
Binary-Level Hardware/Software Partitioning of
MediaBench, NetBench, and EEMBC Benchmarks

Greg Stitt and Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{gstitt | vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid

* Also with the Center for Embedded Computer Systems at UC Irvine
Technical Report UCR-CSE-03-01

January 2003

ABSTRACT
Hardware/software partitioning can greatly reduce execution
time and energy consumption of embedded systems. However,
traditional source-level partitioning approaches have had limited
success due in part to tool flow problems. Previous research
introduced binary-level hardware/software partitioning as a
solution to the tool flow problem, showing competitive speedups
at the cost of almost double the hardware area. We incorporate
powerful automated decompilation methods, previously developed
by other researchers for binary translation tools, into a binary
partitioning tool. Such incorporation eliminates the area
overhead of previous approaches. Furthermore, we apply our tool
to much larger examples than previous binary partitioning efforts,
using examples from MediaBench, NetBench, and EEMBC
benchmarks, and we show that speedups are still comparable with
source-level partitioning even on these larger examples. Our
results show that binary partitioning can result in average
speedups of 3.0 and energy savings of 52% over software-only
implementations, using an architecture similar to commercially
available single-chip microprocessor/configurable-logic
platforms.

Keywords
Hardware/software partitioning, decompilation, low power,
speedup, FPGA, codesign, synthesis, platform, binary translation.

1. INTRODUCTION
Previous research has shown hardware/software partitioning to be
very beneficial in embedded systems. Hardware/software
partitioning divides an application’s high-level description onto
software running on a microprocessor and one or more hardware
co-processors. Researchers have shown that such partitioning can
yield large speedups and have thus sought to automate
partitioning [3][10][11][12][15][17][21][23][32]. More recently,
research has shown hardware/software partitioning to also greatly
reduce energy consumption [18][19][28][29][34].

The recent appearance of single-chip platforms incoporating a
microprocessor and field-programmable gate array (FPGA), such
as the Triscend E5 and A7 [31], Xilinx Virtex II Pro [35], and
Altera Excalibur [1], make hardware/software partitioning even
more advantageous. These platforms can provide a time-to-
market, cost, and size comparable to microprocessor-only designs,
while achieving significantly better performance. These
platforms also have more efficient hardware/software
communication compared to multiple chip designs, often leading

to reduced power and improved performance. While partitioning
using off-chip configurable logic may increase energy compared
to a software-only implementation due to expensive
communication, utilizing on-chip configurable logic, which
supports very efficient communication, can instead achieve large
energy savings [28][29].

The traditional approach to hardware/software partitioning
consists of partitioning code at the source-code level. This
approach first compiles a high-level language to an intermediate
format that is then explored for hardware candidates. Examples
of source-level approaches include all the partitioning approaches
referenced in the first paragraph, as well as Napa C [14], SA-C
[4], Nimble [13], PRISM [2], DEFACTO [5], and Proceler [27].
At this time, source-level approaches have had limited
commercial success, due in part to tool flow integration
resistance. Most source-level approaches require replacing an
existing compiler with a partitioning compiler, a replacement that
is likely to be resisted by designers, who generally have trusted
compilers and integrated development environments. The vast
majority of compiler users want software only, so the strongest
compiler vendors have little incentive to include partitioning in
their tools.

A binary-level partitioning approach was proposed in [30] to
solve the tool flow problems associated with a source-level
approach. That approach has the advantage of being able to
partition code compiled using any software compiler, and coming
from any source language, including even assembly or object
code, in contrast to source-level approaches, which are more
restrictive. In addition, the binary-level approach has more
accurate software performance and size estimation. The tradeoff
is in less high-level information. Yet, the initial work in binary
partitioning showed comparable speedups to a source-level
approach [30]. However, these results were based on basic
decompilation methods and used nearly double the area as a
source level approach. Furthermore, those results were for small
examples.

In our work, we describe our binary partitioning approach,
whose novelty is the incorporation of fully automated, advanced
decompilation techniques, which were designed by other
researchers for binary translation purposes. We look at larger
examples than previous work, drawn from the MediaBench [22],
NetBench [26], and EEMBC [9] benchmarks. We show excellent
speedups, with almost no area overhead compared to source-level
partitioning.

Figure 1: Tool flow for binary-level hardware/software partitioning.

Sw source

2. BINARY PARTITIONING OVERVIEW
Figure 1(a) shows our tool flow for binary-level
hardware/software partitioning. The initial steps of the flow are
exactly the same as a software design flow. We first compile
high-level software source into object code, which we then link
with other object code to create a software binary. Binary-level
hardware/software partitioning then converts the binary into a
custom hardware netlist for critical regions of the application, and
a modified binary that utilizes the hardware.

