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ABSTRACT 
Hardware/software partitioning can greatly reduce execution 
time and energy consumption of embedded systems.  However, 
traditional source-level partitioning approaches have had limited 
success due in part to tool flow problems.  Previous research 
introduced binary-level hardware/software partitioning as a 
solution to the tool flow problem, showing competitive speedups 
at the cost of almost double the hardware area. We incorporate 
powerful automated decompilation methods, previously developed 
by other researchers for binary translation tools, into a binary 
partitioning tool.  Such incorporation eliminates the area 
overhead of previous approaches. Furthermore, we apply our tool 
to much larger examples than previous binary partitioning efforts, 
using examples from MediaBench, NetBench, and EEMBC 
benchmarks, and we show that speedups are still comparable with 
source-level partitioning even on these larger examples. Our 
results show that binary partitioning can result in average 
speedups of 3.0 and energy savings of 52% over software-only 
implementations, using an architecture similar to commercially 
available single-chip microprocessor/configurable-logic 
platforms.  

Keywords 
Hardware/software partitioning, decompilation, low power,  
speedup, FPGA, codesign, synthesis, platform, binary translation. 

1. INTRODUCTION 
Previous research has shown hardware/software partitioning to be 
very beneficial in embedded systems.  Hardware/software 
partitioning divides an application’s high-level description onto 
software running on a microprocessor and one or more hardware 
co-processors.  Researchers have shown that such partitioning can 
yield large speedups and have thus sought to automate 
partitioning [3][10][11][12][15][17][21][23][32].  More recently, 
research has shown hardware/software partitioning to also greatly 
reduce energy consumption [18][19][28][29][34].  

The recent appearance of single-chip platforms incoporating a 
microprocessor and field-programmable gate array (FPGA), such 
as the Triscend E5 and A7 [31], Xilinx Virtex II Pro [35], and 
Altera Excalibur [1], make hardware/software partitioning even 
more advantageous.  These platforms can provide a time-to-
market, cost, and size comparable to microprocessor-only designs, 
while achieving significantly better performance.  These 
platforms also have more efficient hardware/software 
communication compared to multiple chip designs, often leading 

to reduced power and improved performance.  While partitioning 
using off-chip configurable logic may increase energy compared 
to a software-only implementation due to expensive 
communication, utilizing on-chip configurable logic, which 
supports very efficient communication, can instead achieve large 
energy savings [28][29]. 

The traditional approach to hardware/software partitioning 
consists of partitioning code at the source-code level.  This 
approach first compiles a high-level language to an intermediate 
format that is then explored for hardware candidates.  Examples 
of source-level approaches include all the partitioning approaches 
referenced in the first paragraph, as well as Napa C [14], SA-C 
[4], Nimble [13], PRISM [2], DEFACTO [5], and Proceler [27].  
At this time, source-level approaches have had limited 
commercial success, due in part to tool flow integration 
resistance.  Most source-level approaches require replacing an 
existing compiler with a partitioning compiler, a replacement that 
is likely to be resisted by designers, who generally have trusted 
compilers and integrated development environments. The vast 
majority of compiler users want software only, so the strongest 
compiler vendors have little incentive to include partitioning in 
their tools. 

A binary-level partitioning approach was proposed in [30] to 
solve the tool flow problems associated with a source-level 
approach.  That approach has the advantage of being able to 
partition code compiled using any software compiler, and coming 
from any source language, including even assembly or object 
code, in contrast to source-level approaches, which are more 
restrictive.  In addition, the binary-level approach has more 
accurate software performance and size estimation. The tradeoff 
is in less high-level information. Yet, the initial work in binary 
partitioning showed comparable speedups to a source-level 
approach [30].  However, these results were based on basic 
decompilation methods and used nearly double the area as a 
source level approach. Furthermore, those results were for small 
examples.  

In our work, we describe our binary partitioning approach, 
whose novelty is the incorporation of fully automated, advanced 
decompilation techniques, which were designed by other 
researchers for binary translation purposes. We look at larger 
examples than previous work, drawn from the MediaBench [22], 
NetBench [26], and EEMBC [9] benchmarks. We show excellent 
speedups, with almost no area overhead compared to source-level 
partitioning. 



