
Fault Localization Using Value Replacement

Dennis Jeffrey (1)

jeffreyd@cs.ucr.edu
Neelam Gupta

guptajneelam@gmail.com
Rajiv Gupta (1)

gupta@cs.ucr.edu

(1)Univ. of California at Riverside, CSE Department, Riverside, CA 92521

ABSTRACT
We present a value profile based approach for ranking pro-
gram statements according to their likelihood of being faulty.
The key idea is to see which program statements exercised
during a failing run use values that can be altered so that the
execution instead produces correct output. Our approach is
effective in locating statements that are either faulty or di-
rectly linked to a faulty statement. We present experimental
results showing the effectiveness and efficiency of our ap-
proach. Our approach outperforms Tarantula [9] which, to
our knowledge, is the most effective prior approach for state-
ment ranking based fault localization using the benchmark
programs we studied.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Debuggers;
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids, Testing tools, Tracing

General Terms
Algorithms, Experimentation, Measurement, Reliability, Ver-
ification

Keywords
automated debugging, fault localization, value replacement,
interesting value mapping pair

1. INTRODUCTION
Software debugging is the process of locating and correct-

ing faulty program statements. This is a necessary phase of
software development because building software is a human-
intensive activity and is therefore prone to error. Unfortu-
nately, debugging can be a difficult task. The point of a
program failure (e.g., when a program produces unexpected
output) can be much later than when the faulty statement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-59593-904-3/08/07 ...$5.00.

responsible for the failure is executed. After a faulty state-
ment is identified, the appropriate correction may not be
obvious; it may require additional time to analyze the fault
and deduce the appropriate correction. Techniques to help
automate the debugging process can reduce developer bur-
den and increase the rate at which program faults can be
corrected. This can result in deployed software that is more
robust and reliable.

Prior research in automating the debugging process has
focused primarily on fault localization. This is the process
of narrowing or guiding the search for faulty code to help
a developer find erroneous statements more quickly. Dy-
namic analysis approaches for fault localization include: dy-
namic program slicing [1, 10, 16, 22], delta debugging [2,
19, 20], the nearest neighbor technique [15], and other sta-
tistical techniques [9, 12, 13, 14]. Statistical techniques use
data collected during execution of failing and successful runs
to rank statements in the order of their likelihood of being
faulty. In particular, the Tarantula approach [9] uses a for-
mula to rank program statements according to the intuition
that the statements primarily executed by failing runs are
more likely to be faulty than the statements primarily ex-
ecuted by successful runs. It was shown [9] that Tarantula
is more effective at identifying erroneous statements than
cause transitions [2] on the Siemens benchmark suite. The
Tarantula approach for fault localization is very fast at rank-
ing program statements because it takes into account only
the statement coverage information of failing and successful
runs. However, this statistical information can be mislead-
ing. For instance, a failing run that exercises a particular
statement does not necessarily imply that the statement in-
fluences the incorrect output of that run. Also, a successful
run may exercise a faulty statement but still produce cor-
rect output due to many-to-one mappings of used and de-
fined values in a program. Therefore, there is clearly scope
to improve upon Tarantula.

In this paper, we propose a new value profile based ap-
proach for fault localization that involves searching for the
program statements that can be shown to affect the output of
a failing run such that the incorrect output becomes correct.
This is done by replacing the values used at a statement
during the execution of a failing run with an alternate set
of values, then checking to see whether the resulting output
changes to become correct. If so, then we have identified
what we call an Interesting Value Mapping Pair (IVMP).
An IVMP consists of the original value mapping used at the
statement instance, and the corresponding alternate value
mapping that can be substituted at that point to correct the

output of the failing run. We have seen that IVMPs often
occur at faulty statements or statements that are directly
linked to faulty statements via a dependence edge. Our ap-
proach therefore uses IVMPs to rank program statements
according to their likelihood of being faulty. Our experi-
ments show that our approach for fault localization is gen-
erally more effective than Tarantula – and therefore, more
effective than cause transitions – on the Siemens benchmark
programs.

The rest of this paper is organized as follows. In the next
section, we describe IVMPs in detail and show how they can
be directly linked to faulty statements. Section 3 describes
how we rank program statements using IVMPs to assist in
fault localization. Our experimental study is given in Section
4. Section 5 presents related work, and Section 6 summarizes
our conclusions.

2. IVMPs AND FAULTY STATEMENTS

2.1 Definitions and IVMP Identification

A value mapping is the set of all values involved at a sin-
gle execution instance of a statement during a program run.
Thus, a value mapping includes both the used values and
the corresponding defined values. The values used at a par-
ticular statement instance are essentially “mapped” by the
statement to the defined values. For predicate statements,
the defined value is considered to be the branch outcome.

An Interesting Value Mapping Pair (IVMP) is a pair of
value mappings associated with a particular statement in-
stance in a failing program execution, with a special prop-
erty: it shows how the value mapping used at that statement
instance can be replaced with an alternate value mapping so
that the execution instead produces the correct output.

An Interesting Value Mapping Pair (IVMP)
is a pair of value mappings (original, alternate)
associated with a particular statement instance
in a failing run, such that: (1) original is the
original value mapping used by the failing run
at that instance; and (2) alternate is an alter-
nate (different) value mapping such that if the
values in original are replaced by the values in
alternate at that instance during re-execution of
the failing run, then the incorrect output of the
failing run becomes correct.

Given a failing run, the task of searching for IVMPs is
straightforward: simply consider statement instances in the
failing run one at a time, replacing the value mapping used
at each one with a different value mapping, then checking
to see if the output of the run becomes corrected. If so, an
IVMP has been found. Searching for IVMPs requires only a
failing test case execution with the corresponding incorrect
and correct outputs, and some set of alternate value map-
pings that can be applied at different statement instances in
the failing execution.

In general, the set of all possible alternate value mappings
at a statement instance can be infinite. A method is required
to select a finite set of alternate mappings that can be ap-
plied at each statement. To do this, we extract the (finite)
set of alternate mappings for each statement from the exe-
cution traces of all test cases in an available test suite. We
call this set of alternate mappings the value profile.

A Value Profile for a program with respect to a
test suite is a table mapping each program state-
ment to the set of all unique value mappings oc-
curring at that statement during execution of test
cases in the test suite.

It is reasonable to assume the existence of a test suite for
computing the value profile since a failing test case is usu-
ally part of a larger suite of test cases. We have observed
that rich value profiles can result from only a few test cases,
and yet the sizes of value profiles seem to increase logarith-
mically in general as the number of test cases in the suites
increase. This is because as more test cases are added, the
value mappings used by a test case will tend to match value
mappings already added to the value profile from previous
test cases. Also, in the value profile we do not distinguish
between alternate value mappings from successful or failing
executions. This is because alternate mappings that may
result in IVMPs can potentially come from any test case
executions, regardless of whether the executions pass or fail.

There may be situations in which the correct output of a
failing test case is not known. In these cases, our approach is
applicable as long as there is a way to determine whether the
failing program output “improves” when an alternate value
mapping is applied. For example, if a failing run results in
a program crash and the expected output is unknown, then
the expected output may be considered as “no crash.” In
this case, applying any alternate value mappings that cause
the failing run to avoid the crash will yield IVMPs.

