
A Secure Routing Scheme for Mobile Ad Hoc Networks

ILKER BASARAN
DEPARTMENT OF COMPUTER SCIENCE, UC RIVERSIDE

1. Introduction

An ad hoc network is a group of wireless mobile computers, in which nodes
cooperate by forwarding packets for each other to allow them to communicate beyond
direct wireless transmission range. Ad hoc networks require no centralized administration
or fixed network infrastructure such as base stations or access points, and can be quickly
and inexpensively set up as needed.

Nodes in an ad hoc network can communicate with each other at any time, subject to
connectivity limitations. The communication in mobile ad hoc networks consists two
parts, route discovery and data transmission. Both parts are subject to various numbers of
attacks. I must note that secure routing protocols, which ensure the correctness of the
discovered topology information, cannot by themselves ensure the secure and
undisrupted delivery of transmitted data. This is because malicious nodes may behave
accordingly with the route discovery and place on utilized routes, then in an unexpected
time they do their harm.

So securing route discovery or data transmission alone will not help. While handling
those issues, one also should be aware of DoS, replay, man-in-the-middle, resource
consumption, and wormhole attacks. I think assuming centralized key distribution or a
certification authority is contrary to wireless ad hoc network spirit and understanding.
Because, in ad hoc wireless networks, no base stations exist and each mobile node acts as
both a router and a host. But an adaptive solution to security issues in mobile ad hoc
networks should consider with and without a central authority. In the case of having a
central authority, distribution of keys (shared, public, private) is easier and convenient. In
these cases, the broadcast authentication scheme, TESLA, will be used in detecting
authenticity of route messages in an efficient way. On the other hand, if we do not have a
central authority, establishing the trust between pairs is harder. The neat idea of SUCV
(Statistically Unique and Cryptographically Verifiable) identifiers and addresses may be
used in that situation.

Due to infrastructurless design of wireless ad hoc networks, traditional security and
cryptographic mechanisms are not suitable to use. Especially when we consider
computing power and battery life of these mobile devices, one should be careful about
these issues while designing security schemes.

My approach here will basically be on discovering secure routes throughout the
network and try to maintain this property as time progresses. There are several possible
types of attack to mobile ad hoc networks, and I will try to provide scalable solutions to
them.

2. Background

2.1. DSR
The design of this secure routing scheme is based on the basic operation of Dynamic

Source Routing protocol. DSR is an on-demand routing protocol that is able to react
quickly many changes that may occur in node connectivity. It performs better with
significant lower overheads than periodic routing protocols in many situations.

In DSR, when a node has a packet to send to some destination and does not currently
have a route to that destination in its Route Cache, the node initiates Route Discovery to
find a route. The initiator transmits a ROUTE REQUEST packet as a local broadcast,
specifying the target. Each node receiving the ROUTE REQUEST, if it has recently seen
this request from that particular initiator, discards the REQUEST. Otherwise, it appends
its own node address to a list in the REQUEST and rebroadcasts the REQUEST. When
the ROUTE REQUEST reaches its target node, the target sends a ROUTE REPLY back
to the initiator of the REQUEST, including a copy of the accumulated list of addresses
from the REQUEST. When the REPLY reaches the initiator of the REQUEST, it caches
the new route in its Route Cache.

Route Maintenance is the mechanism by which a node sending a packet along a
specified route to some destination detects if that route has broken, for example because
node movement. DSR is based on source routing: when sending a packet, the initiator
lists in the header of the packet the complete sequence of nodes through which the packet
is to be forwarded. Each node along the route forwards the packet to the next hop
indicated in the packet’s header, and attempts to confirm that the packet was received by
that next node. If, after a number of local retransmissions of the packet, a node in the
route is unable to make this confirmation, it returns a ROUTE ERROR to the original
source of the packet, identifying the link from itself to the next node as broken. The
sender then removes this broken link from its Route Cache. For subsequent packets to
this destination, the sender may use any other route to that destination in its Cache, or it
may attempt a new Route Discovery for that target if necessary.

There are a number of improvements to this basic definition of DSR, but in this
project I will try to authenticate nodes and secure the route discovery and maintenance
phases.

