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Abstract

The EM algorithm heavily relies on the interpretation
of observations as incomplete data but it does not have
any control on the uncertainty of missing data. To effec-
tively reduce the uncertainty of missing data, we present
a regularized EM algorithm that penalizes the likelihood
with the mutual information between the missing data
and the incomplete data (or the conditional entropy of
the missing data given the observations). The proposed
method maintains the advantage of the conventional EM
algorithm, such as reliable global convergence, low cost
per iteration, economy of storage, and ease of program-
ming. We also apply the regularized EM algorithm to fit
the finite mixture model. Our theoretical analysis and
experiments show that the new method can efficiently
fit the models and effectively simplify over-complicated
models.

Introduction
In statistics and many related fields, the method of maximum
likelihood is widely used to estimate an unobservable popu-
lation parameter that maximizes the log-likelihood function

L(Θ;X ) =
n∑

i=1

log p(xi|Θ) (1)

where the observations X = {xi|i = 1, . . . , n} are inde-
pendently drawn from the distribution p(x) parameterized
by Θ. The Expectation-Maximization (EM) algorithm is
a general approach to iteratively compute the maximum-
likelihood estimates when the observations can be viewed
as incomplete data (Dempster, Laird, & Rubin 1977). It has
been found in most instances that the EM algorithm has the
advantage of reliable global convergence, low cost per iter-
ation, economy of storage, and ease of programming (Red-
ner & Walker 1984). The EM algorithm has been employed
to solve a wide variety of parameter estimation problems,
especially when the likelihood function can be simplified
by assuming the existence of additional but missing data
Y = {yi|i = 1, . . . , n} corresponding to X . The obser-
vations together with the missing data are called complete
data. The EM algorithm maximizes the log-likelihood of
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the incomplete data by exploiting the relationship between
the complete data and the incomplete data. In each itera-
tion, two steps, called E-step and M-step, are involved. In
the E-step, the EM algorithm determines the expectation of
log-likelihood of the complete data based on the incomplete
data and the current parameter

Q(Θ|Θ(t)) = E
(
log p(X ,Y|Θ)

∣∣X ,Θ(t)
)

(2)

In the M-step, the algorithm determines a new parameter
maximizing Q

Θ(t+1) = arg max
Θ

Q(Θ|Θ(t)) (3)

Each iteration is guaranteed to increase the likelihood, and
finally the algorithm converges to a local maximum of the
likelihood function.

Clearly, the missing data Y has strong affects on the per-
formance of the EM algorithm since the optimal parameter
Θ∗ is obtained by maximizing E (log p(X ,Y|Θ)). For ex-
ample, the EM algorithm finds a local maximum of the like-
lihood function, which depends on the choice of Y . Since
the missing data Y is totally unknown and is “guessed” from
the incomplete data, how can we choose a suitable Y to
make the solution more reasonable? This question is not
addressed in the EM algorithm because the likelihood func-
tion does not reflect any influence of the missing data. In
order to address the issue, a simple and direct method is to
regularize the likelihood function with a suitable functional
of the distribution of the complete data.

In this paper, we introduce a regularized EM (REM) al-
gorithm to address the above issue. The basic idea is to reg-
ularize the likelihood function with the mutual information
between the observations and the missing data or the con-
ditional entropy of the missing data given the observations.
The intuition behind is that we hope that the missing data
have little uncertainty given the incomplete data because the
EM algorithm implicitly assumes a strong relationship be-
tween the missing data and the incomplete data. When we
apply the regularized EM algorithm to fit the finite mixture
model, the new method can efficiently fit the models and
effectively simplify over-complicated models.



The Regularized EM Algorithm
Simply put, the regularized EM algorithm tries to optimize
the penalized likelihood

L̃(Θ;X ) = L(Θ;X ) + γP (X ,Y|Θ) (4)

where the regularizer P is a functional of the distribution of
the complete data given Θ and the positive value γ is the
so-called regularization parameter that controls the compro-
mise between the degree of regularization of the solution and
the likelihood function.

As mentioned before, the EM algorithm assumes the ex-
istence of missing data. Intuitively, we would like to choose
the missing data that has a strong (probabilistic) relation
with the observations, which implies that the missing data
has little uncertainty given the observations. In other words,
the observations contain a lot of information about the miss-
ing data and we can infer the missing data from the obser-
vations with a small error rate. In general, the information
about one object contained in another object can be mea-
sured by either Kolmogorov (or algorithmic) mutual infor-
mation based on the theory of Kolmogorov complexity or
Shannon mutual information based on Shannon information
theory.

