
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

2

Chapter 2 - Introduction to C
Programming

Outline
2.1 Introduction
2.2 A Simple C Program: Printing a Line of Text
2.3 Another Simple C Program: Adding Two Integers
2.4 Memory Concepts
2.5 Arithmetic in C
2.6 Decision Making: Equality and Relational Operators

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

3

Objectives

• In this chapter, you will learn:
– To be able to write simple computer programs in C.

– To be able to use simple input and output statements.

– To become familiar with fundamental data types.

– To understand computer memory concepts.

– To be able to use arithmetic operators.

– To understand the precedence of arithmetic operators.

– To be able to write simple decision making statements.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

4

2.1 Introduction

• C programming language
– Structured and disciplined approach to program design

• Structured programming
– Introduced in chapters 3 and 4

– Used throughout the remainder of the book

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

5

2.2 A Simple C Program:
Printing a Line of Text

Comments
– Text surrounded by /* and */ is ignored by computer

– Used to describe program

• #include <stdio.h>

– Preprocessor directive
• Tells computer to load contents of a certain file

– <stdio.h> allows standard input/output operations

1 /* Fig. 2.1: fig02_01.c
2 A first program in C */

3 #include <stdio.h>
4
5 /* function main begins program execution */
6 int main()
7 {

8 printf("Welcome to C!\n");
9
10 return 0; /* indicate that program ended successfully */
11
12 } /* end function main */

Welcome to C!

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

6

2.2 A Simple C Program:
Printing a Line of Text

• int main()

– C programs contain one or more functions, exactly one of
which must be main

– Parenthesis used to indicate a function

– intmeans that main "returns" an integer value

– Braces ({ and }) indicate a block

• The bodies of all functions must be contained in braces

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

7

2.2 A Simple C Program:
Printing a Line of Text

• printf("Welcome to C!\n");

– Instructs computer to perform an action

• Specifically, prints the string of characters within quotes (" ")

– Entire line called a statement

• All statements must end with a semicolon (;)

– Escape character (\)

• Indicates that printf should do something out of the ordinary

• \n is the newline character

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

8

2.2 A Simple C Program:
Printing a Line of Text

Escape Sequence Description

\n Newline. Position the cursor at the beginning of the next line.

\t Horizontal tab. Move the cursor to the next tab stop.

\a Alert. Sound the system bell.

\\ Backslash. Insert a backslash character in a string.

\" Double quote. Insert a double quote character in a string.

Fig. 2.2 Some common escape sequences.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

9

2.2 A Simple C Program:
Printing a Line of Text

• return 0;

– A way to exit a function

– return 0, in this case, means that the program terminated
normally

• Right brace }
– Indicates end of main has been reached

• Linker
– When a function is called, linker locates it in the library

– Inserts it into object program

– If function name is misspelled, the linker will produce an
error because it will not be able to find function in the
library

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

101 /* Fig. 2.3: fig02_03.c

2 Printing on one line with two printf statements */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 printf("Welcome ");

9 printf("to C!\n");

10

11 return 0; /* indicate that program ended successfully */

12

13 } /* end function main */

fig02_03.c

Program OutputWelcome to C!

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

11

fig02_04.c

Program Output

Welcome
to

C!

1 /* Fig. 2.4: fig02_04.c

2 Printing multiple lines with a single printf */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 printf("Welcome\nto\nC!\n");

9

10 return 0; /* indicate that program ended successfully */

11

12 } /* end function main */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

12

fig02_05.c

1 /* Fig. 2.5: fig02_05.c

2 Addition program */

3 #include <stdio.h>

4

5 /* function main begins program execution */

6 int main()

7 {

8 int integer1; /* first number to be input by user */

9 int integer2; /* second number to be input by user */

10 int sum; /* variable in which sum will be stored */

11

12 printf("Enter first integer\n"); /* prompt */

13 scanf("%d", &integer1); /* read an integer */

14

15 printf("Enter second integer\n"); /* prompt */

16 scanf("%d", &integer2); /* read an integer */

17

18 sum = integer1 + integer2; /* assign total to sum */

19

20 printf("Sum is %d\n", sum); /* print sum */

21

22 return 0; /* indicate that program ended successfully */

23

24 } /* end function main */

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

13

Program Output

Enter first integer
45

Enter second integer
72
Sum is 117

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

14

2.3 Another Simple C Program:
Adding Two Integers

• As before
– Comments, #include <stdio.h> and main

• int integer1, integer2, sum;