2.2. SUCV (Statistically Unique Cryptographically Verifiable)
There is a fundamental problem in handling source routing that allows hosts to

modify hoe other hosts route packets to a certain destination. The problem is that these
operations can be misused by rogue nodes to redirect traffic away from its intended
destination. Authentication alone does not solve this problem. Even if a node identifies
itself, this has no bearing on its rights to modify how packets to any given address are
routed. This is true even if its packets currently seem to originate from the address in
question.

Hence protection against hijacking of valid addresses requires cryptographic
authorization for operations that modify routing. One way of doing this is by showing
that the requesting node owns the address for which routing information is being
modified.

In an environment in which the nodes inherently distrust each other, and in which a
global or centralized public key infrastructure or key distribution center is not available
establishing trust is not an easy task.

In the absence of a third party, proving ownership of identity to another peer is
nontrivial. We must note that usual owner verification relies on a third party to provide
this function. In SUCV, the principal self-generates private/public key pair. However, it
is much more practical for protocols to use fixed length identifiers. Because of this, we
do not use the public key itself as the identifier. Instead, the principal uses material
obtained via a pseudo random function of the public key as its identity (or as part of its
address), and proves its ownership by signing it with its private key. The recipient
verifies the signature, and, consequently, the ownership of the identity. Hence, redirect
operations are only allowed to affect routing for entities which have the SUCV property.

2.3. One-Way Hash Chains
One-way hash chains, or simply one-way chains, are a frequently used cryptographic

primitive in the design of secure protocols. We create a one-way chain by selecting the
final value at random, and repeatedly apply a one-way hash function H. In my scheme,
from the viewpoint of usage, the first value of the chain is the last value generated, and
the initially randomly chosen value is the last value of the chain used. One-way chains
have two main properties (assuming H is a cryptographically secure one-way hash
function):

- Anybody can authenticate that a value vj really belongs to the one-way chain, by using
an earlier value vi of the chain and checking that H j-i(vj) equals vi.
- Given the latest released value vi of a one-way chain, an adversary cannot find a later
value vj such that H j-i(vj) equals vi.

These two properties result in authentication of one-way chain values: if the current
value vi belongs to the one-way chain, and we see another value vj with the property that
H j-i(vj) equals vi, then vj also originates from the same chain and was released by the
creator of the chain.

2.4. Diffie-Hellman Key Agreement
The Diffie-Hellman key agreement protocol (also called exponential key agreement)

was developed in 1976. The protocol allows two users to exchange a secret key over an
insecure medium without any prior secrets.

The protocol has two system parameters p and g. They are both public and may be
used by all the users in a system. Parameter p is a prime number and parameter g (usually
called a generator) is an integer less than p, which is capable of generating every element
from 1 to p-1 when multiplied by itself a certain number of times, modulo the prime p.

Suppose that Alice and Bob want to agree on a shared secret key using the Diffie-
Hellman key agreement protocol. They proceed as follows: First, Alice generates a
random private value ‘a’ and Bob generates a random private value b. Then they derive
their public values using parameters p and g and their private values. Alice’s public value
is ga (mod p) and Bob’s public value is gb (mod p). They then exchange their public

values. Finally, Alice computes kab=(gb)a (mod p), and Bob computes kba=(ga)b (mod p).
Since kab=kba=k, Alice and Bob now have a shared secret key k.

The protocol depends on the discrete logarithm problem for its security. It assumes
that it is computationally infeasible to calculate the shared secret key k=gab (mod p) given
the two public values ga (mod p) and gb (mod p) when the prime p is sufficiently large.

2.5. TESLA
TESLA is a broadcast authentication scheme proposed by Perrig et al. The main

technique used in TESLA is a one-way key chain along with delayed key disclosure.
After initiating an authentic key from a one-way key chain between the sender and its
receivers using a digital signature, TESLA uses MAC (Message Authentication Code) for
subsequent broadcast authentications but with delayed key disclosure. In the basic
scheme of TESLA, a sender uses a key K from its key chain as the MAC key to compute
a MAC over packet P(i), and then attaches the MAC to P(i). The disclosure of the key K
is in the next packet P(i + 1), which allows the receivers to verify the authenticity of K
and hence the MAC of P(i). If both K and the MAC are correct, and if the packet P(i) is
guaranteed to be received before P(i + 1) was sent, the receivers then believe P(i) is
authentic.