Figure 1: Tool flow for binary-level hardware/software partitioning. 
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2. BINARY PARTITIONING OVERVIEW 
Figure 1(a) shows our tool flow for binary-level 
hardware/software partitioning.  The initial steps of the flow are 
exactly the same as a software design flow.  We first compile 
high-level software source into object code, which we then link 
with other object code to create a software binary.  Binary-level 
hardware/software partitioning then converts the binary into a 
custom hardware netlist for critical regions of the application, and 
a modified binary that utilizes the hardware.   

Figure 1(b) illustrates binary-level hardware/software 
partitioning in more detail.  The first step of binary partitioning 
consists of profiling the binary to identify regions of the original 
application that would benefit from hardware implementation.  
Hardware exploration uses the profiling results to determine the 
regions used for hardware implementation.  Next, decompilation 
converts the regions destined for hardware into a high-level 
representation.  Behavioral synthesis then converts the high-level 
representation into a hardware netlist.  In addition to the previous 
steps, a binary updater modifies the binary so that the synthesized 
hardware will be used by the application. 

The main goal of profiling is to identify regions of the 
application that contribute to a large percentage of execution time, 
and whose hardware implementation might therefore yield the 
greatest overall speedup.  Loops are the most common regions 
that make up most of an application’s execution time.  In some 
cases, individual functions contribute to a large percentage of 
execution, but usually because the function is called from within a 
frequent loop.  We have developed a profiler that works with an 
instruction set simulator to calculate the percentage of execution 
time for each loop and function in a program. 

Hardware exploration uses the profiling results to select the 
particular binary regions that should be implemented in hardware.  
Hardware exploration is simplified because our studies of dozens 

of benchmarks from several different sources show that, for most 
programs, the several most frequent inner loops are often 
responsible for over 70% of program execution.  Therefore, by 
limiting hardware exploration to the several most frequent inner 
loops, we can obtain large improvements without expensive and 
complicated exploration algorithms. Exploration can consider 
nearly all possible mappings of the frequent loops to hardware. 
We use an algorithm based on a heuristic for the 0-1 Knapsack 
problem.  

The most important step in binary-level hardware/software 
partitioning is decompilation.  After hardware candidates are 
selected, decompilation converts the candidates into a high-level 
representation.  During decompilation, we apply optimizations to 
remove the overhead introduced by the assembly code and 
instruction set.  Decompilation will be discussed in more detail in 
the following section. 

Behavioral synthesis uses the decompiled, high-level 
representation to create hardware for the given region.  Before 
behavioral synthesis is performed, there may still be inefficiencies 
in the hardware representation.  Behavioral synthesis removes 
many of these inefficiencies using standard compiler 
optimizations like constant propagation and temporary variable 
elimination.  Constant propagation is necessary to remove the 
overhead from unnecessary operations, such as an add instruction 
with an immediate value of zero.  Compilers commonly use these 
kinds of instructions instead of other more appropriate 
instructions, such as a move instruction.  Temporary variable 
elimination is needed to remove registers that hold temporary 
values that are part of larger expressions.  If not removed, these 
temporary registers can get synthesized to hardware, causing an 
area overhead. 

For our experiments, we have developed our own behavioral 
synthesis tool that is integrated with the decompilation tool.  
Integrating the decompilation and synthesis tools allowed us to 
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Figure 2: Decompilation process: a) original code, b) binary/assembly code, c) conversion to register transfer lists, d) control 
flow graph generation, e) data flow graph generation, f) decompiled code. 
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Mov R6, R0 
J cond 
Loop: 
Mul R1, R2 
Movlo R3 
Add R5, R5, R3 
Addi R6, R6, 1 
Cond: 
Blt R6, 100, Loop 

R6 = R0 
RLO = R1 * R2 
R3 = RLO 
R5 = R5 + R3 
R6 = R6 + 1 
Jcond = R6 < 100 

Original High-Level Code 

for (i=0; i < 100; i++) { 
     sum += input1 * input2; 
} 
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put the microprocessor into a low-power sleep mode while the 
hardware is executing.  The processor is woken up by an interrupt 
originating from the hardware, which specifies the completion of 
hardware execution.  We assume that the time to wake up the 
processor is small (approximately 10 cycles).  If the processor 
takes much longer to resume execution, the binary updater can 
simply leave the processor in a busy waiting loop that waits for 
the end of hardware execution.  Busy waiting would resume 
software execution much faster, at the expense of more power 
during hardware execution.  The initialization code also includes 
instructions that write back hardware results and then jump to the 
end of the original software region. 