The general algorithm for searching for IVMPs is given in
Fig. 1. Given a test suite with a failing test case for some
program, the first step initializes the value profile using the
traces of the tests in the test suite. The second step searches
for IVMPs by replacing the value mapping at each statement
instance in the failing execution with every alternate value
mapping from that statement as specified in the value pro-
file. The runtime of this algorithm is therefore bounded by
O(t ×m), where t is the number of statement instances in
the execution trace of the failing run, and m is the maxi-
mum number of alternate mappings for any statement in the
value profile. Although this algorithm shows how to com-
pute all possible IVMPs for a failing run (with respect to
a particular test suite), we will later see how we can more
efficiently search for a much smaller subset of IVMPs that
are effective for fault localization.

2.2 Link to Faulty Statements: Examples
IVMPs occur precisely at faulty statements in many cases.

In cases where this is not possible, IVMPs can occur at
statements that are just one dependence edge away from
faulty statements. Because of this, IVMPs can be useful for
fault localization. Here we give several examples showing
different ways in which IVMPs can be closely linked to faulty
statements. These examples are based on situations that we
encountered using the Siemens benchmark programs [8].

IVMPs at a Faulty Statement. IVMPs can be found
precisely at a faulty statement when applying an alternate
value mapping causes the faulty statement to define the cor-
rect value. Fig. 2 shows a code fragment and a test suite
based on Siemens program schedule, faulty version v9. This
fragment of code involves a check on the number of input
arguments (argc), so that the program terminates with an
error if there are too few input arguments specified. There
is an off-by-1 fault in this condition.

input:
Faulty program P , and failing test case f (with
actual and expected output) from test suite T .

output:
Set of identified IVMPs for f .

algorithm SearchForIVMPs
begin
Step 1: [Compute value profile for P w/ respect to T]
1: valProf := {};
2: for each test case t in T do
3: trace := trace of value mappings from

execution of t;
4: augment valProf using the data in trace;

end for
Step 2: [Search for IVMPs in f]
5: tracef := trace of value mappings from

execution of f ;
6: for each statement instance i in tracef do
7: origMap := value mapping from tracef at i;
8: s := the statement associated with instance i;
9: for each altMap in valProf at s do
10: execute f while replacing origMap

with altMap at i;
11: if output of f becomes correct then
12: output IVMP (origMap, altMap) at i;

end for
end for

end SearchForIVMPs

Figure 1: General algorithm for computing IVMPs
with respect to a failing run and its test suite.

argc := ...;
1: if (argc < 3) /* 3 should actually be 4 */
2: print (“Too few”);
3: else
4: print (“Okay”);

Test Input Actual Expected Result
Case Values Output Output

A argc = 2 Too few Too few PASS
B argc = 3 Okay Too few FAIL
C argc = 4 Okay Okay PASS

Figure 2: Code fragment and test suite based on
schedule faulty version v9.

The effect of the above fault is that when argc is equal
to 3, the program will erroneously proceed as normal when
it should have terminated early due to too few input argu-
ments. Thus, executing test case B in Fig. 2 results in a
failure. However, for test case B, changing the value of argc
at line 1 from 3 to 2 (which is the value used by test case
A) causes the output of the failing run to become correct.
Therefore, this represents an IVMP providing an important
clue that at line 1 in the code fragment, the value of variable
argc should be decremented by 1 (or equivalently, the value
of constant 3 should be incremented by 1). In this case, the
IVMP is located at precisely the faulty statement.

IVMPs Directly Linked to a Faulty Statement. In
some cases, we may not be able to find IVMPs at precisely
the faulty statements. One situation where this can hap-
pen is when there is a fault in a constant assignment state-

AltLayV al := ...;
1: Pos RA Alt Thresh[0] = 400;
2: Pos RA Alt Thresh[1] = 550; /* Should be 500 */
3: Pos RA Alt Thresh[2] = 640;
4: Pos RA Alt Thresh[3] = 740;

...
5: if (Pos RA Alt Thresh[AltLayV al] < 525)
6: print (0);
7: else
8: print (1);

Test Input Actual Expected Result
Case Values Output Output

A AltLayV al = 0 0 0 PASS
B AltLayV al = 1 1 0 FAIL
C AltLayV al = 2 1 1 PASS

Figure 3: Code fragment and test suite based on
tcas faulty version v7.

ment. A constant assignment will never be associated with
an IVMP because there are no alternate values at the assign-
ment; every executed instance of a constant assignment will
define the same constant value. Instead, we can get IVMPs
at the statements in which the defined constant values are
used. Fig. 3 shows a code fragment and test suite based on
Siemens program tcas, faulty version v7. The code frag-
ment shows an erroneously-defined constant value at line 2,
which is larger than it should be.

The effect is that when the array indexAltLayV al is 1, the
condition at line 5 will erroneously evaluate to false instead
of true due to the incorrect constant value defined at that
position. Thus, executing test case B in Fig. 3 results in a
failing run. However, for test case B, changing the value of
AltLayV al at line 5 from 1 to 0 (which is the value used by
test case A) causes the output of the failing run to become
correct. Assuming the value of index variable AltLayV al
is correct, this IVMP provides the important clue that the
value stored at array index 1 is incorrect. Further, since
accessing array index 0 (with value 400) corrects the output
of the failing run, this provides the hint that the value 550
at array index 1 should be changed to something smaller. In
this case, the IVMP is located at line 5, which is one data
dependence edge away from the faulty statement at line 2.

IVMPs in the Presence of Erroneously-Omitted
Statements. Another situation in which IVMPs cannot be
found at an erroneous statement is when the fault involves
one or more missing statements. In these cases, IVMPs can
still be found at nearby statements that can compensate for
the effects of the missing code. Fig. 4 shows an erroneous
function and accompanying test suite inspired by schedule2,
faulty version v1. The purpose of this function is to return
the inputted value of x incremented by one, only when the
value of y is positive (in bounds). If y is equal to 0, the
function returns 0.

The missing code at line 1 is meant to check whether y
is negative (out of bounds), and if so, to return the orig-
inal value of x without having incremented it. Since test
case A has y with out-of-bounds value -1, then the function
erroneously increments the value of x in this case when it
should not have done so. When the value of x at line 3 is
changed from 1 to 0 (which is the value used by test case
C), then the output becomes 1 and is correct. This IVMP

int foo(int x, int y)
1: /* if (y < 0) return x; */
2: if (y == 0) return 0;
3: return x+ 1;

Test Input Actual Expected Result
Case Values Output Output

A (x,y) = (1,-1) 2 1 FAIL
B (x,y) = (2,2) 3 3 PASS
C (x,y) = (0,1) 1 1 PASS

Figure 4: Code fragment and test suite inspired by
schedule2 faulty version v1.

at line 3 provides the important clue that for the failing run
corresponding to test case A, the value for x should actually
not have been incremented. This suggests that a statement
(the one at line 1) is missing in the above function that will
prevent test case A from incrementing the value of x.