From this description, we can see clearly that the central security issue in TESLA is a
receiver’s ability to determine the sending time of each packet. This is called security
condition in TESLA. TESLA solves this issue through periodical key disclosure and
loose time synchronization. In TESLA, time is divided into many equal length intervals.
In each time interval the sender discloses one key from its key chain. For example, if the
start time is s, the time interval is T, the sender can publish K(i) at time s + i * T. The
receivers are required to be loosely synchronized with the sender. Here “loosely” means
they know the upper bound of the synchronization error between any two nodes. Given
this synchronization error and the sender’s MAC key disclosure interval, a receiver can
determine whether the sender has already published the MAC key for a packet it just
received. If its MAC key is (possibly) already disclosed, the receiver will drop the packet;
otherwise, it will use the MAC key in this packet to verify an earlier packet, and then
buffer this packet until a later packet containing its MAC key arrives.

The necessity for loose time synchronization may be avoided by using pair-wise
shared keys, but at the cost of higher key setup overhead.

One potential shortcoming of the original TESLA protocol is that the receivers cannot
authenticate a packet immediately on its arrival. This means that buffering may be a
problem especially for mobile equipments with limited resources.

3. Secure Routing in MANET

3.1. Assumptions
First, I assume the wireless network links are bidirectional, that is, if node A can hear

node B, node B can also hear node A. This is generally true when the nodes use omni-
directional antennas and have the similar power levels. We also know that this

assumption is also necessary for most of the current routing protocols and applications to
work in wireless networks. It is very reasonable to think that the network may drop,
corrupt, reorder, or duplicate packets in transmission.

Second, I assume that the following condition holds: a packet sent by a node is
received by a neighboring node before a third node can replay the packet to it, unless the
neighbor under consideration has dropped the packet. For example, if node A sends a
packet to its neighbor B, then it is assumed impossible that another node P hears the
packet, (potentially) modifies it, and re-sends it to node B such that the replayed packet
arrives at node B before the original packet does. We assume that if node B did not drop
the original packet, this condition would hold.

Third, if there is a trusted certification authority available in the environment, I
assume each node has a public key certificate signed by that trusted certificate authority
and also an authentic public key of the Certification Authority. These public keys will be
very useful to initiate trust in the ad hoc network. The distribution of certificates and keys
can be done in any reliable way. An advantage of using public key certificate is its
flexibility and scalability; a node can authenticate other nodes independently, and there is
no need for them to have pre-shared keys as in symmetric cryptography.

Fourth, I take into consideration that the mobile nodes are relatively underpowered.
Public-key operations such as digital signatures are relatively expensive to compute on
platforms such as handheld PDAs. The measures of the speed of RSA signing and
verifying on various platforms are noticeable. For example, a 512-bit RSA signature
generation takes 2 to 6 seconds, whereas a signature verification takes 100 to 200
milliseconds with the public exponent e = 3.

I also assume loose time synchronization in the ad hoc network when we use TESLA
as the broadband authentication scheme, so that we can utilize it. Nodes may compensate
the clock drift with periodic re-synchronization. Also each node in the network must be
able to estimate the end-to-end transmission time to any other node in the network. Note
that these are considered only TESLA is being used.

Now I will consider two situations which may be accepted as two most general cases.

The first will be the case that if we have no key distribution centers, no public key
infrastructure, namely no central authority. The second case, which is easy to follow from
the context, will be having a trusted central for key distribution.

3.2. No Central Authority
In this section, we have the situation that there exists no key distribution centers, no

public key infrastructure, namely no central authority. In order to initiate the trust
relationship among nodes, the idea of unique identifiers, which are influenced by SUCV
addresses, will be used. After the initiation of trust relationship, DSR’s regular Route
Discovery may be used. Since the nodes will be sure that its correspondent node claims
and proves it has the correspondent address, there’s no need to complicate route
discovery phase. One may think that malicious nodes may reside in the routes and behave
accordingly, and then after a certain amount of time, they can drop or mislead packets.
But this is the issue of Route Maintenance and it will be discussed in Section 4.