3. DECOMPILATION 
Figure 2 illustrates the process of decompilation. We have created 
an automated decompilation tool that performs the described 
techniques to decompile regions of binary code that are to be 
implemented in hardware.  Most of the techniques we utilize are 
from the University of Queensland Binary Translator (UQBT) [7].  
The source code and assembly code for the example used in this 
section are shown in Figure 2(a) and Figure 2(b), respectively. 

The first step in decompilation is the conversion of assembly 
instructions into register transfer lists.  A register transfer is an 
assignment statement for a particular register (or memory 
location).  Decompilation techniques typically use semantic 
strings to represent the expression for each register transfer.  A 

f) 



register transfer list is a series of register transfers.  Register 
transfers provide an instruction-set independent representation of 
the program.  To convert a region of code to register transfer lists, 
decompilation converts each individual assembly instruction into 
a series of register transfers.  For the example shown in Figure 
2(c), decompilation converts each instruction into a single register 
transfer.  For more complex instructions, several register transfers 
may be required.  Decompilation handles instruction side effects 
by converting any side effects into explicit register transfers.  For 
example, a pop instruction requires one register transfer to modify 
the stack pointer and another register transfer to read from 
memory.   

After a region of code is converted to register transfers, the 
next step in decompilation is control flow graph (CFG) 
generation, as shown in Figure 2(d).  The first step in CFG 
generation is basic block determination, for which there are 
several standard algorithms.  Once the basic blocks have been 
determined, CFG generation connects the basic blocks to form the 
control flow graph.  One of the drawbacks to a binary-level 
approach exists during CFG generation.  If an indirect jump exists 
in a region, we may not be able to decompile that region of code.  
An indirect jump generally uses the value of a register as the 
target of the jump.  The most common use of indirect jumps is for 
implementing function pointers and switch statements.  There are 
several ways of dealing with indirect jumps [7], but in the worst 
case, we must exclude a region of code with an indirect jump 
from hardware implementation. 

A data flow graph (DFG) is generated for the register 
transfers in each block.  DFG generation is performed by parsing 
the semantic strings and creating a tree that defines each register 
transfer.  DFG generation performs definition-use and use-
definition analysis on the register transfer lists to connect the trees 
for each register transfer into a full data flow graph.  Figure 2(e) 
shows the DFG generation process. 

After a control flow graph has been determined, the next step 
in decompilation is the recovery of high-level control structures 
(loops, if statements, etc.).  We use interval theory [8] to 
determine loops and nesting orders of loops.  Two-way 
conditionals (if-then, if-then-else) can be recovered by a method 
described in [8].  For our decompilation tool, we do not explicitly 

determine two-way conditional statements.  The decompilation 
tool detects that a two-way conditional exists, but does not 
determine the high-level type.  During subsequent synthesis, we 
simply treat two-way conditionals as two possible state 
transitions.  Figure 2(f) shows the decompiled representation of 
the program after we have recovered high-level control structures. 

Table 1: Benchmark overview. 

Example Benchmark Suite Total Ins Loop Ins Loop Time% Loop Size% Ideal Speedup
g721 MediaBench 11,878 132 55% 1.1% 2.2
adpcm MediaBench 9,302 153 99% 1.6% 100.0
pegwit MediaBench 24,990 219 78% 0.9% 4.5
dh NetBench 21,678 250 75% 1.2% 4.0
tl NetBench 12,140 9 51% 0.1% 2.0
url NetBench 13,526 17 80% 0.1% 5.0
AIFFTR01 EEMBC 16682 316 80% 1.9% 5.1
AIFIRF01 EEMBC 15832 150 93% 0.9% 13.3
BITMNP01 EEMBC 17400 2121 100% 12.2% 2272.7
IDCTRNO1 EEMBC 17,136 222 77% 1.3% 4.4
PNTRCH01 EEMBC 15,554 284 100% 1.8% 714.3
TTSPKR01 EEMBC 16,558 39 65% 0.2% 2.9
dither EEMBC 15,342 48 100% 0.3% 249.7

Average: 16,001 305 81% 1.8% 260.0
5.0Median:  

After a high-level representation of a region of code has been 
recovered, we apply optimizations to remove overhead introduced 
by the instruction set and assembly code.  The behavioral 
synthesis tool handles most of the required optimizations.  
However, the decompilation tool performs several necessary 
optimizations.  An example of a decompiler optimization occurs 
for an instruction set using compare instructions that have an 
implicit zero operand.  In this situation, a comparison of two 
values first requires a subtract instruction followed by a compare 
with zero.  In a high-level representation, the subtract operation is 
unnecessary and must be removed to create efficient hardware. 