Figure 1(b) illustrates binary-level hardware/software
partitioning in more detail. The first step of binary partitioning
consists of profiling the binary to identify regions of the original
application that would benefit from hardware implementation.
Hardware exploration uses the profiling results to determine the
regions used for hardware implementation. Next, decompilation
converts the regions destined for hardware into a high-level
representation. Behavioral synthesis then converts the high-level
representation into a hardware netlist. In addition to the previous
steps, a binary updater modifies the binary so that the synthesized
hardware will be used by the application.

The main goal of profiling is to identify regions of the
application that contribute to a large percentage of execution time,
and whose hardware implementation might therefore yield the
greatest overall speedup. Loops are the most common regions
that make up most of an application’s execution time. In some
cases, individual functions contribute to a large percentage of
execution, but usually because the function is called from within a
frequent loop. We have developed a profiler that works with an
instruction set simulator to calculate the percentage of execution
time for each loop and function in a program.

Hardware exploration uses the profiling results to select the
particular binary regions that should be implemented in hardware.
Hardware exploration is simplified because our studies of dozens

of benchmarks from several different sources show that, for most
programs, the several most frequent inner loops are often
responsible for over 70% of program execution. Therefore, by
limiting hardware exploration to the several most frequent inner
loops, we can obtain large improvements without expensive and
complicated exploration algorithms. Exploration can consider
nearly all possible mappings of the frequent loops to hardware.
We use an algorithm based on a heuristic for the 0-1 Knapsack
problem.

The most important step in binary-level hardware/software
partitioning is decompilation. After hardware candidates are
selected, decompilation converts the candidates into a high-level
representation. During decompilation, we apply optimizations to
remove the overhead introduced by the assembly code and
instruction set. Decompilation will be discussed in more detail in
the following section.

Behavioral synthesis uses the decompiled, high-level
representation to create hardware for the given region. Before
behavioral synthesis is performed, there may still be inefficiencies
in the hardware representation. Behavioral synthesis removes
many of these inefficiencies using standard compiler
optimizations like constant propagation and temporary variable
elimination. Constant propagation is necessary to remove the
overhead from unnecessary operations, such as an add instruction
with an immediate value of zero. Compilers commonly use these
kinds of instructions instead of other more appropriate
instructions, such as a move instruction. Temporary variable
elimination is needed to remove registers that hold temporary
values that are part of larger expressions. If not removed, these
temporary registers can get synthesized to hardware, causing an
area overhead.

For our experiments, we have developed our own behavioral
synthesis tool that is integrated with the decompilation tool.
Integrating the decompilation and synthesis tools allowed us to

Compilation

Binary

Hw/Sw
Partitioning

Sw Binary Hw Netlist

Assembler &
Linker

Assembly
&

object files

Hw/Sw Partitioning Binary

Decompilation

Profiling

Hw Exploration

Behavioral
Synthesis Binary Updater

Sw Binary Hw Netlist

b) a)

Figure 2: Decompilation process: a) original code, b) binary/assembly code, c) conversion to register transfer lists, d) control
flow graph generation, e) data flow graph generation, f) decompiled code.

Assembly Code RegisterTransfer Lists

Mov R6, R0
J cond
Loop:
Mul R1, R2
Movlo R3
Add R5, R5, R3
Addi R6, R6, 1
Cond:
Blt R6, 100, Loop

R6 = R0
RLO = R1 * R2
R3 = RLO
R5 = R5 + R3
R6 = R6 + 1
Jcond = R6 < 100

Original High-Level Code

for (i=0; i < 100; i++) {
 sum += input1 * input2;
}

a) b) c)

CFG DFG for Blocks 1&2
Decompiled Code

R1 1R5 100R2 R6
Block 0

have more control over the har
particular, achieving the desired cloc
integrated approach eliminates th
control structure detection that is
tools. Given that we had already im
tools, adding the behavioral synthe
due to the convenience of being ab
level representation from the decom
implementations could certainly
behavioral synthesis.