The only way for a node to prove ownership of the address it claims, in the absence of
any other centralized or global mechanism, is to prove that it created a sequence of
statistically unique series of bits. The resultant bit string will be an identifier that is also
routable. In order to generate such addresses, we can use the formula from [1]:

Address = hmac-sha-1-128(sha1 (random_number), sha1 (public_key))

Here is the description of information exchange in order to bootstrap trust between a

pair of nodes:
message1: The mobile node sends the message (just to initiate the exchange) to its

peer node. This message contains a Nonce, N1. The source address of the packet is the
mobile node’s current correspondent address. Additionally, there will be a very simple
negotiation mechanism that works as follows: Optionally, the mobile node will be able to
express which encryption technique to use, like Diffie-Hellman or ESP, etc.

message2: The peer node replies with a message that contains the following: nonce

that was sent by mobile node, a Diffie-Hellman value (gymodp), and Session Key lifetime
for negotiation. The peer node may respond to any optional parameter negotiation
included by the mobile node in message1, by choosing the algorithms it wishes to
support.

When the mobile node receives message2, it verifies that the nonce N1 is the same as
what was sent in message1. Then the mobile node generates a Diffie-Hellman value
(gxmodp) and together with the Diffie-Hellman received from peer node, it creates
session keys by using a pseudo random function. After that the mobile node sends
message3.

message3: The third message contains the following fields: Public key and random

number it (the mobile node) has used to generate its unique Address identifier, and a
Diffie-Hellman value. This message must be signed by the mobile node’s private key (we
remember that the public key is used to generate the unique Address identifier).

When the CN receives the sucvP3, it verifies the signature using the included Public
key, and then verifies that this Public key and random number produce the unique
Address used as part of the sender’s address. Then peer node can conclude that the
mobile node owns its address. At this point, the peer node makes a note of this Public key
and unique Address. The peer node then also computes the session keys.

Beginning from this point, the mobile node and its peer can use the keys that they

shared during the phase. If any of the ends of the connection suspects that their session is
compromised, then they have to start all over again. The route requests for discovery of
the route will then be protected by these keys, and this trust relationship will enable them
to route packets securely. As I mentioned before, route discovery of DSR will be used
from this point on.

3.3. With Central Authority
In this section we have the assumption of having central authorities for key

distribution among the nodes in the mobile ad hoc network. Here, suppose, the initiating
node S performs a Route Discovery for target D, and they share the secret keys KSD and
KDS obtained from central authority for message authentication in each direction.

Route Request Authentication: In order to convince the target of prudence of Route

Request, S (the initiator) includes a Message Authentication Code encrypted by KSD over
a random number or a timestamp. Usage of timestamp makes more sense, because by this
way, the target can verify the authenticity and freshness of Route Request easily.

Packet Authentication by Each Node: In order to prevent packet injection and packet
forging on each step, the packet should be verified as authenticate. Since all traffic
packets will be authenticated, we must use a computationally inexpensive technique that
can also provide immediate authentication. Like TESLA, this authentication technique is
based upon the use of one-way key chains. But, unlike TESLA, in order to reduce
overhead, I do not use periodic and delayed key disclosure. Also delayed authentication
as in TESLA is not appropriate since a packet would be delayed at each node in the path
from the source to the destination. Since each node has to buffer the traffic packets it has
received until they are authenticated, delayed authentication will lead to large storage
requirements at every node.

So, each node that is source of packets generates a one-way key chain that is used for
traffic authentication by its immediate neighbors. Every neighbor of a node will obtain an
authentic key in this chain when it first establishes a trust relationship with the node. A
node transmitting a packet will append a new key from the chain to the packet. All the
neighboring nodes receiving this packet can verify the authenticity of this packet by
checking the validity of the attached key.