Both the theory of Kolmogorov complexity (Li & Vitányi
1997) and Shannon information theory (Shannon 1948) aim
at providing a means for measuring the quantity of infor-
mation in terms of bit. In the theory of Kolmogorov com-
plexity, the Kolmogorov complexity (or algorithmic entropy)
K(x) of a finite binary string x1 is defined as the length of
a shortest binary program p to compute x on an appropriate
universal computer, such as a universal Turing machine. The
conditional Kolmogorov complexity K(x|y) of x relative to
y is defined similarly as the length of a shortest program
to compute x if y is furnished as an auxiliary input to the
computation. The Kolmogorov (or algorithmic) mutual in-
formation is defined as I(x : y) = K(y) − K(y|x,K(x))
that is the information about x contained in y. Up to an
additive constant term, I(x : y) = I(y : x). Although
K(x) is the ultimate lower bound of any other complexity
measures, K(x) and related quantities are not Turing com-
putable. Therefore, we can only try to approximate these
quantities in practice.

In Shannon information theory, the quantity entropy plays
a central role as measures of information, choice and un-
certainty. Mathematically, Shannon’s entropy of a discrete
random variable X with a probability mass function p(x) is
defined as (Shannon 1948)

H(X) = −
∑

x

p(x) log p(x) (5)

Entropy is the number of bits on the average required to de-
scribe a random variable. In fact, entropy is the minimum
descriptive complexity of a random variable (Kolmogorov
1965). Consider two random variables X and Y with a
joint distribution p(x, y) and marginal distributions p(x) and

1Other finite objects can be encoded as finite binary strings in a
natural way.

p(y), respectively. The conditional entropy H(X|Y ) is de-
fined as

H(X|Y ) =
∑

y

p(y)H(X|Y = y)

= −
∑

x

∑

y

p(x, y) log p(x|y) (6)

which measures how uncertain we are of X on the average
when we know Y . The mutual information I(X;Y ) be-
tween X and Y is the relative entropy (or Kullback-Leibler
distance) between the joint distribution p(x, y) and the prod-
uct distribution p(x)p(y)

I(X;Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
(7)

which is symmetric. Note that when X and Y are inde-
pendent, Y can tell us nothing about X and it is easy to
show I(X;Y ) = 0 in this case. Besides, the relation-
ship between entropy and mutual information I(X;Y ) =
H(X) − H(X|Y ) = H(Y ) − H(Y |X) demonstrates that
the mutual information measures the amount of information
that one random variable contains about another one. For
continuous random variables, the summation operation is
replaced with integration in the definitions of entropy and
related notions.

Clearly, the theory of Kolmogorov complexity and Shan-
non information theory are fundamentally different although
they share the same purpose. Shannon information theory
considers the uncertainty of the population but ignores each
individual. On the other hand, the theory of Kolmogorov
complexity considers the complexity of a single object in
the ultimate compressed version irrespective of the manner
in which the object arose. Besides, Kolmogorov thinks that
information theory must precede probability theory, and not
be based on it (Kolmogorov 1983b). To regularize the like-
lihood function, we prefer Shannon mutual information to
Kolmogorov mutual information because we cannot precede
probability theory since the goal is just to estimate the pa-
rameters of distributions. Besides, we do consider the char-
acteristics of the population of missing data rather than a
single object in this case. Moreover, Kolmogorov com-
plexity is not computable and we have to approximate it
in applications. In fact, entropy is a popular approxima-
tion to Kolmogorov complexity in practice because it is a
computable upper bound of Kolmogorov complexity (Kol-
mogorov 1983a).

With Shannon mutual information as the regularizer, we
have the regularized likelihood

L̃(Θ;X ) = L(Θ;X ) + γI(X;Y |Θ) (8)

where X is the random variable of observations and Y is
the random variable of missing data. Because we usually
do not know much about the missing data, we may natu-
rally assume that Y follows a uniform distribution and thus
H(Y ) is a constant value given the range of Y . Since
I(X;Y ) = H(Y ) − H(Y |X), we may also use the fol-
lowing regularized likelihood

L̃(Θ;X ) = L(Θ;X ) − γH(Y |X; Θ) (9)



Fano’s inequality (Cover & Thomas 1991) provides us an-
other evidence that the conditional entropy H(Y |X) could
be a good regularizer here. Suppose we know a random vari-
able X and we wish to guess the value of the correlated ran-
dom variable Y that takes values in Y. Fano’s inequality re-
lates the probability of error in guessing the random variable
Y to its conditional entropy H(Y |X). Suppose we employ
a function Ŷ = f(X) to estimate Y . Define the probability
of error Pe = Pr{Ŷ 6= Y }. Fano’s inequality is

H(Pe) + Pe log(|Y| − 1) ≥ H(Y |X) (10)

This inequality can be weakened to

1 + Pe log |Y| ≥ H(Y |X) (11)

Note that Pe = 0 implies that H(Y |X) = 0. In fact,
H(Y |X) = 0 if and only if Y is a function of X (Cover
& Thomas 1991). Fano’s inequality indicates that we can
estimate Y with a low probability of error only if the con-
ditional entropy H(Y |X) is small. Thus, the conditional
entropy of missing variable given the observed variable(s) is
clearly a good regularizer for our purpose.