4. EXPERIMENTS 
4.1 Setup 
For our experiments, we assume a single-chip platform having a 
MIPS microprocessor with on-chip cache and an on-chip Xilinx 
FPGA configurable logic fabric. We utilized that particular 
microprocessor and FPGA fabric in part because we had good 
compilation, simulation, synthesis and estimation tools for each. 
While we have performed physical measurements of partitioning 
results using real platforms [28][29], we can examine examples 
far more quickly using simulation-based methods. We have 
previously found our simulation-based methods to yield similar 
power and performance as our physical measurements [29]. Our 
platform’s system architecture is very similar to existing 
commercial architectures [1][31][35]. The MIPS runs at 200 MHz 
(which is reasonably fast for an embedded processor) with a CPI 
(cycles per instruction) of 1.5. We assume that the microprocessor 
and configurable logic share a data cache, which is similar to the 
GARP [16] system.  Sharing the data cache allows us to 
implement more flexible memory accesses than would be possible 
with a DMA and avoids cache coherency problems that may 
occur.   



We analyzed software performance by execution on 
SimpleScalar [6], a cycle accurate simulator for a MIPS-like 
processor. We multiplied the dynamic instruction count from 
SimpleScalar by our assumed CPI and clock cycle time to get 
software execution time. We used the gcc compiler with 
optimization set to level 1. We analyzed hardware performance 
by synthesizing our partitioner’s RT-level output to a Xilinx 
FPGA netlist using Xilinx ISE, which tells us the critical path and 
hence the fastest FPGA clock frequency. Our partitioning tool 
outputs the latency, measured in clock cycles, of the longest path 
through a single iteration of each loop that is implemented in 
hardware.  We then multiply this latency by the total iterations of 
the loop to get hardware cycles.  We also add in the time required 
to enable and initialize the hardware, the time required to write 
back any results upon completion, and the time required by the 
microprocessor to resume execution. 

We determined the application’s software size from the static 
instruction count reported by SimpleScalar.  Our profiling tools 
reported the software size of the loops that we implemented in 
hardware.  We obtained hardware area from Xilinx ISE. 

We computed software power by using the reported power of 
the 0.18 micron MIPS 4KP core [25], which would be 220 mW at 
200 MHz.  We determined FPGA power using the Xilinx Virtex 
Power Estimator [33], for the Xilinx xvc300e.  To determine total 
power of the system, we used the following formula: 
 

%Sw*PSw + %Hw*(PHw + .25* PSw) + PI + PQ, 
 

where %Sw is the percentage of time spent executing in software,  
PSw is the power of the microprocessor, %Hw is the percentage 
of the time spent executing in configurable logic, PHw is the 
power of the configurable logic, PI is the power of the system 
interconnect and memories, and PQ  is the quiescent power.  We 
estimate that the power of interconnect and memory is 100 mW, 
which is based on physical measurements we made of the 
Triscend platforms.  The formula for total power represents a 
weighted average of the system power during software execution 
and the system power during hardware execution.  The formula 
assumes that the power-down sleep mode of the microprocessor 
consumes 25% of the power during normal execution (e.g., [20]).  
The formula also assumes that the only significant power of the 
configurable logic during software execution is quiescent power, 
as is typically the case.  This formula has been compared to actual 
implementations on the Triscend A7 platform in [28], which 
showed estimated results and actual results to be similar. 

Our decompilation and behavioral synthesis tools consist of 
approximately 7,000 lines of C code.  The average run time for 
the partitioning tools was approximately 2 seconds, running on a 
550 MHz Pentium III.  The average size of the register transfer 
VHDL was between 1000 and 2000 lines – a reasonable size for 
synthesis using Xilinx tools. 