Also one another important issue is, an attacker can remove a node from the node list
in a Request, so only authenticating the data may not be enough. What we can do is,
again using one way hash functions; we can verify that no node was omitted. In order to
achieve this, I assume that every node has a one way key chain and that all nodes know
an authentic key of the one way key chain of each other node.

Route Discovery: As in section 3.2, after establishing trust relationship, discovery of

routes will be very similar to that of DSR. The slight differences will occur for the
purpose of authentication. Here is a brief description how route discovery will work:

A Route Request packet will contain: Route Request, initiator, target, id, hash chain,
node list, and MAC list. The initiator and target are set to the address of the initiator and
target nodes, respectively. As in DSR, the initiator sets the id to an identifier that it has
not recently used in initiating a Route Discovery. The initiator of the Request then
initializes the hash chain to MACKSD (initiator, target, and id) and the node list and MAC
list to empty lists.

When any node A receives a Route Request for which it is not the target, it checks for
initiator and id for a recent occurrence. If so, it discards the packet. Otherwise, the node
modifies the Request by appending its own address, A, to the node list in the Request,
replacing the hash chain field with H [A, hash chain], and appending a MAC of the entire
Request to the MAC list. The node uses a key from one way key chain that is generated

for traffic authentication compute the MAC. Finally, the node rebroadcasts the modified
Request, as in DSR.

When the target node receives the Route Request, it checks the validity of the
Request by determining the traffic keys of immediate neighbors and hash chain filed
should be equal to

H [Noden, H [Noden-1, H [….., H [Node1, MACKSD(initiator, target, id)]….]]]

After determining that this Request is valid, it returns a Route Reply message

containing Route Reply, target, initiator, node list, MAC list, target MAC. The target
MAC set to a MAC computed with KDS.

This message is returned to initiator of the Request along the source route obtained by
reversing the sequence of hops in the node list of the Request. When the initiator receives
a Route Reply, it verifies that the target MAC is valid, and that each MAC in the MAC
list is valid. If these tests succeed, the node accepts the Route Reply; otherwise, it
discards it.

4. Route Maintenance

In the absence of a central authority, route maintenance will be achieved as it is done

in DSR. If a node detects that a route has broken, because of node movement or some
other reason, the sender removes the broken link from its Route Cache. The source lists
in the header of the packet the complete sequence of nodes through which the packet is to
be forwarded. Each node along the route forwards the packet to the next hop indicated in
the packet’s header, and attempts to confirm that the packet was received by that next
node. If, receipt of this confirmation fails, it returns a Route Error to the original source
of the packet, identifying the link from itself to the next node as broken. The sender then
removes this broken link from its Route Cache. For subsequent packets to this
destination, the sender may use any other route to that destination in its Cache, or it may
attempt a new Route Discovery for that target if necessary.

In the existence of a central authority, the route maintenance issue is easier to handle.

Again it will be based on DSR’s route maintenance. A node forwarding a packet will
return a Route Error to original sender after a certain number of attempts to transmit the
packet to the next hop along the route. In order to prevent unauthorized nodes from
sending Errors, the Error messages will be authenticated just like traffic packets. With
periodic messages, nodes can broadcast to their immediate neighbors their new key from
the one way key chain. By this way, two things will be achieved: first one is, nodes will
understand which of their neighbors are alive and the second is capturing and using a
traffic key from that key chain will become harder because of these updates.

Since we are using DSR, it is very likely to have multiple routes from a source node

to destination. In order to prevent some kind of attacks and increase the throughput, it
will be better to use more convenient routes. We may choose routes based on their
performance in packet delivery. Introducing mechanisms that penalize specific nodes for

routing misbehavior is subject to blackmail attack, where a sufficient number of attackers
maybe able to victimize a decent node.

In order to achieve this, a node with multiple routes to a single destination can assign

a fraction of packets that it originates to be sent along each route. When a smaller fraction
of packets sent along any particular node are successfully delivered, the node can begin
sending a bigger portion of split packets to that destination along that route. So, this may
be understood as ranking the routes, and among those routes, the most efficient or the one
with the highest throughput is selected. Hence, if a malicious node drops packets in order
to harm ongoing communication, the scheme will adept itself accordingly.