Some program faults may involve extraneous statements.
We do not have a detailed example of this case due to space
limitations. However, from our experiments we have found
that IVMPs often occur precisely at extraneous statements
where they have the effect of“canceling out”the effects of the
extra code. For instance, an extraneous assignment state-
ment can have an IVMP that forces the original value to
be defined, rather than the new value that resulted from
the extra code. An extraneous condition can have an IVMP
that alters the conditional outcome in such a way that the
behavior is as if the condition is not present.

3. RANKING STATEMENTS USING IVMPs
While IVMPs often occur at or near faulty statements,

a significant challenge to using IVMPs for fault localization
is that IVMPs can be found at other statements besides
those that are faulty. This is possible because there are of-
ten multiple statements exercised during a failing execution
whose values can be changed to cause the output to become
correct. We have identified two main causes for this. We
refer to these two causes as the dependence cause and the
compensation cause for IVMPs at multiple statements.

Dependence Cause. IVMPs may be found at different
statements that are all part of the same definition-use chain
in a program. This is because if a statement S1 defining a
variable x has an IVMP associated with it, there’s a chance
that another statement S2 that uses x will also have an
IVMP associated with it. In such cases, changing the value
of x at either S1 or S2 can correct the program output, even
though only one of the two statements may be faulty.

Compensation Cause. This occurs when IVMPs are
found at two different statements that do not appear to be
related to each other at all, yet they both influence the out-
put such that applying an alternate value mapping at either
statement can compensate for the effects of the fault on the
program output, thereby making the output correct.

To address the challenge posed by the dependence and
compensation causes for IVMPs at multiple statements, we
consider the IVMPs that are computed from multiple fail-
ing runs. A dependence chain with IVMPs in one failing
run may not exist in another failing run that may have very
different dependence chains. Also, IVMPs that happen to
compensate for a fault in one failing run are unlikely to
compensate for the fault in the same way in another failing

1: read (x,y);
2: a := x+ y; /* should be x− y */
3: if (x < y)
4: z := a;
5: else
6: z := a + 1;
7: print (z);

Test Input Actual Expected Result
Case Values Output Output

A (x,y) = (0,0) 1 1 PASS
B (x,y) = (-1,0) -1 -1 PASS
C (x,y) = (1,1) 3 1 FAIL
D (x,y) = (0,1) 1 -1 FAIL

Figure 5: Example with test suite to motivate the
need for considering multiple failing runs when rank-
ing statements using IVMPs.

run. Considering multiple failing runs is particularly effec-
tive when the failing runs exercise very different paths in the
program. Since all failing runs must traverse the fault, the
statements that are associated with IVMPs in more failing
runs have a greater likelihood of being faulty. We therefore
rank IVMP statements using the intuition that statements
associated with IVMPs in more failing runs are more likely
to be faulty than statements that are associated with IVMPs
in fewer failing runs. Consider the example program with
accompanying test suite in Fig. 5.

In this example program, there is a fault at line 2 in which
the addition operator is mistakenly used instead of the sub-
traction operator. In cases where inputted value y is 0, the
defined value of a at line 2 will be correct regardless of the
fault. As a result, only test cases A and B in Fig. 5 pass,
while test cases C and D fail.

Consider failing test case C. We will get an IVMP at line
2 because changing the values of x and y respectively from 1
and 1, to 0 and 0 (which are used by test case A), will correct
the program output. Also, we will get an IVMP at line 6
because changing the used value of a from 2 to 0 (which is
the value of a used by test case A), will correct the output
as well. Although we get IVMPs at lines 2 and 6, only one
of these lines contains the actual fault. The IVMP at the
other line is present due to the dependence cause for IVMPs
at multiple statements. To help us distinguish between these
two statements, we consider another failing run.

When considering failing test case D, we get an IVMP at
line 2 because changing x and y from 0 and 1, to -1 and 0
(used by test case B), will correct the output. Also, we get
an IVMP at line 4 because changing the value of a here from
1 to -1 (the value used for a in test case B) will correct the
output. Here, we get IVMPs at lines 2 and 4.

We now consider the statements with IVMPs in both fail-
ing runs C and D. Line 2 is associated with IVMPs in both
failing runs, whereas lines 4 and 6 are associated with IVMPs
in only one failing run each. Therefore, line 2 is more likely
to be faulty than either lines 4 or 6.

The example described above shows the benefit of consid-
ering IVMPs from multiple failing runs when ranking pro-
gram statements using IVMPs. Formally, we rank the state-
ments exercised by failing runs in decreasing order of their
suspiciousness values (likelihood of being faulty). Let F be
the set of all failing runs in an available test suite, and let
STMTIVMP (f) refer to the set of all program statements

associated with at least one IVMP identified from failing
run f . Then we define the suspiciousness of a statement s,
suspiciousness(s), as the number of failing runs in which at
least one IVMP was identified for that statement.

suspiciousness(s) := |{f : f ∈ F ∧ s ∈ STMTIVMP (f)}|
Given the above definition of suspiciousness, there can be

many ties since suspiciousness values will always be whole
integers in the range [0...|F |], where |F | is the total num-
ber of failing runs. To break ties, we use the Tarantula
approach [9] that considers the number of failing versus suc-
cessful test cases in a test suite that exercise each state-
ment. We chose Tarantula as our method of breaking ties
for several reasons. First, it is very quick because it con-
siders only statement coverage information. Second, it has
been shown [9] to be more effective in fault localization on
the Siemens benchmarks [8] than either cause transitions [2]
or nearest neighbor [15]. Finally, the Tarantula approach is
complementary to our approach. Tarantula considers state-
ment coverage information from failing and successful tests,
whereas our IVMP approach looks for statements which can
be shown to correct the output of failing runs by using al-
ternate value mappings. In the Tarantula approach, a state-
ment is more suspicious if it is exercised more often by failing
runs than by successful runs. The suspiciousnesstarantula
of a statement s is defined [9] as follows.

suspiciousnesstarantula(s) =
failed(s)
totalFailed

passed(s)
totalPassed

+ failed(s)
totalFailed

In this equation, the variables failed(s) and passed(s)
respectively refer to the number of failing and successful
runs exercising statement s. The variables totalFailed and
totalPassed respectively refer to the total number of failing
and successful runs (test cases).

Our overall approach for ranking program statements us-
ing IVMPs is therefore composed of two main steps: (1)
compute IVMPs from multiple failing runs; (2) rank state-
ments in decreasing order of suspiciousness, breaking ties in
decreasing order of suspiciousnesstarantula. However, com-
puting IVMPs for multiple failing runs in the first step can
be very time-consuming: for each failing run, each executed
statement instance must be considered for an alternate value
mapping replacement using all alternate mappings for that
statement given in the value profile. To make our approach
more practical, we limit our search for IVMPs in the first
step so that we do not need to consider all statement in-
stances from all failing runs. At each statement instance we
do consider, we do not need to consider all alternate map-
pings in the value profile. As shown in our complete IVMP
based statement ranking approach in Fig. 6, we accomplish
this as follows.