To optimize (8) or (9), we only need slightly modify the
M-step of the EM algorithm. Instead of (3), we use

Θ(t+1) = arg max
Θ

Q̃(Θ|Θ(t)) (12)

where

Q̃(Θ|Θ(t)) = Q(Θ|Θ(t)) + γI(X;Y |Θ) (13)

or
Q̃(Θ|Θ(t)) = Q(Θ|Θ(t)) − γH(Y |X; Θ) (14)

The modified algorithm is called the regularized EM (REM)
algorithm. We can easily prove the convergence of the
REM algorithm in the framework of proximal point algo-
rithm (Bertsekas 1999). For the objective function f(Θ), a
generalized proximal point algorithm is defined by the iter-
ation

Θ(t+1) = arg max
Θ

{f(Θ) − βtd(Θ,Θ
(t))} (15)

where d(Θ,Θ(t)) is a distance-like penalty function (i.e.
d(Θ,Θ(t)) ≥ 0 and d(Θ,Θ(t)) = 0 if and only if Θ = Θ(t)),
and βt is a sequence of positive numbers. It is easy to show
that the objective function f(Θ) increases with the iteration
(15). In (Chretien & Hero 2000), it was shown that EM is a
special case of proximal point algorithm implemented with
βt = 1 and a Kullback-type proximal penalty. In fact, the
M-step of the EM algorithm can be represented as

Θ(t+1) =

arg max
Θ

{
L(Θ;X ) − E

[
log

p(Y|X ; Θ(t))

p(Y|X ; Θ)

∣∣∣∣∣X ,Θ
(t)

]}

(16)

Thus, we can immediately prove the convergence of the
REM algorithm by replacingL(Θ;X ) with L̃(Θ;X ) in (16).
Because the regularization term in (8) (or (9)) biases the
searching space to some extent, we expect that the REM al-
gorithm also converges faster than the plain EM algorithm,
which will be confirmed in the experiments.

Finite Mixture Model
In this section, we apply the regularized EM algorithm to
fit the finite mixture model. The finite mixture model arises
as the fundamental model naturally in the areas of statistical
machine learning. With the finite mixture model, we assume
that the density associated with a population is a finite mix-
ture of densities. Finite mixture densities can naturally be
interpreted as that we have m component densities mixed
together with mixing coefficients αk, k = 1, . . . ,m, which
can be thought of as the a priori probabilities of each mix-
ture component ck, i.e. αk = p(ck). The mixture probability
density functions have the form

p(x|Θ) =
m∑

k=1

αkp(x|θk) (17)

where the parameters are Θ = (α1, . . . , αm, θ1, . . . , θm)
such that

∑m

k=1 αk = 1 and αk ≥ 0, k = 1, . . . ,m; and
each p is the density function of the component ck that is
parameterized by θk. 2

For the finite mixture model, we usually employ the cat-
egory information C associated with the observations X
as the missing data, which indicates which component in
the mixture produces the observation. In this section, we
use the conditional entropy as the regularizer in particu-
lar. The reason will be clear later. Let C be a random
variable taking values in {c1, c2, . . . , cm} with probabilities
α1, α2, . . . , αm. Thus, we have

L̃(Θ;X ) = L(Θ;X ) − γH(C|X; Θ)

=
n∑

i=1

log
m∑

k=1

αkp(xi|θk)

+ γ

∫ m∑

k=1

αkp(x|θk)

p(x|Θ)
log

(
αkp(x|θk)

p(x|Θ)

)
p(x|Θ)dx

The corresponding Q̃ is

Q̃(Θ|Θ(t)) =
m∑

k=1

n∑

i=1

log(αk)p(ck|xi; Θ
(t))

+
m∑

k=1

n∑

i=1

log(p(xi|θk))p(ck|xi; Θ
(t))