Our behavioral synthesis tool p
resource-constrained version of lis
reduces the amount of hardware
algorithm. The tool currently s
multipliers, shifters, and any Boolea
of the tool is register-transfer (RT
We then use a commercial synthes
level VHDL to a netlist. Since our
we don’t have to handle control
simply specify states and state transi

The binary updater modifies th
newly created hardware. The binar
by replacing the original region of c
initialization code. The initializ
necessary values from memory, sen
and then writes to a port or memory
the hardware. The initialization cod

Block 1

 for (R6=0; R6 < 100; R6++) {
 R5 += R1 * R2;

Block 2

d)
*

dwar
k fre

e ne
neces
plem
sis t

le to
pilati
cons

erfor
t sch
 res
uppo
n lo

) lev
is to
tool
logi

tions
e orig
y upd
ode
ation
ds th
-map
e als

RLO

R3

R6
}

Jcond
+

e that is created
quency. In addition
ed for some high
sary for other syn
ented the decompi

asks was quite fea
directly access the
on tool. However, f
ider using comm

ms a minimum lat
eduling. The tool
ources using a g
rts adders, subtra

gic function. The o
el synthesizable V
ol to synthesize the
outputs RT-level V
c synthesis and in
 in the VHDL.
inal binary to utiliz
ater modifies the b

with a jump to hard
 code first reads
e values to the hard
ped register that en

o contains instructio

R5 e)
+

– in
, this

-level
thesis
lation
sible,
high-
uture
ercial

ency,
 then
reedy
ctors,
utput

HDL.
 RT-

HDL,
stead

e the
inary
ware
 any
ware,
ables
ns to
<

put the microprocessor into a low-power sleep mode while the
hardware is executing. The processor is woken up by an interrupt
originating from the hardware, which specifies the completion of
hardware execution. We assume that the time to wake up the
processor is small (approximately 10 cycles). If the processor
takes much longer to resume execution, the binary updater can
simply leave the processor in a busy waiting loop that waits for
the end of hardware execution. Busy waiting would resume
software execution much faster, at the expense of more power
during hardware execution. The initialization code also includes
instructions that write back hardware results and then jump to the
end of the original software region.

3. DECOMPILATION
Figure 2 illustrates the process of decompilation. We have created
an automated decompilation tool that performs the described
techniques to decompile regions of binary code that are to be
implemented in hardware. Most of the techniques we utilize are
from the University of Queensland Binary Translator (UQBT) [7].
The source code and assembly code for the example used in this
section are shown in Figure 2(a) and Figure 2(b), respectively.

The first step in decompilation is the conversion of assembly
instructions into register transfer lists. A register transfer is an
assignment statement for a particular register (or memory
location). Decompilation techniques typically use semantic
strings to represent the expression for each register transfer. A

f)

register transfer list is a series of register transfers. Register
transfers provide an instruction-set independent representation of
the program. To convert a region of code to register transfer lists,
decompilation converts each individual assembly instruction into
a series of register transfers. For the example shown in Figure
2(c), decompilation converts each instruction into a single register
transfer. For more complex instructions, several register transfers
may be required. Decompilation handles instruction side effects
by converting any side effects into explicit register transfers. For
example, a pop instruction requires one register transfer to modify
the stack pointer and another register transfer to read from
memory.

After a region of code is converted to register transfers, the
next step in decompilation is control flow graph (CFG)
generation, as shown in Figure 2(d). The first step in CFG
generation is basic block determination, for which there are
several standard algorithms. Once the basic blocks have been
determined, CFG generation connects the basic blocks to form the
control flow graph. One of the drawbacks to a binary-level
approach exists during CFG generation. If an indirect jump exists
in a region, we may not be able to decompile that region of code.
An indirect jump generally uses the value of a register as the
target of the jump. The most common use of indirect jumps is for
implementing function pointers and switch statements. There are
several ways of dealing with indirect jumps [7], but in the worst
case, we must exclude a region of code with an indirect jump
from hardware implementation.

A data flow graph (DFG) is generated for the register
transfers in each block. DFG generation is performed by parsing
the semantic strings and creating a tree that defines each register
transfer. DFG generation performs definition-use and use-
definition analysis on the register transfer lists to connect the trees
for each register transfer into a full data flow graph. Figure 2(e)
shows the DFG generation process.

After a control flow graph has been determined, the next step
in decompilation is the recovery of high-level control structures
(loops, if statements, etc.). We use interval theory [8] to
determine loops and nesting orders of loops. Two-way
conditionals (if-then, if-then-else) can be recovered by a method
described in [8]. For our decompilation tool, we do not explicitly

determine two-way conditional statements. The decompilation
tool detects that a two-way conditional exists, but does not
determine the high-level type. During subsequent synthesis, we
simply treat two-way conditionals as two possible state
transitions. Figure 2(f) shows the decompiled representation of
the program after we have recovered high-level control structures.

Table 1: Benchmark overview.