Ordering failing runs. We first construct the value pro-
file from the provided test suite (line 1). Then, we sort all
failing runs in increasing order of trace size, where trace
size is the number of statement instances in the trace (line
2). We consider each failing run in sorted order (line 4),
while maintaining a working set of all statements that need
to be searched for IVMPs in the currently-considered fail-
ing run. The working set is initialized to all statements
exercised by the first failing run (line 3). After the search
for IVMPs in the current failing run completes, then if no
IVMPs are found, the working set remains unchanged. If at
least one IVMP is found, then any statements in the work-

input:
Faulty program P , and test suite T containing
a set F of failing runs.

output:
A ranked list of statements exercised by tests in F .

algorithm IVMPBasedStatementRank
begin
Step 1: [Compute IVMPs for each test in F]
1: valProf := construct value profile for P wrt. T ;
2: sort the tests in F in increasing order of trace size;
3: workingList := the set of stmts exercised by the

first failing test case in sorted F ;
4: for each test f in F taken in sorted order do
5: tracef := stmt instances executed by f ;
6: for each stmt instance i in tracef do
7: s := the stmt associated with instance i;
8: if s not in workingList then continue;
9: altMap := alt. mappings for s in valProf ;
10: altMapred := subset of altMap with min/max

values < and > the orig values used at i;
11: for each alt. mapping m in altMapred do
12: if s has an IVMP in f then break;
13: if applying m at i corrects f ’s output then
14: report a found IVMP at s in f ;

endfor (each alt mapping)
endfor (each stmt instance)

15: if f has at least one IVMP then
16: remove stmts from workingList that are not

associated with any IVMP in f ;
endfor (each failing run)

Step 2: [Use IVMPs to rank program statements]
17: stmts := set of stmts exercised by tests in F ;
18: for each stmt s in stmts do
19: compute suspiciousness(s);
20: compute suspiciousnesstarantula(s);

endfor
21: stmtsranked := sort stmts by suspiciousness,

break ties by suspiciousnesstarantula;
22: output stmtsranked;
end IVMPBasedStatementRank

Figure 6: Our IVMP based statement ranking ap-
proach using a reduced IVMP search.

ing set that are not associated with any IVMPs identified
from the current failing run are removed from the working
set (lines 15-16). This working set of statements represents
those statements for which all previously-considered failing
runs yielded IVMPs. These statements are the most likely
to be faulty. Although the first-considered failing run needs
to have all statements searched for IVMPs, the search of
the subsequent failing runs can be significantly reduced if
IVMPs are found at relatively few statements in the first
failing run. Moreover, by considering failing runs in increas-
ing order of trace size, this ensures that the first-considered
failing run is the smallest from among those available.

Limiting statement instances and alternate map-
pings. When searching for IVMPs in a particular failing
run, only the statement instances from those statements that
are in the working set are considered (line 8). At each con-
sidered statement instance, we apply only those alternate
mappings for which the original value of a used or defined
variable at that instance would be changed to be one of
the following four alternate values: (1) the minimum alter-

nate value less than the original value; (2) the maximum
alternate value less than the original value; (3) the mini-
mum alternate value greater than the original value; and
(4) the maximum alternate value greater than the original
value (line 10). These four particular alternate values span
the range of alternate values for each variable, and may be
far fewer than the total number of alternate values present
in the value profile. Our experience also suggests that these
four alternate values are highly likely to reveal an IVMP
if IVMPs can in fact be found at the particular statement.
This reduces the number of alternate mappings to apply at
each statement instance to be a small constant, while still
retaining a significant chance of finding IVMPs where they
exist. Additionally, whenever an IVMP is found in a fail-
ing run, then all subsequent instances of that statement in
the failing run need not be searched for further IVMPs (line
12). After identifying IVMPs, the statements exercised by
the failing runs can be ranked (lines 17–21).

The total number of required program re-executions when
applying alternate value mappings to compute IVMPs is
bounded by O(f × t × m), where f is the number of fail-
ing runs, t is the size of the shortest failing run execution
trace, and m is the maximum number of alternate mappings
to apply at any given statement. However, our approach re-
duces m to a small constant. Our experience also suggests
that relatively good fault localization results can occur with
a small f , such as a few failing runs. As a result, the runtime
of our approach is mostly influenced by t.

4. EXPERIMENTAL STUDY

4.1 Setup
Implementation details. Our implementation uses the

Valgrind infrastructure [6], which provides a synthetic CPU
in software and allows for dynamic binary instrumentation of
an executable program. Valgrind comes with a set of tools to
perform tasks such as debugging and profiling, but we have
added our own tools to record definition/use tracing infor-
mation and to apply alternate value mappings during pro-
gram re-execution when searching for IVMPs. Valgrind al-
lows for instrumentation at the granularity of machine code
instructions, so our implementation records traces in terms
of instruction instances, and applies alternate mappings at
the instruction level. Instructions are then mapped back to
their corresponding statements (source code line numbers)
when needed. Note that when an alternate value mapping
is applied in our implementation, we actually overwrite the
original values in their respective memory or register loca-
tions. As a result, any subsequent uses of those locations in
later instructions will involve the new, alternate values.

Our experiments were run on a Dell PowerEdge 1900 server
with two Intel Xeon quad-core processors at 3.00 GHz, and
16 GB of RAM. Although the task of searching for IVMPs
can be parallelized by performing multiple re-executions si-
multaneously, we did not parallelize the search when con-
ducting our experiments so that we could give conservative
timing results. A parallelized search can provide signifi-
cantly improved timing results.

Subject programs and test suites. The Siemens pro-
grams [8] listed in Table 1 are used for our experiments. The
programs, along with their corresponding faulty versions and
test case pools, were obtained from [7]. All Siemens faulty
versions contain seeded faults. These faults are computation-

related (as opposed to memory-related), involving fault types
such as operator and operand mutations, missing and extra-
neous code, and constant value mutations. Most faulty ver-
sions are seeded with a single fault in a single statement, but
some faulty versions involve modifying several statements.
We excluded a few faulty versions because they did not yield
any failing test cases from the provided test pools. We also
excluded one of the faulty versions from printtokens2 be-
cause the fault caused execution to loop indefinitely far past
the end of a string, causing traces to be very long and our
Valgrind tracing tool to run out of memory.

Prog. LOC # Avg. Suite Program
Name Ver. (Pool) Sizes Description
tcas 138 41 17 (1608) altitude separation
totinfo 346 23 15 (1052) statistic computation
sched 299 9 20 (2650) priority scheduler
sched2 297 9 17 (2710) priority scheduler
ptok 402 7 17 (4130) lexical analyzer
ptok2 483 9 23 (4115) lexical analyzer
replace 516 31 29 (5542) pattern substituter

Table 1: The Siemens benchmark programs. From
left to right: program name, # lines of code, #
faulty versions, average suite size (and test case pool
size), and description of program functionality.