5. Dynamically Joining and Leaving Nodes

Again we will consider the situation of dynamically joining and leaving nodes from
two points of view. The first is the absence of a central authority. We must note that in
the absence of a central authority, all route discoveries and maintenance depends on
initial trust bootstrap. After this, the regular algorithms for DSR with slight modifications
are being used. These modifications are of course for the authenticity and confidentiality
of the communication.

So, if a node wants to join ongoing communication, the only issue it has to meet is

providing a valid and a unique identifier (address notion in 3.2). Then the trust
initialization with the immediate neighbors will take place. At the end of this stage, the
new node will lie on routes from various sources to destinations. When the node leaves a
neighborhood because of movement, low battery power or any other problem, the route
maintenance part will take care of it. After a certain amount of time, that node will be
removed from route caches.

The second situation is, when we have a central authority. In this case, the central

authority delivers keys to nodes that wish to communicate. And these keys are the only
source of trust initialization. So, if a node wants to join a network and communicate other
nodes, it should first acquire keys from system’s central authority. Of course this is only
possible if the new node is being recognized by central authority. After this step, since
the new node has keys, it can participate in route discovery and packet forwarding phases
of communication. As we remember, the nodes periodically release keys from their one
way key chain, in order to acknowledge their immediate neighbors that they are still there
and they are who they claim to be. Hence, if a node does not receive a valid key like this
from a neighbor within a certain amount of time, it will conclude that there is a problem
with that node (dead because of low battery or out of range because of movement). Then
it will terminate immediately its trust with this neighbor.

6. Attacks and Defenses

6.1. Forging / Dropping Packets
If a malicious node behaves decent in route discovery and in message transmission

phase starts dropping the packets, in both situations (absence and existence of central
authority) we will not be affected seriously. That is because of our route maintenance
scheme. Only a few packets may be dropped, but then we will detect that compromised
route and stop using it.

There is another problem such that a malicious node can drop the packets and then try
to acknowledge the source as if the message is received by the target. In the situation of
having a central authority, source will be able to detect the received packet’s origin. So it
will not be affected. But, in the other case, where we don’t have central authority, we can
only detect the authenticity of messages from immediate neighbors. The malicious node
can deceive one of its immediate neighbors, and the false acknowledgement will be
propagated up to us from one of our immediate neighbors. So this scheme is vulnerable if
a malicious node drops the packets and sends fake acknowledgements.

6.2. Man-in-the-middle
In the case of having no central authority, the nodes should establish a trust

relationship first. At the end of initialization of trust, each end will have the shared key,
and from then on they will use that key in between their message exchanges.

Hence this scheme is vulnerable to man-in-the-middle attacks during the bootstrap of
trust phase. If a malicious node can hear both mobile and its peer node, it can detect the
key they share to communicate and eavesdrop the subsequent messages.

But in the case of having a central authority, the nodes will have the keys in the
beginning of communication and all subsequent route and traffic packet will be
encrypted. Hence it will disallow the malicious nodes to eavesdrop the messages.

6.3. DoS
When we don’t have a central authority, malicious nodes can try to attack a host by

sending storm of message1, or message2 or message3. In the case of a storm of message1
the host does not change its state, and replies with a constant message containing a nonce.
The host only changes the state, if it receives a valid response to its challenge. In order to
prevent message2 storms, again nonce can be used. If the host receives a message2 with a
nonce that is not equal to the nonce it has sent, this message2 is rejected.

If have a central authority, the issue is different. Our network may be flooded with
many Route Requests. Since the source address of each Request is authenticated, and
since each new Route Discovery needs to carry a new one way Route Discovery chain
value, the malicious node can only produce Route Requests with its own source address.
An upper bound on the sending rate can be enforced by limiting of Requests at each
node.

6.4. Wormhole
A wormhole attack is launched by multiple colluding attackers. The attackers X and

Y have a private channel that allows them to communicate directly. X forwards every
message it eavesdropped from source node S, including one way key chain update
messages and traffic packets, to Y through the wormhole. X then rebroadcasts the update
messages of S’s new key and modify the traffic packets to deceive target node D.
Because D may receive the original key update from S later then this fake broadcast, it
may still accept the replayed key, and will forward the modified traffic packets for node
Y.