Example Benchmark Suite Total Ins Loop Ins Loop Time% Loop Size% Ideal Speedup
g721 MediaBench 11,878 132 55% 1.1% 2.2
adpcm MediaBench 9,302 153 99% 1.6% 100.0
pegwit MediaBench 24,990 219 78% 0.9% 4.5
dh NetBench 21,678 250 75% 1.2% 4.0
tl NetBench 12,140 9 51% 0.1% 2.0
url NetBench 13,526 17 80% 0.1% 5.0
AIFFTR01 EEMBC 16682 316 80% 1.9% 5.1
AIFIRF01 EEMBC 15832 150 93% 0.9% 13.3
BITMNP01 EEMBC 17400 2121 100% 12.2% 2272.7
IDCTRNO1 EEMBC 17,136 222 77% 1.3% 4.4
PNTRCH01 EEMBC 15,554 284 100% 1.8% 714.3
TTSPKR01 EEMBC 16,558 39 65% 0.2% 2.9
dither EEMBC 15,342 48 100% 0.3% 249.7

Average: 16,001 305 81% 1.8% 260.0
5.0Median:

After a high-level representation of a region of code has been
recovered, we apply optimizations to remove overhead introduced
by the instruction set and assembly code. The behavioral
synthesis tool handles most of the required optimizations.
However, the decompilation tool performs several necessary
optimizations. An example of a decompiler optimization occurs
for an instruction set using compare instructions that have an
implicit zero operand. In this situation, a comparison of two
values first requires a subtract instruction followed by a compare
with zero. In a high-level representation, the subtract operation is
unnecessary and must be removed to create efficient hardware.

4. EXPERIMENTS
4.1 Setup
For our experiments, we assume a single-chip platform having a
MIPS microprocessor with on-chip cache and an on-chip Xilinx
FPGA configurable logic fabric. We utilized that particular
microprocessor and FPGA fabric in part because we had good
compilation, simulation, synthesis and estimation tools for each.
While we have performed physical measurements of partitioning
results using real platforms [28][29], we can examine examples
far more quickly using simulation-based methods. We have
previously found our simulation-based methods to yield similar
power and performance as our physical measurements [29]. Our
platform’s system architecture is very similar to existing
commercial architectures [1][31][35]. The MIPS runs at 200 MHz
(which is reasonably fast for an embedded processor) with a CPI
(cycles per instruction) of 1.5. We assume that the microprocessor
and configurable logic share a data cache, which is similar to the
GARP [16] system. Sharing the data cache allows us to
implement more flexible memory accesses than would be possible
with a DMA and avoids cache coherency problems that may
occur.

We analyzed software performance by execution on
SimpleScalar [6], a cycle accurate simulator for a MIPS-like
processor. We multiplied the dynamic instruction count from
SimpleScalar by our assumed CPI and clock cycle time to get
software execution time. We used the gcc compiler with
optimization set to level 1. We analyzed hardware performance
by synthesizing our partitioner’s RT-level output to a Xilinx
FPGA netlist using Xilinx ISE, which tells us the critical path and
hence the fastest FPGA clock frequency. Our partitioning tool
outputs the latency, measured in clock cycles, of the longest path
through a single iteration of each loop that is implemented in
hardware. We then multiply this latency by the total iterations of
the loop to get hardware cycles. We also add in the time required
to enable and initialize the hardware, the time required to write
back any results upon completion, and the time required by the
microprocessor to resume execution.

We determined the application’s software size from the static
instruction count reported by SimpleScalar. Our profiling tools
reported the software size of the loops that we implemented in
hardware. We obtained hardware area from Xilinx ISE.

We computed software power by using the reported power of
the 0.18 micron MIPS 4KP core [25], which would be 220 mW at
200 MHz. We determined FPGA power using the Xilinx Virtex
Power Estimator [33], for the Xilinx xvc300e. To determine total
power of the system, we used the following formula:

%Sw*PSw + %Hw*(PHw + .25* PSw) + PI + PQ,

where %Sw is the percentage of time spent executing in software,
PSw is the power of the microprocessor, %Hw is the percentage
of the time spent executing in configurable logic, PHw is the
power of the configurable logic, PI is the power of the system
interconnect and memories, and PQ is the quiescent power. We
estimate that the power of interconnect and memory is 100 mW,
which is based on physical measurements we made of the
Triscend platforms. The formula for total power represents a
weighted average of the system power during software execution
and the system power during hardware execution. The formula
assumes that the power-down sleep mode of the microprocessor
consumes 25% of the power during normal execution (e.g., [20]).
The formula also assumes that the only significant power of the
configurable logic during software execution is quiescent power,
as is typically the case. This formula has been compared to actual
implementations on the Triscend A7 platform in [28], which
showed estimated results and actual results to be similar.