The tcas program contains no loops and represents one
big conditional check spread across several functions; it takes
as input a set of integer parameters and reports one of three
output values (or an error message if too few input argu-
ments are specified). totinfo reads a collection of numeric
data tables as input and computes statistics for each table
as well as across all tables. Programs sched and sched2 are
priority schedulers for processes, taking as input a number
of processes of various priorities as well as a list of scheduling
commands, and outputting the processes as they complete in
priority order. Programs ptok and ptok2 are lexical analyz-
ers, parsing an inputted character stream into a list of cor-
responding tokens. replace performs pattern substitution,
taking as input a source pattern, destination pattern, and
character stream, and replacing all instances of the source
pattern in the character stream with the destination pattern.

For each faulty version of each program, we created a
branch coverage adequate test suite as follows. We randomly
selected a test case from the associated test case pool as long
as it increased the cumulative branch coverage of the tests in
the suite selected so far. We repeated this process until the
created suite achieved the same level of branch coverage as
the associated test case pool. We ensured that the created
test suites contained at least 5 test cases that resulted in
failing runs and at least 5 test cases that resulted in success-
ful runs (if available), to ensure a good mix of failing and
successful test cases in each suite.

Once a test suite was selected, we reduced the inputs of
failing test cases by removing portions of the failing inputs so
long as their actual (incorrect) outputs remained the same.
We did this to reduce trace sizes by removing portions of the
failing traces that were clearly not associated with the fault.
This allowed us to compute IVMPs more quickly. Although
this step may have changed the expected (correct) outputs
of the test cases, the Siemens programs come with “base
versions” that are assumed to be correct, which we used as
test oracles to determine the expected outputs of the test
cases.

Approaches and scoring. In our experiments we com-
pare the fault localization effectiveness of the following two
approaches that rank program statements.

1. IVMP approach. This is the technique from Fig. 6
where ranking is based upon the suspiciousness formula
using a reduced IVMP search, and ties are broken using
the suspiciousnesstarantula formula from the Tarantula ap-
proach [9]. Here we use all available failing runs in the test
suites to compute IVMPs (5 failing runs in most cases).

2. Tarantula approach. We also rank statements using
only the suspiciousnesstarantula formula, which has been
shown [9] to be quite effective and, to our knowledge, pro-
vides the best overall fault localization results previously
known using the Siemens benchmarks.

For comparison with the above two approaches, we also
rank statements according to the following variations.

1. Tarantula-Pool approach. This is the same as the
Tarantula approach, but here we considered each test suite
to be the entire test case pool (rather than the much smaller
branch-adequate suites used in the Tarantula approach).
This is to study whether Tarantula is more effective when
larger test suites are used.

2. IVMP-1 approach. This is the same as the IVMP
approach, but here we rank statements by considering only
one failing run when searching for IVMPs in each test suite
(rather than by considering all failing runs in the suite as
is done by the regular IVMP approach). This is to study
the effectiveness of the approach when we do not consider
multiple failing runs.

3. IVMP-2 approach. This is the same as the IVMP
approach, but here we rank statements by considering just
two failing runs when searching for IVMPs in each test suite.

In our experiments, we rank only those program state-
ments that are executed by failing runs according to each of
the above approaches, using the test suite associated with
each faulty version of each subject program. In the event
that multiple statements are tied for a particular rank, all
tied statements are given a rank value equal to the maximum
rank value from among the tied statements. For example,
if there are 5 statements tied for highest rank, then all 5 of
them are given rank 5. This allows us to conservatively as-
sume that we would have to examine all tied statements be-
fore any faulty statement within that tied set can be found.

To evaluate each approach we assign a score to each ranked
set of statements that is the percentage of program state-
ments executed by failing runs in the test suite that need not
be examined if statements are examined in rank order. Sup-
pose that for a ranked list of statements S, the faulty state-
ment occurs at rank r and there are a total of totalStmtsEx
total statements exercised by failing runs in the test suite.
A rank value of 1 means that the faulty statement is the
first statement in the ranked list and there are no ties (the
ideal situation). Then the score of ranked statement list S
can be defined as follows.

score(S) =
totalStmtsEx− r
totalStmtsEx

× 100%

A higher score is preferable because it means that more of
the statements executed by failing runs are ignored before
the faulty statement is found.

Finally, there are a few special considerations that we

make in our experiments for certain faults. First, faults
in constant assignment statements (15 out of a total of 129
faulty versions) will not result in any IVMPs at precisely
those constant assignments. However, we can find IVMPs
at the statements using those defined constants. We consider
a constant assignment fault to be examined if we examine
either the statement where it is defined, or else a statement
where that constant value is used. Second, faults that in-
volve omitted statements (16 out of 129 faulty versions) will
mean that we cannot actually examine the statements that
are missing. However, we can examine statements that are
adjacent to the location where the code is missing, such that
those statements would have influenced or would have been
influenced by the missing code.

4.2 Results and Discussion
Effectiveness. Our experimental results are shown for

each of the statement ranking approaches in Table 2 and
Fig. 7. In Table 2, we show the number (and percentage) of
faulty versions in which each approach computes a ranked
list of statements in the specified score range. Fig. 7 shows
a graphical view of this data. In the graph, the x-axis rep-
resents the lower bound of each score range, and the y-axis
represents the percentage of faulty versions achieving a score
greater than or equal to that lower bound. Percentages are
computed with respect to 129 faulty versions from among
the Siemens programs. This presentation of data follows
the convention of Jones et al. [9]. However, whereas [9]
computes scores with respect to the total number of pro-
gram statements, we compute scores with respect to the
total number of statements exercised by failing test cases
in the suite. This is because faulty statements can only be
from among these exercised statements.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

%
 o

f F
au

lty
 V

er
si

on
s

Score

Comparison of Statement Ranking Approaches

IVMP
IVMP-2
IVMP-1

Tarantula-Pool
Tarantula

Figure 7: Comparison of statement ranking ap-
proaches

IVMP approach versus Tarantula approach. The data
shows that the IVMP approach overall performs much bet-
ter than the Tarantula approach. Almost 18% of the faulty
versions analyzed had a score of 99% or higher with the
IVMP approach, whereas the same was true for only about
4% of the faulty versions using Tarantula. Similarly, almost
70% of faulty versions had a score of 90% or higher using
the IVMP approach, while the same was true for about 28%
of the faulty versions using Tarantula. Among all 129 faulty
versions, the IVMP approach was able to uniquely identify
the faulty statement (assign it rank 1) in 39 cases. Tarantula
was able to do so in only 5 cases. Note that even though