– Definition of variables

• Variables: locations in memory where a value can be stored

– int means the variables can hold integers (-1, 3, 0, 47)

– Variable names (identifiers)

• integer1, integer2, sum

• Identifiers: consist of letters, digits (cannot begin with a digit) and
underscores(_)

– Case sensitive

– Definitions appear before executable statements

• If an executable statement references and undeclared variable it will
produce a syntax (compiler) error

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

15

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

16

2.3 Another Simple C Program:
Adding Two Integers

• scanf("%d", &integer1);

– Obtains a value from the user

• scanf uses standard input (usually keyboard)

– This scanf statement has two arguments

• %d - indicates data should be a decimal integer

• &integer1 - location in memory to store variable

• & is confusing in beginning – for now, just remember to
include it with the variable name in scanf statements

– When executing the program the user responds to the scanf
statement by typing in a number, then pressing the enter
(return) key

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

17

2.3 Another Simple C Program:
Adding Two Integers

• = (assignment operator)
– Assigns a value to a variable

– Is a binary operator (has two operands)
sum = variable1 + variable2;

sum gets variable1 + variable2;

– Variable receiving value on left

• printf("Sum is %d\n", sum);

– Similar to scanf

• %d means decimal integer will be printed

• sum specifies what integer will be printed

– Calculations can be performed inside printf statements
printf("Sum is %d\n", integer1 + integer2);

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

18

2.4 Memory Concepts

• Variables
– Variable names correspond to locations in the computer's

memory

– Every variable has a name, a type, a size and a value

– Whenever a new value is placed into a variable (through
scanf, for example), it replaces (and destroys) the previous
value

– Reading variables from memory does not change them

• A visual representation

integer1 45

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

19

2.4 Memory Concepts

integer1 45

integer2 72

integer1 45

integer2 72

sum 117

•A visual representation (continued)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

20

2.5 Arithmetic

• Arithmetic calculations
– Use * for multiplication and / for division

– Integer division truncates remainder
• 6 / 3 evaluates to 2

– Modulus operator(%) returns the remainder
• 7 % 5 evaluates to 2

• 6% 3 evaluates to 0

• Operator precedence
– Some arithmetic operators act before others (i.e.,

multiplication before addition)
• Use parenthesis when needed

– Example: Find the average of three variables a, b and c
• Do not use: a + b + c / 3

• Use: (a + b + c) / 3

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

21

2.5 Arithmetic

• Arithmetic operators:

• Rules of operator precedence:

C operation

Arithmetic operator Algebraic expression C expression

Addition + f + 7 f + 7

Subtraction - p – c p - c

Multiplication * bm b * m

Division / x / y x / y

Modulus % r mod s r % s

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the expression in the
innermost pair is evaluated first. If there are several pairs of
parentheses “on the same level” (i.e., not nested), they are evaluated left
to right.

*, /, or % Multiplication,Division,
Modulus

Evaluated second. If there are several, they are
evaluated left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several, they are
evaluated left to right.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

22

2.6 Decision Making: Equality and
Relational Operators

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

Step 2. y = 10 * 5 + 3 * 5 + 7;

Step 3. y = 50 + 3 * 5 + 7;

Step 4. y = 50 + 15 + 7;

Step 5. y = 65 + 7;

Step 6. y = 72;

 2 * 5 is 10

 10 * 5 is 50

 3 * 5 is 15

 50 + 15 is 65

 65 + 7 is 72

(Leftm ost mult ip licat ion)

(Leftm ost mult ip licat ion)

(Mult ip licat ion before ad dition)

(Leftm ost ad dit ion)

(Last a dd it ion)

(Last op era t io n—p la ce 72 in y)

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

23

2.6 Decision Making: Equality and
Relational Operators

Operators Associativity
* / % left to right

+ - left to right

< <= > >= left to right

== != left to right

= right to left

Fig. 2.14 Precedence and associativity of the operators discussed so far.