Our decompilation and behavioral synthesis tools consist of
approximately 7,000 lines of C code. The average run time for
the partitioning tools was approximately 2 seconds, running on a
550 MHz Pentium III. The average size of the register transfer
VHDL was between 1000 and 2000 lines – a reasonable size for
synthesis using Xilinx tools.

Table 1 contains an overview of the benchmarks used in our
experiments. Total Ins is the total number of instructions in the
example. Loop Ins is the number of instructions in the loops that
were implemented in hardware. Loop Time% is the percentage of
execution time spent in the loops that were implemented in
hardware. Loop Size% is the percentage of the total instructions
used by the loops. Ideal Speedup is the largest possible speedup
if the loops were implemented in zero time. Note that the loops
that were implemented in hardware contributed to an average of

81% of execution time. This percentage corresponds to an
average ideal speedup of 260. The median for the speedup is 5.0,
which is significantly lower than the average due to the existence
of several outliers. In addition to large potential speedups, these
loops consisted of only 1.8% of the total program size, implying
that little area may be required for hardware implementation. For
the examples that have a reported Loop Time% of 100%, the
percentage is actually slightly less and rounds to 100%.

4.2 Partitioning results for MediaBench,
NetBench, and EEMBC benchmarks
To show that binary-level hardware/software partitioning is
beneficial, we partitioned the binaries of many examples from the
popular benchmark suites MediaBench, NetBench, and EEMBC.
Table 2 shows the results for the partitioned examples. Time is
the total time of the example when running in software. Loop
Time is the time required by the implemented loops when running
in software. Hw Loop Time is the time required by the
implemented loops when running in hardware. Hw Clock is the
maximum clock frequency used by the configurable logic,
reported in megahertz. Hw/Sw Time is the execution time of the
partitioned example. Ideal Speedup is the maximum possible
speedup. Speedup is the performance increase of the partitioned
example. Area is the required amount of configurable logic,
given in equivalent ASIC gates. Energy Savings is the percentage
energy savings of the partitioned example. All times values are
reported in seconds.

Binary-level partitioning achieved an average speedup of 3.0
for the tested examples. For several of the examples, the speedup
was far below the ideal speedup. The main reason for this
difference is that our partitioning tool limits optimizations to
individual basic blocks. In several cases, this limitation causes a
large decrease in speedup. We are currently working to improve
the optimizations in our partitioning tools. Despite the large
difference between ideal speedup and actual speedup for several
examples, we were still able to achieve significant speedups.

The average area required was 14,772 logic gates – a
reasonable amount for current FPGAs. AIFFTR01 required an
excessive 54,852 gates, due to the use of several multipliers.
AIFFTR01 could be improved by modifying the amount of
available multipliers during scheduling.

Binary partitioning achieved a significant energy savings of
52%. The main reason for this large savings was the performance
improvement. Power consumption was approximately 5% lower
after partitioning, implying that use of the configurable logic was
not a power overhead.

Binary partitioning was unable to create hardware for two
EEMBC examples. CACHEB01 contained function pointers in
the frequent loop that was selected for hardware implementation.
The compiler converted function-pointer calls into indirect jumps.
As previously stated, we are unable to handle indirect jumps
during decompilation. CANRDR01 resulted in the same problem,
due to the use of a switch statement in the frequent loop.

4.3 Source vs. binary partitioning comparison
In the previous section, we showed that binary-level partitioning
can achieve large performance and energy improvements. We
now compare results for source-level and binary-level partitioning
approaches to show that binary-level partitioning can in fact
achieve results similar to source-level partitioning. For the
source-level experiments, we manually translated the C code for

Table 2: Binary partitioning results for MediaBench, NetBench, and EEMBC benchmarks.

Ex Time
Loop
Time

Hw Loop
Time

Hw
Clock

Hw/Sw
Time

Ideal
Speedup Speedup Area

Energy
Savings

g721 4.191 2.288 0.53 115 2.43 2.2 1.7 4,779 44%
adpcm 0.164 0.164 0.05 73 0.05 100.0 3.0 15,240 71%
pegwit 0.214 0.166 0.03 115 0.07 4.5 2.9 15,386 64%
dh 8.965 6.745 2.31 63 4.53 4.0 2.0 16,607 53%
tl 0.287 0.146 0.10 124 0.24 2.0 1.2 2,020 23%
url 0.137 0.109 0.01 138 0.03 5.0 4.0 1,234 76%
AIFFTR01 0.623 0.501 0.33 85 0.45 5.1 1.4 54,852 15%
AIFIRF01 0.403 0.37 0.22 107 0.29 13.3 1.4 13,911 34%
BITMNP01 1.745 1.744 0.20 119 0.20 2272.7 8.8 15,535 88%
IDCNTRN01 0.75 0.579 0.07 46 0.24 4.4 3.1 20,439 70%
PNTRCH01 0.577 0.576 0.11 134 0.11 714.3 5.1 8,595 82%
TTSPKR01 0.352 0.23 0.15 136 0.27 2.9 1.3 8,249 25%
dither 1.744 1.737 0.62 140 0.62 249.7 2.8 15,194 35%
Average: 0.36 107.3 0.74 260.0 3.0 14,772 52%