Score Tarantula approach IVMP approach Tarantula-Pool approach IVMP-1 approach IVMP-2 approach
99-100% 5 (3.88%) 23 (17.83%) 7 (5.43%) 18 (13.95%) 21 (16.28%)
90-99% 31 (24.03%) 66 (51.16%) 41 (31.78%) 57 (44.19%) 63 (48.84%)
80-90% 24 (18.60%) 13 (10.08%) 22 (17.05%) 21 (16.28%) 15 (11.63%)
70-80% 11 (8.53%) 9 (6.98%) 7 (5.43%) 6 (4.65%) 9 (6.98%)
60-70% 14 (10.85%) 2 (1.55%) 16 (12.40%) 10 (7.75%) 4 (3.10%)
50-60% 13 (10.08%) 2 (1.55%) 11 (8.53%) 2 (1.55%) 2 (1.55%)
40-50% 3 (2.33%) 4 (3.10%) 3 (2.33%) 4 (3.10%) 4 (3.10%)
30-40% 5 (3.88%) 4 (3.10%) 5 (3.88%) 4 (3.10%) 4 (3.10%)
20-30% 5 (3.88%) 2 (1.55%) 3 (2.33%) 2 (1.55%) 2 (1.55%)
10-20% 4 (3.10%) 1 (0.78%) 6 (4.65%) 2 (1.55%) 2 (1.55%)
0-10% 14 (10.85%) 3 (2.33%) 8 (6.20%) 3 (2.33%) 3 (2.33%)

Table 2: Number (percentage) of faulty version ranked statement lists in each score range for all approaches.

the IVMP approach was able to uniquely identify the faulty
statement in 39 cases, only 23 cases yielded scores of 99%
or more. This is because in the tcas program, the number
of statements exercised by failing test cases was few enough
that even a rank of 1 would lead to a score less than 99%.

Out of 129 faulty versions in our experiments, there were
only 16 cases where the IVMP approach assigned a lower
rank to a faulty statement than Tarantula. These cases oc-
curred where IVMPs happened to be found at non-faulty
statements in more failing runs than at faulty statements,
giving the non-faulty statements higher rank. However, in
many of these cases, the non-faulty statements with higher
rank were still near to the faulty statements via dependence
edges (recall the dependence cause for IVMPs at multiple
statements described earlier). In 18 other faulty versions,
the IVMP approach and Tarantula gave the faulty statement
identical ranks. In some of these cases, this was due to find-
ing no IVMPs in any failing runs, causing suspiciousness
values to be identical and ranking to be done solely by break-
ing ties using suspiciousnesstarantula. In the remainder of
the cases (95 of them), the IVMP approach gave the faulty
statement higher rank than Tarantula due to IVMPs being
found at the faulty statement.

Comparison with other approaches. The results for the
Tarantula-Pool approach indicate that fault localization is
indeed more effective for Tarantula when larger test suites
are used. However, Tarantula-Pool is still considerably less
effective overall on the Siemens programs than the IVMP
approach. In fact, Tarantula-Pool is also considerably less
effective than either the IVMP-1 or the IVMP-2 approaches,
which both consider fewer failing test cases when searching
for IVMPs than the regular IVMP approach. However, as
might be expected, IVMP-2 is slightly less effective overall
than the IVMP approach, while the IVMP-1 approach is also
slightly less effective than the IVMP-2 approach. Thus, the
IVMP approach is generally more effective as more failing
runs are considered, but even when considering just a sin-
gle failing run, the IVMP-1 approach is still more effective
than the Tarantula-Pool approach that considers statistical
information taken from very large test suites.

Efficiency and Timing. Recall from Fig. 6 that when
we search for IVMPs for fault localization purposes, we use
a reduced search that considers only a subset of instruc-
tion instances from among the failing runs, and a subset
of alternate value mappings to apply at each considered in-
stance. To study how effective we are in reducing the IVMP
search according to our algorithm, for each faulty version
we compute the total number of program re-executions that
would be required if we fully search every instruction in-
stance of every failing run and apply every associated alter-

20

15

10

5

 0 20 40 60 80 100 120

of

 R
e-

ex
ec

ut
io

ns
 (i

n
m

ill
io

ns
)

Faulty Version

of Re-executions to Search for IVMPs

Full Search
Reduced Search

Figure 8: For each faulty version, the number of
re-executions (in millions) required for the full and
reduced IVMP searches in the IVMP approach.

nate value mapping from the value profile at each instance.
We then compare these values to the number of program
re-executions actually performed when searching for IVMPs
using our reduced search in the IVMP approach. We sort
the faulty versions in decreasing order of these number of
re-executions, and present the data shown in Fig. 8.

As shown in this figure, the total number of re-executions
actually performed using our reduced IVMP search was sig-
nificantly lower than what would have been required if we
had fully searched for all possible IVMPs. For the full search,
four faulty versions would have required over 10 million pro-
gram re-executions each to fully search for IVMPs (one of
these faulty versions would have required over 20 million
program re-executions). On the other hand, the maximum
number of re-executions required for any faulty version using
our reduced search was only about 412,000. A large majority
of the cases (84 of them) required fewer than 10,000 program
re-executions to search for IVMPs using our reduced search.
The same was true for only a minority of cases (44 of them)
using the full search. On average across all faulty versions,
the full search requires over 2 million program re-executions
per faulty version, while the reduced search requires just
under 30,000 program re-executions. However, note that
these average values are made large due to a few faulty ver-
sions that require unusually many program re-executions.
In general, the few cases where our reduced search required
relatively more program re-executions than other reduced-
search cases, was due to faulty versions where our approach
was not able to find any IVMPs. In these cases, we fully
searched all instruction instances of all failing runs since no
prior IVMPs were found in earlier-considered failing runs.

We have shown a drastic reduction in the number of pro-
gram re-executions required to search for IVMPs using our

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600 700 800%
 F

au
lty

 V
er

. C
om

pl
et

ed
 in

 th
e

S
pe

ci
fie

d
Ti

m
e

Time (minutes)

Time to Search for IVMPs Using the Reduced Search

Figure 9: The percentage of faulty versions in which
our reduced search for IVMPs is able to complete in
the specified amount of time in the IVMP approach.

reduced search as compared to a full search. In Fig. 9, we
show the actual time required to search for IVMPs using
the reduced search in the IVMP approach. The x-axis rep-
resents the time in minutes to search for IVMPs from all
failing runs using our reduced search. The y-axis shows the
percentage of faulty versions that were fully searched in less
than the specified amount of time. Note that the actual time
to rank statements with the computed IVMP information
(and breaking ties with the Tarantula formula) is negligible
compared to the IVMP search time. Computation of the
value profiles for each faulty version was very small as com-
pared to the IVMP search time, never taking more than a
few dozen seconds per faulty version.

From this figure, it can be seen that most faulty versions
required relatively little time to search for IVMPs using our
reduced search. 50 faulty versions (many from the tcas pro-
gram) require less than 1 minute to search all failing runs
for IVMPs. A large majority of cases (77 of them) require
less than 10 minutes of search time. Almost 90% of cases
(112 of them) require less than 100 minutes. Only 17 out
of the 129 faulty versions actually require more than 100
minutes of search time. The maximum required time to
search was just over 14 hours (840 minutes) for one particu-
lar faulty version, but this was an unusual case where failing
runs were relatively long and no IVMPs could be found to
limit the IVMP search. Searching for IVMPs requires more
computation time than just applying Tarantula’s formula
using the statement coverage information of tests. However,
the time required by our approach is reasonable since it is
fully automated and is meant for a debugging context where
a developer may be stuck for quite awhile looking for the lo-
cation and cause of a fault without any guidance.