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

24

2.6 Decision Making: Equality and
Relational Operators

• Executable statements
– Perform actions (calculations, input/output of data)

– Perform decisions
• May want to print "pass" or "fail" given the value of a test

grade

• if control statement
– Simple version in this section, more detail later

– If a condition is true, then the body of the if statement
executed
• 0 is false, non-zero is true

– Control always resumes after the if structure

• Keywords
– Special words reserved for C

– Cannot be used as identifiers or variable names

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

25

2.6 Decision Making: Equality and
Relational Operators

Standard algebraic equality
operator or relational operator

C equality or
relational operator

Example of C
condition

Meaning of C condition

Equality Operators

= == x == y x is equal to y

¹ != x != y x is not equal to y

Relational Operators

> > x > y x is greater than y

< < x < y x is less than y

>= >= x >= y x is greater than or equal to y

<= <= x <= y x is less than or equal to y

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

26

fig02_13.c (Part 1
of 2)

1 /* Fig. 2.13: fig02_13.c

2 Using if statements, relational

3 operators, and equality operators */

4 #include <stdio.h>

5

6 /* function main begins program execution */

7 int main()

8 {

9 int num1, /* first number to be read from user */

10 int num2; /* second number to be read from user */

11

12 printf("Enter two integers, and I will tell you\n");

13 printf("the relationships they satisfy: ");

14

15 scanf("%d%d", &num1, &num2); /* read two integers */

16

17 if (num1 == num2) {

18 printf("%d is equal to %d\n", num1, num2);

19 } /* end if */

20

21 if (num1 != num2) {

22 printf("%d is not equal to %d\n", num1, num2);

23 } /* end if */

24

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

27
25 if (num1 < num2) {

26 printf("%d is less than %d\n", num1, num2);

27 } /* end if */

28

29 if (num1 > num2) {

30 printf("%d is greater than %d\n", num1, num2);

31 } /* end if */

32

33 if (num1 <= num2) {

34 printf("%d is less than or equal to %d\n", num1, num2);

35 } /* end if */

36

37 if (num1 >= num2) {

38 printf("%d is greater than or equal to %d\n", num1, num2);

39 } /* end if */

40

41 return 0; /* indicate that program ended successfully */

42

43 } /* end function main */

fig02_13.c (Part 2
of 2)

Program Output

Enter two integers, and I will tell you
the relationships they satisfy: 3 7

3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Outline

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

28

Program Output
(continued)

Enter two integers, and I will tell you
the relationships they satisfy: 22 12

22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7

7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved.

29

2.6 Decision Making: Equality and
Relational Operators

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Fig. 2.15 C’s reserved keywords.

	Slide32
	Chapter 2 - Introduction to C Programming
	Slide19
	2.1Introduction
	2.2A Simple C Program:Printing a Line of Text
	2.2A Simple C Program:Printing a Line of Text
	2.2A Simple C Program:Printing a Line of Text
	2.2A Simple C Program:Printing a Line of Text
	2.2A Simple C Program:Printing a Line of Text
	Slide31
	fig02_04.cProgram Output
	fig02_05.c
	Program Output
	2.3Another Simple C Program:Adding Two Integers
	Slide33
	2.3Another Simple C Program:Adding Two Integers
	2.3Another Simple C Program:Adding Two Integers
	2.4Memory Concepts
	2.4Memory Concepts
	2.5 Arithmetic
	2.5 Arithmetic
	2.6Decision Making: Equality and Relational Operators
	2.6Decision Making: Equality and Relational Operators
	2.6Decision Making: Equality and Relational Operators
	2.6Decision Making: Equality and Relational Operators
	fig02_13.c (Part 1 of 2)
	fig02_13.c (Part 2 of 2)Program Output
	Program Output (continued)
	2.6Decision Making: Equality and Relational Operators