Table 1 contains an overview of the benchmarks used in our 
experiments.  Total Ins is the total number of instructions in the 
example.  Loop Ins is the number of instructions in the loops that 
were implemented in hardware.  Loop Time% is the percentage of 
execution time spent in the loops that were implemented in 
hardware.  Loop Size% is the percentage of the total instructions 
used by the loops.  Ideal Speedup is the largest possible speedup 
if the loops were implemented in zero time.  Note that the loops 
that were implemented in hardware contributed to an average of 

81% of execution time.  This percentage corresponds to an 
average ideal speedup of 260.  The median for the speedup is 5.0, 
which is significantly lower than the average due to the existence 
of several outliers.  In addition to large potential speedups, these 
loops consisted of only 1.8% of the total program size, implying 
that little area may be required for hardware implementation.  For 
the examples that have a reported Loop Time% of 100%, the 
percentage is actually slightly less and rounds to 100%. 

4.2 Partitioning results for MediaBench, 
NetBench, and EEMBC benchmarks 
To show that binary-level hardware/software partitioning is 
beneficial, we partitioned the binaries of many examples from the 
popular benchmark suites MediaBench, NetBench, and EEMBC.  
Table 2 shows the results for the partitioned examples.  Time is 
the total time of the example when running in software.  Loop 
Time is the time required by the implemented loops when running 
in software.  Hw Loop Time is the time required by the 
implemented loops when running in hardware.  Hw Clock is the 
maximum clock frequency used by the configurable logic, 
reported in megahertz.  Hw/Sw Time is the execution time of the 
partitioned example. Ideal Speedup is the maximum possible 
speedup.  Speedup is the performance increase of the partitioned 
example.  Area is the required amount of configurable logic, 
given in equivalent ASIC gates.  Energy Savings is the percentage 
energy savings of the partitioned example.  All times values are 
reported in seconds. 

Binary-level partitioning achieved an average speedup of 3.0 
for the tested examples.  For several of the examples, the speedup 
was far below the ideal speedup.  The main reason for this 
difference is that our partitioning tool limits optimizations to 
individual basic blocks.  In several cases, this limitation causes a 
large decrease in speedup.  We are currently working to improve 
the optimizations in our partitioning tools.  Despite the large 
difference between ideal speedup and actual speedup for several 
examples, we were still able to achieve significant speedups. 

The average area required was 14,772 logic gates – a 
reasonable amount for current FPGAs.  AIFFTR01 required an 
excessive 54,852 gates, due to the use of several multipliers.  
AIFFTR01 could be improved by modifying the amount of 
available multipliers during scheduling. 

Binary partitioning achieved a significant energy savings of 
52%.  The main reason for this large savings was the performance 
improvement.  Power consumption was approximately 5% lower 
after partitioning, implying that use of the configurable logic was 
not a power overhead. 

Binary partitioning was unable to create hardware for two 
EEMBC examples.  CACHEB01 contained function pointers in 
the frequent loop that was selected for hardware implementation.  
The compiler converted function-pointer calls into indirect jumps.  
As previously stated, we are unable to handle indirect jumps 
during decompilation.  CANRDR01 resulted in the same problem, 
due to the use of a switch statement in the frequent loop. 

4.3 Source vs. binary partitioning comparison 
In the previous section, we showed that binary-level partitioning 
can achieve large performance and energy improvements.  We 
now compare results for source-level and binary-level partitioning 
approaches to show that binary-level partitioning can in fact 
achieve results similar to source-level partitioning.  For the 
source-level experiments, we manually translated the C code for 



Table 2: Binary partitioning results for MediaBench, NetBench, and EEMBC benchmarks. 

Ex Time
Loop 
Time

Hw Loop 
Time

Hw 
Clock

Hw/Sw 
Time

Ideal 
Speedup Speedup Area

Energy 
Savings

g721 4.191 2.288 0.53 115 2.43 2.2 1.7 4,779 44%
adpcm 0.164 0.164 0.05 73 0.05 100.0 3.0 15,240 71%
pegwit 0.214 0.166 0.03 115 0.07 4.5 2.9 15,386 64%
dh 8.965 6.745 2.31 63 4.53 4.0 2.0 16,607 53%
tl 0.287 0.146 0.10 124 0.24 2.0 1.2 2,020 23%
url 0.137 0.109 0.01 138 0.03 5.0 4.0 1,234 76%
AIFFTR01 0.623 0.501 0.33 85 0.45 5.1 1.4 54,852 15%
AIFIRF01 0.403 0.37 0.22 107 0.29 13.3 1.4 13,911 34%
BITMNP01 1.745 1.744 0.20 119 0.20 2272.7 8.8 15,535 88%
IDCNTRN01 0.75 0.579 0.07 46 0.24 4.4 3.1 20,439 70%
PNTRCH01 0.577 0.576 0.11 134 0.11 714.3 5.1 8,595 82%
TTSPKR01 0.352 0.23 0.15 136 0.27 2.9 1.3 8,249 25%
dither 1.744 1.737 0.62 140 0.62 249.7 2.8 15,194 35%
Average: 0.36 107.3 0.74 260.0 3.0 14,772 52%