Other Observations. Program totinfo is an unusual
case among the Siemens programs. For this particular sub-
ject program, only 8 faulty versions resulted in the IVMP
approach performing better than the Tarantula approach.
5 cases had the IVMP approach performing worse, and 10
cases had both approaches performing equally well. These
results were generally not as good as the results from the
other Siemens programs, in which the IVMP approach usu-
ally performed much better as compared to Tarantula. We
found out that for totinfo, relatively few IVMPs were found
as compared to the other Siemens programs. This is due to
the fact that totinfo performs floating-point computations.
Thus, it is very difficult to cause output to change to become
precisely correct when alternate value mappings are applied.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 1000 2000 3000 4000 5000 6000

V
al

ue
 P

ro
fil

e
S

iz
e

(#
 v

al
ue

 m
ap

pi
ng

s)

Suite Size (# tests)

Increase in Value Profile Size as Suite Size Increases

tcas
totinfo
sched

sched2
ptok

ptok2
replace

Figure 10: Increase in value profile size as suite sizes
increase, for each subject program.

We mentioned earlier in Section 2 that the sizes of the
value profiles for each faulty version seem to increase log-
arithmically as the number of test cases in the suites in-
crease. To analyze this, we constructed value profiles for
five arbitrarily-chosen faulty versions from each Siemens pro-
gram using tests from the available test case pools. The re-
sults for each faulty version in a subject program were then
averaged and plotted as shown in Fig. 10.

As can be seen in the figure, the curves for most subject
programs become nearly horizontal over time as more test
cases are considered in the value profile. One notable excep-
tion is for program totinfo, which has a curve that increases
much higher than that of all the other programs. This is be-
cause totinfo uses many floating-point values, which are
highly likely to be different from test case to test case.

4.3 Larger Subject Programs
We conducted some additional experiments to see whether

IVMPs can still be computed in reasonable time for larger
subject programs. These programs are shown in Table 3. We
selected one fault from each program to study. We selected
these particular faults because we were able to find test cases
to expose them using execution traces that were not too
long. Program space (obtained from [7]) contains a known
bug in which a condition (error ! = 0) should instead be
(error == 17). The grep program contains a known bug in
which using parameters −i and −o simultaneously may lead
to incorrect output. Programs sed, flex, and gzip contain
seeded faults [7] of the following respective types: a“-1”term
is missing from an expression; command-line parameters are
incorrectly processed; input files with improper file names
are incorrectly processed.

Prog. Name LOC Fault Program
Type Description

space 6199 real ADL interpreter
grep-2.5 5812 real pattern matcher
sed-4.1.5 12972 seeded stream editor
flex-2.5.1 10013 seeded lexical analyzer generator
gzip-1.3 5166 seeded file compressor

Table 3: Larger subject programs.

For these experiments, we followed a similar setup as for
the Siemens benchmark programs, except here we did not
create branch-coverage adequate test suites since the pro-
grams are much larger. Instead, each suite consists of a few
failing runs and several (5 – 6) successful runs. Our experi-
mental results using the larger programs are given in Table 4.

Program Faulty Stmt IVMP # Re-executions
Name Rank Search Done/Possible

Time for IVMPs

space Tarantula: 106 35841/1061154
IVMP: 5 79.5 min (3.4%)

grep-2.5 Tarantula: 213 241/588
IVMP: 3 0.8 min (41.0%)

sed-4.1.5 Tarantula: 35 881/5816
IVMP: 3 1.8 min (15.1%)

flex-2.5.1 Tarantula: 45 87/228
IVMP: 1 0.5 min (38.2%)

gzip-1.3 Tarantula: 96 126845/6918816
IVMP: 1 215.6 min (1.8%)

Table 4: Experimental results using the larger pro-
grams (one fault and test suite per program).

For each program, the rank of the faulty statement is shown
for each of the Tarantula and IVMP approaches (recall: the
rank of a statement is its position – worst-case position if
there are ties – in the ordered list of executed statements).
The timing and required re-execution counts for computing
IVMPs in the IVMP approach is also provided in the table.

From these results, it can be seen that the IVMP ap-
proach was able to take advantage of IVMPs to demonstrate
significant improvements in fault localization effectiveness
over Tarantula. Moreover, for the grep, sed, and flex sub-
jects, IVMP search times were quite low due to the fact
that we were able to find failing runs with very short ex-
ecution traces. For the space and gzip programs, IVMP
search times were comparatively longer due to longer failing
traces. However, these timing results still seem reasonable
in an automated debugging context especially considering
the significant improvement in rank of the faulty statements
using the IVMP approach.

We observe that even though the above programs them-
selves are significantly larger than the Siemens programs,
the IVMP search times are still very similar for both sets
of programs (from a few minutes to several hours). This il-
lustrates that it is not the program size that determines the
runtime of our approach, but rather, it is the length of the
shortest failing trace. If failing traces can be reduced to be
very small, then IVMP search times will be relatively low
regardless of the original program size.

4.4 Other Points of Discussion
Scalability. One of the major questions about the IVMP

approach is whether it can scale to large programs. We
have begun addressing this issue by reducing the search for
IVMPs, which is the step of our approach that requires the
most computation time. We have also argued that it is the
execution trace sizes that determine the runtime of our ap-
proach, not the program sizes. Thus, our approach can be
useful on large programs in certain cases. However, there is
clearly more work to do to improve the scalability of our ap-
proach. One path we are pursuing is to combine the IVMP
approach with other techniques that can further limit the
IVMP search. For example, we can use program slicing to
find the statements that can influence the incorrect output of
a failing run, and only search for IVMPs in those statements.
Another option is to find ways to improve the efficiency of
program re-executions when searching for IVMPs. For in-
stance, rather than completely executing a program from
scratch every time an alternate value mapping is applied,
we may be able to use a checkpointing and logging scheme
to effectively “skip” the initial parts of certain executions.

Multiple Simultaneous Faults. Some of the Siemens faulty
versions contain multiple faults. In these cases, we were still
able to find IVMPs for at least one of the faults and achieve
statement ranking results that localize the fault. However,
in general it may be difficult to find IVMPs in programs with
multiple faults that influence each other or that have differ-
ent effects on program output. Thus, the presence of multi-
ple faults can diminish the effectiveness of our approach.

Address Values. Address values are currently ignored in
our approach. This is because address values from differ-
ent test case executions cannot simply be blindly substi-
tuted into a particular failing run, since address values are
execution-specific and have no meaning outside of a given
execution. As a result, our current approach may have lim-
ited effectiveness for memory-related faults.

5. RELATED WORK
Delta debugging [2, 19, 20] is a debugging framework that

focuses on studying the differences between successful and
failing runs to aid in debugging. The approach identifies
failure-inducing input and isolates the differences between a
successful and failing test case [20]. Cause-effect chains of
failures in a program run can then be computed by identi-
fying the chain of variables and values that caused the fail-
ure [19]. Cause transitions in these chains, which are points
in time in which a variable ceases to be a cause for a fail-
ure and another such variable begins, can then be identified
to provide potential links to the defects in the code that
caused the failure [2]. This work is similar to ours because
it involves altering program state (the values of variables)
to try to isolate the variables that cause a failure. Our ap-
proach also alters program state, but at a finer granularity:
only the values used in a particular statement instance in
a failing execution are altered at any given time in our ap-
proach.