Binary-Level PartitioningSW

each example into VHDL. We manually optimized the VHDL to
create the best performing hardware that we could achieve. We
are currently in the process of finishing the source-level results
for EEMBC.

We restate that binary-level partitioning is not intended to
achieve superior results compared to source-level partitioning.
The advantages of binary-level partitioning are a more transparent
integration into standard tool flows, without sacrificing the quality
of results.

Table 3 compares the results of source-level partitioning and
binary-level partitioning. Time is the total time of the example
when running in software. Loop Time is the time required by the
implemented loops when running completely in software. Hw
Loop Time is the time required by the implemented loops when
running in hardware. Hw Clock is the maximum clock frequency
used for the configurable logic, given in megahertz. Hw/Sw Time
is the execution time of the partitioned example. S is the speedup

of the partitioned example. A is the area required for the
configurable logic, given in equivalent ASIC gates. E% is the
percentage of energy savings. All times values are reported in
seconds.

Table 3: Comparison of source-level and binary-level hardware/software partitioning.

Ex Time
Loop
Time

Hw Loop
Time

Hw
Clock

Hw/Sw
Time S A E%

Hw Loop
Time

Hw
Clock

Hw/Sw
Time S A E%

g721 4.191 2.288 0.45 98 2.35 1.8 8,394 45% 0.53 115 2.43 1.7 4,779 44%
adpcm 0.164 0.164 0.03 40 0.03 5.5 14,132 87% 0.05 73 0.05 3.0 15,240 71%
pegwit 0.214 0.166 0.05 48 0.09 2.3 18,150 61% 0.03 115 0.07 2.9 15,386 64%
dh 8.965 6.745 2.18 40 4.40 2.0 21,383 57% 2.31 63 4.53 2.0 16,607 53%
tl 0.287 0.146 0.08 61 0.22 1.3 5,478 31% 0.10 124 0.24 1.2 2,020 23%
url 0.137 0.109 0.01 156 0.03 4.1 2,929 76% 0.01 138 0.03 4.0 1,234 76%
AIFIRF01 0.403 0.371 0.25 112 0.28 1.4 22,361 31% 0.22 107 0.29 1.4 13,911 34%
IDCTRN01 0.75 0.579 0.07 49 0.24 3.2 15,136 71% 0.07 46 0.24 3.1 20,439 70%
TTSPKR01 0.352 0.23 0.14 143 0.26 1.4 9,171 34% 0.15 136 0.27 1.3 8,249 25%
dither 1.744 1.737 0.63 127 0.63 2.8 16,093 38% 0.62 140 0.62 2.8 15,194 35%
Average: 0.39 87 0.85 2.6 13,323 53% 0.41 106 0.88 2.3 11,306 50%

Source-Level Partitioning Binary-Level PartitioningSW

Source-level partitioning achieved an average speedup of 2.6.
Binary-level partitioning achieved an average speedup of 2.3.
Adpcm performed much better at the source level, achieving a
speedup of 5.5 that was almost twice the binary-level speedup.
The main reason for this difference is that adpcm has many small
basic blocks that can be optimized away. As previously stated,
our partitioning tool limits optimizations to individual blocks and
is unable to schedule operations from different blocks to the same
clock cycle. Therefore, the source-level approach currently can
exploit more parallelism than our binary partitioning tools,
causing decreased performance. We are currently implementing
optimizations in our partitioning tools to fix the performance
difference. Another interesting result is that the binary-level

version of pegwit actually outperforms the source-level version.
The reason for this performance difference is that the manually
written VHDL was unable to match the clock frequency for the
binary-level results. We could of course continue to revise the
manually written VHDL to reach the desired clock frequency, but
our initial efforts were unable to achieve the frequency of the
binary example. At the same clock frequency, the source-level
results for pegwit would have been better than the binary-level.