Binary-Level PartitioningSW

 

each example into VHDL.  We manually optimized the VHDL to 
create the best performing hardware that we could achieve.  We 
are currently in the process of finishing the source-level results 
for EEMBC. 

We restate that binary-level partitioning is not intended to 
achieve superior results compared to source-level partitioning.  
The advantages of binary-level partitioning are a more transparent 
integration into standard tool flows, without sacrificing the quality 
of results. 

Table 3 compares the results of source-level partitioning and 
binary-level partitioning.  Time is the total time of the example 
when running in software.  Loop Time is the time required by the 
implemented loops when running completely in software.  Hw 
Loop Time is the time required by the implemented loops when 
running in hardware.  Hw Clock is the maximum clock frequency 
used for the configurable logic, given in megahertz.  Hw/Sw Time 
is the execution time of the partitioned example. S is the speedup 

of the partitioned example.  A is the area required for the 
configurable logic, given in equivalent ASIC gates.  E% is the 
percentage of energy savings.  All times values are reported in 
seconds. 

Table 3: Comparison of source-level and binary-level hardware/software partitioning. 

Ex Time
Loop 
Time

Hw Loop 
Time

Hw 
Clock

Hw/Sw 
Time S A E%

Hw Loop 
Time

Hw 
Clock

Hw/Sw 
Time S A E%

g721 4.191 2.288 0.45 98 2.35 1.8 8,394 45% 0.53 115 2.43 1.7 4,779 44%
adpcm 0.164 0.164 0.03 40 0.03 5.5 14,132 87% 0.05 73 0.05 3.0 15,240 71%
pegwit 0.214 0.166 0.05 48 0.09 2.3 18,150 61% 0.03 115 0.07 2.9 15,386 64%
dh 8.965 6.745 2.18 40 4.40 2.0 21,383 57% 2.31 63 4.53 2.0 16,607 53%
tl 0.287 0.146 0.08 61 0.22 1.3 5,478 31% 0.10 124 0.24 1.2 2,020 23%
url 0.137 0.109 0.01 156 0.03 4.1 2,929 76% 0.01 138 0.03 4.0 1,234 76%
AIFIRF01 0.403 0.371 0.25 112 0.28 1.4 22,361 31% 0.22 107 0.29 1.4 13,911 34%
IDCTRN01 0.75 0.579 0.07 49 0.24 3.2 15,136 71% 0.07 46 0.24 3.1 20,439 70%
TTSPKR01 0.352 0.23 0.14 143 0.26 1.4 9,171 34% 0.15 136 0.27 1.3 8,249 25%
dither 1.744 1.737 0.63 127 0.63 2.8 16,093 38% 0.62 140 0.62 2.8 15,194 35%
Average: 0.39 87 0.85 2.6 13,323 53% 0.41 106 0.88 2.3 11,306 50%
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Source-level partitioning achieved an average speedup of 2.6.  
Binary-level partitioning achieved an average speedup of 2.3.  
Adpcm performed much better at the source level, achieving a 
speedup of 5.5 that was almost twice the binary-level speedup.  
The main reason for this difference is that adpcm has many small 
basic blocks that can be optimized away.  As previously stated, 
our partitioning tool limits optimizations to individual blocks and 
is unable to schedule operations from different blocks to the same 
clock cycle.  Therefore, the source-level approach currently can 
exploit more parallelism than our binary partitioning tools, 
causing decreased performance. We are currently implementing 
optimizations in our partitioning tools to fix the performance 
difference.  Another interesting result is that the binary-level 



version of pegwit actually outperforms the source-level version.  
The reason for this performance difference is that the manually 
written VHDL was unable to match the clock frequency for the 
binary-level results.  We could of course continue to revise the 
manually written VHDL to reach the desired clock frequency, but 
our initial efforts were unable to achieve the frequency of the 
binary example.  At the same clock frequency, the source-level 
results for pegwit would have been better than the binary-level. 