Packet leashes alone cannot prevent this attack, but there may be a possible solution
such that each node forwarding a Route Request includes its GPS coordinates in that
Request, then a node can detect if it should be reachable from the previous hop, and if the
hop before the previous hop should be able to reach the previous hop. If both of these
checks succeed, then the scheme is safe against such attacks. But, I must admit that
having GPS equipped by nodes is a strong assumption.

7. Conclusion

In this project I tried to provide a secure routing scheme for mobile ad hoc networks
by combining the situations for availability and absence of a central authority. The
assumptions that I made are reasonable for their cases. If somehow we can make these
two scenarios work together, then we will have an adaptive secure routing scheme. It will
work for both, existing and non-existing central authorities.

Basically, in the absence of a central authority, a node should prove who it claims to
be. In order to do this, it creates a sequence of statistically unique series of bits. The
resultant bit string is an identifier that is also routable. After that, it initializes trust
relationships with neighbors enabling them to work together in Route Discovery phase.
The discovery and maintenance of routes are inherited from DSR. In the context of
security analysis this scheme may be called fairly safe. Bootstrap of trust phase is its
vulnerable part.

Then when we look at the case that we have a central authority, each node has keys to
authenticate one another’s route discovery and traffic packets. The route discovery and
maintenance are very similar to DSR’s route discovery and maintenance processes with
slight differences. MACs and keys from one way hash key chains are added in order to
provide authenticity. From the security analysis point of view, this scheme is safe against
forged/dropped packets, man-in-the-middle and DoS attacks, and also with a strong
assumption of being equipped with GPS, it also prevents wormhole attacks.

8. References
[1] Gabriel Montenegro and Claude Castelluccia. Statistically unique and cryptographically verifiable
identifiers and addresses. In Proc. 1SOC Symposium on Network and Distributed System Security (NDSS
2002), San Diego, February 2002
[2] Vikram Gupta, Srikanth Krishnamurthy, Michalis Faloutsos, Denial of Service Attacks at the MAC
Layer in Wireless Ad Hoc Networks IEEE Milcom 2002, Anaheim, California, October 7-10, 2002
[3] Srdjan Capkun, Jean-Pierre Hubaux, Levente Buttyan Mobility Helps Security in Ad Hoc Networks.
The Fourth ACM International Symposium on Mobile Ad Hoc Networking and Computing Annapolis,
Maryland, USA June 1-3, 2003
[4] Panagiotis Papadimitratos and Zygmunt Haas Secure Data Transmission in Mobile Ad Hoc Networks
ACM Workshop on Wireless Security (WiSe 2003) September 19, 2003 Westin Horton Plaza Hotel, San
Diego, California, U.S.A
[5] Yih-Chun Hu, Adrian Perrig, David B. Johnson. A secure On-Demand Routing Protocol for Ad hoc
Networks MobiCom 2002, September 23-28, 2002, Atlanta, Georgia, USA
[6] P. Papadimitratos and Z.J. Haas, Secure Link State Routing for Mobile Ad Hoc Networks, IEEE
Workshop on Security and Assurance in Ad hoc Networks, in conjunction with the 2003 International
Symposium on Applications and the Internet, Orlando, FL, January 28, 2003
[7] S. Zhu, S. Xu, S. Setia and S. Jajodia. LHAP: A Lightweight Hop-by-Hop Authentication Protocol For
Ad-Hoc Networks, ICDCS 2003 International Workshop on Mobile and Wireless Network (MWN 2003),
May 2003
[8] Lakshmi Venkatraman and Dharma P. Agrawal A Novel Authentication scheme for Ad hoc Networks
Wireless Communications and Networking Confernce (WCNC 2000), IEEE, Pages 1268-1273, vol.3
[9] Levente Buttyfin and Jean-Pierre Hubaux. Report on a Working Session on Security in Wireless Ad
Hoc Networks. Mobile Computing and Communications Review, Volume 6, Number 4. November 2002.

