.48 s

Mtr 4 177 150 12 2.5 0.17 s 0.09 s 6.72 M 1.00 s 5.33 M 0.20 s

Mtr3 5 1024 849 43 3.14 4.69 s 3.35 s 69.75 M 9.25 s 50.72 M 7.74 s

ABP 2 96 81 12 3.83 0.005 s 0.004 s 2.90 M 0.49 s 2.90 M 0.32 s

BGP 4 4898 1613 79 5.16 344.26 s 24.1 s 96.48 M 1230.0 s 82.41 M 438.6 s

EGP 3 69066 27883 3501 9.24 11.14 h 5.28 h 6.78 G 21.58 h 4.51 G 14.03 h

Table 1. Test derivation results (time in seconds or hours, memory in MB or GB).

RAM running Linux. The main metrics of our comparison are runtime and peak
memory. For BFS and saturation, we compare the cumulative time to compute
the UTC on all mutants (UTC bfs and UTC sat), and the total runtime and
peak memory (Totbfs and Totsat) using BFS and saturation respectively. For
each model, we list the number of components (K), of mutants (Tot), of non-
equivalent mutants (NE), of test cases (Num), and the average length of the tests
in the suite (Avg). The total time includes preprocessing, livelock checking, and
test suite generation.

Table 1 presents results for two sets of models. The first set, shown under
“Ideal models”, consists of Mse [8] and Mhs [9]. All components are completely
specified, minimized, strongly connected, and deterministic. The second set con-
tains control systems, communication protocols, and two corresponding incom-
pletely specified models M

′

se and M
′

hs by eliminating some self-loops. Three
control systems include a heating controller system [2] and a train gate con-
troller [1] with two trains, Mtr, or three trains, Mtr3. Three communication
protocols contain the alternating bit protocol (ABP) [16], the border gateway
protocol (BGP) [15], and the exterior gateway protocol (EGP) [14].

Saturation works better in both time and memory, although only minor im-
provements are observable for some models. For communication protocols, BGP
and EGP are two important TCP/IP exterior routing protocols. BGP is cur-
rently used on the Internet and other larger autonomous systems. For these two
models, we only consider mandatory events. Thus, including the component for
the environment, we encode the model with 5 variables. Saturation is clearly
superior, 14 times faster than BFS when computing the UTC for all mutants.
Similar trends can be observed for EGP with three peers: saturation saves al-
most 8 hours and over 2GB over BFS (there are about 1.2×105 global states,
6.7×105 local transitions, and 1.5×106 global transitions).

The benefit of symbolic encodings can be clearly seen in our results, as the
memory consumption remains stable even if the number of generated mutants



increases by an order of magnitude when growing the number of components.
Also, we observe that the number of generated test cases and the average length
of the test suite are stable even if the number of mutants increases dramatically.
This is important for complex models in practice, as it reduces testing efforts.

7 Conclusion

We presented a new symbolic framework for NCFSM verification and test gen-
eration. We encode an NCFSM with MDDs and use the BFS and saturation
algorithms to generate the unstable transitive closure of transitions. We sym-
bolically check for livelocks, dead transitions, and strong connectedness. Then,
we propose a symbolic mutation-based test generation algorithm. The experi-
mental results demonstrate the effectiveness of this framework. A further ad-
vantage of our symbolic framework is that no constraints are required of IUTs.
Some of those requirements by other test generation methods might not be met
by many real models. Moreover, our framework guarantees a test suite with
minimal-length tests to kill all non-equivalent mutants and it could be extended
to non-deterministic NCFSMs by returning, instead of distinguishing sequences,
pairs consisting of an input string and a set of all correct output strings.
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