The source-level hardware required an average area of 13,323 
gates.  The binary-level results required slightly less area, 
averaging 11,306 gates.  The main reason for the area differences 
is that the source-level examples outperformed the binary-level 
examples, doing so by using more resources.  The average clock 
frequency of 87 MHz for source-level partitioning was lower than 
the 106 MHz for binary-level partitioning because of these area 
differences.  The source-level examples performed more 
computation in each cycle, which required a slower clock.  Our 
area results improved greatly compared to previous binary 
partitioning work [30], where the area of the binary-level 
examples was more than twice that of source-level examples.   

Energy savings for the source-level examples was 53%.  The 
binary-level energy savings was 50%.  The main reason for the 
difference is that the source-level examples had smaller execution 
times and lower clock frequencies, leading to reduced power.  
The source-level results reduced overall power by 11%.  The 
binary-level results reduced overall power by 5%.  Previous 
efforts on partitioning for single-chip platforms [28][29] 
experienced a power increase when using the configurable logic.  
Our experiments experienced a power reduction because we are 
using a microprocessor that consumes more power (because the 
microprocessor is much faster) than in previous efforts.  
Therefore, shutting down the microprocessor and executing in the 
configurable logic was actually able to reduce power. 

5. FUTURE ISSUES 
Unlike source-level approaches, binary-level partitioning is 
dependent on the instruction set of the microprocessor and any 
compiler optimizations that are performed while creating the 
binary.  The dependence on instruction sets and optimizations are 
possible drawbacks to hardware/software partitioning at the 
binary level.  We plan to investigate these dependences in future 
work. 

Loop unrolling is the most likely optimization to affect binary 
partitioning.  The largest problem with unrolled loops is detecting 
the existence of an unrolled loop during profiling.  Previous work 
[24] in loop re-rolling can be used to solve this problem.  Loop re-
rolling is a computationally expensive technique. However, we 
are only concerned with detecting unrolled loops, which can be 
done with pattern matching.  Synthesizing an unrolled loop can be 
handled during behavioral synthesis using an appropriate 
scheduling algorithm.  By limiting the number of available 
resources to the amount used by a single iteration of the loop, we 
can generate efficient hardware for the unrolled loop.  Therefore, 
by using pattern matching algorithms to detect unrolled loops and 
sophisticated scheduling algorithms to synthesize unrolled loops, 
we can generate hardware that is very similar to a normal loop. 

We have recently begun to look at the effects of different 
instruction sets on the results of binary partitioning.  Initially, 
instruction side effects seemed to potentially degrade the quality 
of hardware, but we found that decompilation techniques fixed 
this problem.  We plan on handling predicated instructions either 

by extracting the conditition from the predicated instruction and 
including the condition in the control-flow graph, or by using a 
conditional write to the destination specified by the predicated 
instruction.  For all the instruction sets that we have currently 
looked at, register windows in the SPARC instruction set seem to 
be the hardest to overcome during decompilation.  We are 
currently working on a solution to register windows.  We are also 
currently working on converting our partitioning tools to the 
ARM instruction set, which will show that binary partitioning is 
possible on a variety of popular embedded processors. 

6. CONCLUSIONS 
Hardware/software partitioning is an effective technique to 
increase performance and reduce energy in embedded systems.  
Traditional source-level partitioning approaches have the 
drawback of requiring an inconvenient integration into a tool 
flow.  Binary-level partitioning largely solves the tool flow 
problem while achieving comparable results.  Binary partitioning 
has the added benefits of more accurate estimation and the ability 
to create hardware for assembly and object code. 

In this paper, we showed that by incorporating powerful 
automatic decompilation methods, along with behavioral 
synthesis, into a binary-level partitioner, excellent partitioning 
speed, power, and area can result.  We examined examples from 
MediaBench, NetBench, and EEMBC benchmarks.  Binary-level 
partitioning achieved an average speedup of 3.0 and energy 
savings of 52%, while only requiring 14,772 gates on average.  
We also compared source-level partitioning results with 
automated binary partitioning results to show that similar results 
can in fact be achieved.  Speedups averaged 2.6 for source-level 
examples and 2.3 for binary-level examples.  Energy savings were 
also similar, with source-level partitioning achieving 53% savings 
and binary-level partitioning achieving 50% savings.  The binary-
level results required less area than the source-level results. 
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