+ γ

∫ m∑

k=1

αkp(x|θk)

p(x|Θ)
log

αkp(x|θk)

p(x|Θ)
p(x|Θ)dx

In order to find αk, k = 1, . . . ,m, we introduce a La-
grangian

L = Q̃(Θ|Θ(t)) − λ

(
c∑

k=1

αk − 1

)
(18)

2Here, we assume that all components have the same form of
density for simplicity. More generally, the densities do not neces-
sarily need belong to the same parametric family.



with multiplier λ for the constraint
∑m

k=1 αk = 1. Solving
the Lagrangian L, we obtain

α
(t+1)
k =

n∑

i=1

p(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

n∑

i=1

m∑

k=1

p(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

(19)
To find θk, k = 1, . . . ,m, we take the derivatives of Q̃

with respect to θk

∂Q̃(Θ|Θ(t))

∂θk

= 0 k = 1, . . . ,m

For exponential families, it is possible to get an analytical
expression for θk, as a function of everything else. Sup-
pose that p(x|θk) has the regular exponential-family form
(Barndorff-Nielsen 1978):

p(x|θk) = ϕ−1(θk)ψ(x)eθT

k
t(x) (20)

where θk denotes an r× 1 vector parameter, t(x) denotes an
r×1 vector of sufficient statistics, the superscript T denotes
matrix transpose, and ϕ(θk) is given by

ϕ(θk) =

∫
ψ(x)eθT

k
t(x)dx (21)

The term “regular” means that θk is restricted only to a con-
vex set Ω such that equation (20) defines a density for all
θk in Ω. Such parameters are often called natural parame-
ters. The parameter θk is also unique up to an arbitrary non-
singular r× r linear transformation, as is the corresponding
choice of t(x). For example, expectation parametrization
employs φk = E(t(x)|θk), which is a both-way continu-
ously differentiable mapping (Barndorff-Nielsen 1978).

For exponential families, we have

φ
(t+1)
k =

n∑

i=1

t(xi)p(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

n∑

i=1

p(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

(22)
For a Gaussian mixture p(x) =

∑m

k=1 αkN(µk,Σk), we
have

µ
(t+1)
k =

n∑

i=1

xip(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

n∑

i=1

p(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

(23)

Σ
(t+1)
k =

n∑

i=1

dikp(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

n∑

i=1

p(ck|xi; Θ
(t))(1 + γ log p(ck|xi; Θ

(t)))

(24)

Figure 1: The simulated two-dimensional Gaussian mixture
of six components, each of which contains 300 points.

where dik = (xi − µk)(xi − µk)T .
When we apply the EM algorithm to fit the finite mixture

model, we have to determine the number of components,
which is usually referred as to model selection. Because
the maximized likelihood is a non-decreasing function of the
number of components (Figueiredo & Jain 2002), the plain
EM algorithm cannot reduce a specified over-complicated
model to a simpler model by itself. That is, if a larger num-
ber of components is specified, the plain EM algorithm can-
not reduce it to the true but smaller number of components
(i.e. a simpler model). Because over-complicated models
introduce more uncertainty, 3 we expect that the REM al-
gorithm in contrast will be able to automatically simplify
over-complicated models to simpler ones through reducing
the uncertainty of missing data. 4 Besides, note the condi-
tional entropy of category information C given X

H(C|X) = −

∫ m∑

k=1

p(ck|x) log(p(ck|x))p(x)dx (25)

is a non-decreasing function of the number of components
because a larger m implies more choices and a larger en-
tropy (Shannon 1948). In fact, H(C|X) is minimized to 0
if m = 1, i.e. all data are from the same component. Thus,
the term −γH(C|X) in L̃(Θ;X ) would support the merge
of the components to reduce the entropy in the iterations of
REM. On the other hand, the term L(Θ;X ) supports keep-
ing the number of components as large as possible to achieve
a high likelihood. Finally, the REM algorithm reaches a bal-
ance between the likelihood and the conditional entropy and
it reduces the number of components to some extent.

The model selection problem is an old problem and many
criteria/methods have been proposed, such as Akaike’s in-
formation criterion (AIC) (Akaike 1973), Bayesian infer-
ence criterion (BIC) (Schwarz 1978), Cheeseman-Stutz cri-
terion (Cheeseman & Stutz 1995), minimum message length
(MML) (Wallace & Boulton 1968), and minimum descrip-
tion length (MDL) (Rissanen 1985). However, we do not
attempt to compare our method with the aforementioned
methods because the goal of our method is to reduce the un-

3The more choices, the more entropy (Shannon 1948).
4In fact, the purged components still exist in the mixture model.