The source-level hardware required an average area of 13,323
gates. The binary-level results required slightly less area,
averaging 11,306 gates. The main reason for the area differences
is that the source-level examples outperformed the binary-level
examples, doing so by using more resources. The average clock
frequency of 87 MHz for source-level partitioning was lower than
the 106 MHz for binary-level partitioning because of these area
differences. The source-level examples performed more
computation in each cycle, which required a slower clock. Our
area results improved greatly compared to previous binary
partitioning work [30], where the area of the binary-level
examples was more than twice that of source-level examples.

Energy savings for the source-level examples was 53%. The
binary-level energy savings was 50%. The main reason for the
difference is that the source-level examples had smaller execution
times and lower clock frequencies, leading to reduced power.
The source-level results reduced overall power by 11%. The
binary-level results reduced overall power by 5%. Previous
efforts on partitioning for single-chip platforms [28][29]
experienced a power increase when using the configurable logic.
Our experiments experienced a power reduction because we are
using a microprocessor that consumes more power (because the
microprocessor is much faster) than in previous efforts.
Therefore, shutting down the microprocessor and executing in the
configurable logic was actually able to reduce power.

5. FUTURE ISSUES
Unlike source-level approaches, binary-level partitioning is
dependent on the instruction set of the microprocessor and any
compiler optimizations that are performed while creating the
binary. The dependence on instruction sets and optimizations are
possible drawbacks to hardware/software partitioning at the
binary level. We plan to investigate these dependences in future
work.

Loop unrolling is the most likely optimization to affect binary
partitioning. The largest problem with unrolled loops is detecting
the existence of an unrolled loop during profiling. Previous work
[24] in loop re-rolling can be used to solve this problem. Loop re-
rolling is a computationally expensive technique. However, we
are only concerned with detecting unrolled loops, which can be
done with pattern matching. Synthesizing an unrolled loop can be
handled during behavioral synthesis using an appropriate
scheduling algorithm. By limiting the number of available
resources to the amount used by a single iteration of the loop, we
can generate efficient hardware for the unrolled loop. Therefore,
by using pattern matching algorithms to detect unrolled loops and
sophisticated scheduling algorithms to synthesize unrolled loops,
we can generate hardware that is very similar to a normal loop.

We have recently begun to look at the effects of different
instruction sets on the results of binary partitioning. Initially,
instruction side effects seemed to potentially degrade the quality
of hardware, but we found that decompilation techniques fixed
this problem. We plan on handling predicated instructions either

by extracting the conditition from the predicated instruction and
including the condition in the control-flow graph, or by using a
conditional write to the destination specified by the predicated
instruction. For all the instruction sets that we have currently
looked at, register windows in the SPARC instruction set seem to
be the hardest to overcome during decompilation. We are
currently working on a solution to register windows. We are also
currently working on converting our partitioning tools to the
ARM instruction set, which will show that binary partitioning is
possible on a variety of popular embedded processors.

6. CONCLUSIONS
Hardware/software partitioning is an effective technique to
increase performance and reduce energy in embedded systems.
Traditional source-level partitioning approaches have the
drawback of requiring an inconvenient integration into a tool
flow. Binary-level partitioning largely solves the tool flow
problem while achieving comparable results. Binary partitioning
has the added benefits of more accurate estimation and the ability
to create hardware for assembly and object code.

In this paper, we showed that by incorporating powerful
automatic decompilation methods, along with behavioral
synthesis, into a binary-level partitioner, excellent partitioning
speed, power, and area can result. We examined examples from
MediaBench, NetBench, and EEMBC benchmarks. Binary-level
partitioning achieved an average speedup of 3.0 and energy
savings of 52%, while only requiring 14,772 gates on average.
We also compared source-level partitioning results with
automated binary partitioning results to show that similar results
can in fact be achieved. Speedups averaged 2.6 for source-level
examples and 2.3 for binary-level examples. Energy savings were
also similar, with source-level partitioning achieving 53% savings
and binary-level partitioning achieving 50% savings. The binary-
level results required less area than the source-level results.

7. REFERENCES
[1] Altera Corporation, ARM-Based Embedded Processor

PLDs, August, 2001.
[2] P. Athanas, H. Silverman: Processor Reconfiguration

Through Instruction-Set Metamorphosis. IEEE Computer,
March 1993.

[3] A. Balboni, W. Fornaciari and D. Sciuto. Partitioning and
Exploration in the TOSCA Co-Design Flow. International
Workshop on Hardware/Software Codesign, pp. 62-69, 1996.

[4] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R.
Rinker, and W. Najjar. Mapping a Single Assignment
Programming Language to Reconfigurable Systems. The
Journal of Supercomputing, vol. 21, pp. 117-130, 2002.