The work of Alex Groce [3], partly inspired by delta debug-
ging, describes an approach for helping to automate the pro-
cess of locating and explaining faults using distance metrics.
This approach is similar to the nearest neighbor approach
described by Renieris and Reiss [15] that searches for a cor-
rect execution that is most similar to an incorrect execution,
compares the spectra for these two executions, and identifies
the most suspicious parts of the program. Nearest neighbor
was previously shown [2] to perform more poorly than cause
transitions at fault localization.

Program slicing [16, 18] was proposed to identify a subset
of program statements that can influence the value of a vari-
able at some program location. While early work proposed
construction of static slices, later work developed dynamic
slices [1, 10] that are constructed with respect to a partic-
ular program run. To take potential influence into account,
relevant slicing was proposed [11]. Construction of smaller
dynamic slices by intersecting multiple slices was studied [4,
21]. To further order the statements in a dynamic slice ac-
cording to their likelihood of being faulty, confidence analy-
sis was proposed [22]. Our approach does not just consider
which statements can affect incorrect program output, but
it actually searches for ways to show how the values used at
these statements can be altered so that the incorrect output
becomes correct. Our work therefore goes beyond slicing as
IVMPs may better pinpoint faulty statements and have po-
tential to be more helpful to the user in understanding the
cause of a bug and how to fix it.

A statistical approach to isolating bugs in programs has
been described [12, 13] that uses sampling during program
execution to collect data and identify bug-predicting pred-
icates that are associated with individual bugs. Another
statistical approach [14] incorporates the use of models to
analyze the evaluation patterns of predicates in successful
and failing runs; a predicate is deemed to be relevant to a
bug if its evaluation pattern in failing runs is significantly
different from that in successful runs. An invariant-based
approach was developed [5] that formulates program invari-
ants while a program is running and dynamically monitors
for violations of these invariants that can isolate the root
cause of a fault. Unlike statistical approaches that may take
limited information into account when narrowing the search
for faulty code, our approach considers much more informa-
tion in the form of alternate value mappings that can be
applied at multiple statement instances in a failing run.

Work on predicate switching [21] suggests that analyzing
“critical predicates” in software, which when forced to take
an alternate outcome will cause a failing run to produce
correct output, can help in locating faulty code. A similar
work [17] automates the construction of a successful run us-
ing a failing run by trying to alter the outcomes of some
conditional branches in the failing run. While the above
techniques merely alter branch outcomes, the approach we
have proposed in this paper alters values of a subset of pro-
gram variables. Switching the outcome of a predicate may
not be able to produce the correct output while a change
in the values of a subset of variables may be able to do so.
In this sense, predicate switching is subsumed by our IVMP
detection approach. Also, since faults may be present in
statements that do not involve predicates, then predicate
switching requires some way to link “critical predicates” to
the faulty code. The IVMP approach makes no distinction
between predicate and non-predicate statements, so IVMPs
can be directly found at faulty statements that may not
involve predicates. Moreover, our approach can present a
developer with a set of identified IVMPs which can make
it easier to understand a bug – a simple predicate switch
provides a limited amount of information.

6. CONCLUSIONS
In this paper, we presented a value profile based approach

for fault localization to assist developers in the task of soft-
ware debugging. The approach involves computing IVMPs
that show how values used at particular program statements
can be altered so that failing runs instead produce correct
output. Using these IVMPs, executed statements can then
be ranked according to their likelihood of being faulty. Our
experimental results have shown that for the benchmark pro-
grams we studied, our IVMP approach can produce ranked
lists of statements that are generally very effective at quickly
pointing to a faulty statement. Moreover, our approach
was seen to be more effective than a prior fault localiza-
tion approach that, to our knowledge, had yielded the best
results known up until now for the benchmark programs in
our study. We have also shown that the time required to
perform our approach is reasonable in a debugging context.

Acknowledgements. We would like to thank the anony-
mous reviewers for their valuable feedback. This research
is supported by NSF grants CNS-0751961, CNS-0751949,
CNS-0810906, and CCF-0753470, to UC Riverside.

7. REFERENCES
[1] H. Agrawal and J. R. Horgan. Dynamic program slicing.

ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 246–256, 1990.

[2] H. Cleve and A. Zeller. Locating causes of program
failures. 27th International Conference on Software
Engineering, pages 342–351, May 2005.

[3] A. Groce. Error explanation and fault localization with
distance metrics. Ph.D. Thesis, CMU, 2005.

[4] N. Gupta, H. He, X. Zhang, and R. Gupta. Locating faulty
code using failure-inducing chops. IEEE/ACM
International Conference on Automated Software
Engineering, pages 263–272, November 2005.

[5] S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. International
Conference on Software Engineering, pages 291–301, May
2002.

[6] http://valgrind.org.
[7] http://www.cse.unl.edu/∼galileo/sir.
[8] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.

Experiments on the effectiveness of dataflow and
controlflow-based test adequacy criteria. International
Conference on Software Engineering, pages 191–200, May
1994.

[9] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. 20th
IEEE/ACM International Conference on Automated
Software Engineering, pages 273–282, November 2005.

[10] B. Korel and J. Laski. Dynamic program slicing.
Information Processing Letters, 29(3):155–163, Oct. 1988.

[11] B. Korel and J. Laski. Algorithmic software fault
localization. Annual Hawaii International Conference on
System Sciences, pages 246–252, January 1991.

[12] B. Liblit, A. Aiken, A. Zheng, and M. Jordan. Bug
isolation via remote program sampling. Conference on
Programming Language Design and Implementation, pages
141–154, June 2003.

[13] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. Jordan.
Scalable statistical bug isolation. Conference on
Programming Language Design and Implementation, pages
15–26, June 2005.

[14] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. Sober:
Statistical model-based bug localization. European
Software Engineering Conference held jointly with the
International Symposium on Foundations of Software
Engineering, pages 286–295, Sept. 2005.

[15] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries. 18th IEEE International Conference on
Automated Software Engineering, pages 30–39, Oct. 2003.

[16] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 3(3):121–189, September 1995.

[17] T. Wang and A. Roychoudhury. Automated path
generation for software fault localization. International
Conference on Automated Software Engineering, pages
347–351, Nov. 2005.

[18] M. Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352–357, July 1984.

[19] A. Zeller. Isolating cause-effect chains from computer
programs. International Symposium on the Foundations of
Software Engineering, pages 1–10, Nov. 2002.

[20] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software
Engineering, 28(2):183–200, February 2002.

[21] X. Zhang, N. Gupta, and R. Gupta. Locating faults
through automated predicate switching. 28th International
Conference on Software Engineering, pages 272–281, May
2006.

[22] X. Zhang, N. Gupta, and R. Gupta. Pruning dynamic
slices with confidence. ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages
169–180, June 2006.