But their probabilities are close to zero.
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Figure 2: The BIC scores of the learned models. Here, m is
the specified number of components and γ is the regulariza-
tion factor.

certainty of missing data rather than to determine the num-
ber of components. In fact, simplifying an over-complicated
model is only a byproduct of our method obtained through
reducing the uncertainty of missing data. Besides, our
method is not a comprehensive method to determine the
number of components since it cannot extend an over-simple
model to the true model.

Demonstration
In this section, we present an example to illustrate the perfor-
mance of the REM algorithm on a two-dimensional Gaus-
sian mixture. The mixture contains six components, each of
which has 300 samples. The data is shown in Figure 1. In
the experiments, we use k-means to give the initial partition.
The stop criterion in iterations is that the increase in the reg-
ularized log-likelihood (9) is less than 10−7. In the experi-
ments, we test the REM algorithm with different numbers of
components and regularization factor γ. Note that the REM
algorithm reduces to the plain EM algorithm when γ is set
to 0. With each setting, we run the algorithm 30 times. The
medians of the results are reported here.

To measure the quality of learned models, we employ
BIC/MDL 5 (Schwarz 1978; Rissanen 1985) here for sim-
plicity. Let v be the number of independent parameters to be
estimated in the model. 6 BIC can be approximated by

BIC ≈ L(Θ̂) −
1

2
v log n (26)

A large BIC score indicates that the model has a large pos-
teriori and thus is most likely close to the true model. As
shown in Figure 2, the REM algorithm achieves much larger
BIC scores than the plain EM algorithm (i.e. the γ = 0
case) when the number of components is incorrectly speci-
fied. When the specified number of components is correct
(i.e. m = 6), the plain EM and REM obtain similar BIC

5BIC coincides with the two-stage form of MDL (Hansen & Yu
2001).

6We consider only the parameters of the components with non-
zero probabilities.

 5

 6

 7

 8

 9

 10

 11

 12

 0  0.05  0.1  0.15  0.2

nu
m

be
r 

of
 c

om
po

ne
nt

s

γ

m=6
m=8

m=10
m=12

Figure 3: The number of components in the learned models.
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Figure 4: The number of iterations.

scores. We also observe that, if a suitable γ is employed, the
REM algorithm may achieve a higher BIC score than the EM
algorithm even when the number of components is correctly
set for the EM algorithm. For example, the REM algorithm
achieves a higher BIC score with γ = 0.05 and m = 8 than
that of the EM algorithm with m = 6. This study also sug-
gests that we may choose γ by BIC/MDL. Further research
on determining optimal γ is in progress.

Besides BIC/MDL scores, we also investigate the num-
ber of components in the learned models. In this study, we
regard a component as purged out of the model if its priori
probability is less than 0.01. The (median of) learned num-
bers of components are shown in Figure 3. As shown in the
figure, the REM algorithm can usually reduce an incorrectly
specified number of components to the correct one (i.e. 6).
We also observe that the REM algorithm does not reduce the
models to over-simplified ones (e.g. the learned number of
components is less than 6) in all cases. It is well-known that
the plain EM algorithm may also return empty clusters (cor-
responding to components with zero probability), which is
confirmed in our experiments. For m = 10 and m = 12, we
observe that the EM algorithm may return fewer (say 9 or
11) components. Compared with the true model, however, it
is still far from perfection.



(a) Initialization (b) Iteration 50 (c) Iteration 100 (d) Final Result (t = 252)

Figure 5: Trace of the REM algorithm with γ = 0.1 and m = 12.

It is known that the EM algorithm may converge very
slowly in practice. In the experiments, we find that the REM
algorithm converges much faster than the EM algorithm as
shown in Figure 4. The reason may be that the regulariza-
tion biases the search space toward more likely regions so
that it improves the efficiency of iterations. Interestingly,
the number of iterations seems to decrease with the increase
of γ.

Finally, we give a graphical representation of iterations
of the REM algorithm in Figure 5. Here, we set γ = 0.1
and m = 12. After 50 iterations, the estimated model can
already describe the shape of the data well. Finally, the REM
algorithm converges at iteration 252 with six components
that are very close to the true model. The extra components
(not represented in the figure) are successively purged from
the model due to their zero a priori probabilities.

Conclusion
We have proposed a regularized EM algorithm to control
the uncertainty of missing data. The REM algorithm tries
to maximize the likelihood and the information about the
missing data contained in the observations. Besides reduc-
ing the uncertainty of missing data, the proposed method
maintains the advantage of the conventional EM algorithm.
When we apply the regularized EM algorithm to fit the finite
mixture model, it can efficiently fit the models and effec-
tively simplify over-complicated models. The convergence
properties of the REM algorithm would be an interesting fu-
ture research topic.
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