[5] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R.
Jain, and H. Ziegler. DEFACTO: A Design Environment for
Adaptive Computing Technology. In Reconfigurable
Architectures Workshop, RAW’99, April 1999.

[6] D. Burger and T.M. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin-Madison Computer
Sciences Department Technical Report #1342. June, 1997.

[7] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T.
Waddington. Preliminary Experiences with the Use of the
UQBT Binary Translation Framework. Proceedings of the
Workshop on Binary Translation, Newport Beach, USA,
October 1999.

[8] C. Cifuentes. Structuring Decompiled Graphs. In
Proceedings of the International Conference on Compiler
Construction, volume 1060 of Lecture Notes in Computer
Science, pages 91--105. April 1996.

[9] EEMBC. http://www.eembc.org/.
[10] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System

Level Hardware/Software Partitioning Based on Simulated
Annealing and Tabu Search. Kluwer's Design Automation
for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[11] R. Ernst, J. Henkel, T. Benner. Hardware-Software
Cosynthesis for Microcontrollers. IEEE Design & Test of
Computers, pages 64-75, October/December 1993.

[12] D.D. Gajski, F. Vahid, S. Narayan and J. Gong. SpecSyn: An
Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE
Transactions on VLSI Systems, Vol. 6, No. 1, pp. 84-100,
1998.

[13] R. Goering. Compiler project marks Synopsys' step into
post-ASIC world. EE Times, August 28, 2000,
http://www.eedesign.com/story/OEG20000828S0020.

[14] M. Gokhale, J. Stone. NAPA C: Compiling for hybrid
RISC/FPGA architectures. IEEE Symposium on FPGAs for
Custom Computing Machines, FCCM '98.

[15] R. Gupta, G. De Micheli. Hardware-Software Cosynthesis
for Digital Systems. IEEE Design & Test of Computers,
pages 29-41, September 1993.

[16] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a
reconfigurable coprocessor. IEEE Symposium on FPGAs for
Custom Computing Machines, pages 12-21, Napa Valley,
CA, April 1997.

[17] J. Henkel and R. Ernst. A Hardware/Software Partitioner
using a Dynamically Determined Granularity. Design
Automation Conference, 1997.

[18] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of
embedded systems: A Case Study on an MPEG-2 Encoder.
Proceedings of Sixth International Workshop on
Hardware/Software Codesign, March 1998, pp. 23-27.

[19] J. Henkel. A low power hardware/software partitioning
approach for core-based embedded systems. Proceedings of
the 36th ACM/IEEE conference on Design automation
conference, pp. 122 – 127,1999.

[20] Intel StrongArm 1110 Processor,
http://developer.intel.com/design/strong.

[21] A. Kalavade and E. Lee. A Global Criticality/Local Phase
Driven Algorithm for the Constrained Hardware/Software
Partitioning Problem. International Workshop on
Hardware/Software Codesign, 1994, pp. 42-48.

[22] C. Lee, M. Potkonjak and W. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems, MICRO 1997.

[23] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J.
Stockwood, Hardware-Software Co-Design of Embedded
Reconfigurable Architectures. Proceedings of Design
Automation Conf. (DAC), 1999.

[24] R. Metzger, Automated Recognition of Parallel Algorithms
in Scientific Applications. In IJCAI-95 Workshop Program
Working Notes: “The Next Generation of Plan Recognition
Systems”. Sponsored jointly by IJCAII/AAAI/CSCSI, Aug.
1995.

[25] MIPS Technologies, Inc., http://www.mips.com.
[26] NetBench, http://cares.icsl.ucla.edu/NetBench/.
[27] Proceler, http://www.proceler.com.
[28] G. Stitt, B. Grattan, J. Villarreal and F. Vahid. Using On-

Chip Configurable Logic to Reduce Embedded System
Software Energy. IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM), 2002.

[29] G. Stitt, F. Vahid. Energy Advantages of Microprocessor
Platforms with On-Chip Configurable Logic. IEEE Design
& Test of Computers. November-December 2002. pp.36-43.

[30] G. Stitt, F. Vahid. Hardware/Software Partitioning of
Software Binaries. IEEE/ACM International Conference on
Computer Aided Design (ICCAD), November 2002. pp. 164-
170.

[31] Triscend Corporation, http://www.triscend.com/. 2002.
[32] G. Vanmeerbeeck, P. Schaumont, S. Vernalde, M. Engels

and I. Bolsens. Hardware/Software Partitioning of Embedded
System in OCAPI-xl. International Symposium on
Hardware/Software Codesign, pp. 30-35, 2001.

[33] Virtex Power Estimator, http://support.xilinx.com/cgi-
bin/powerweb.pl.

[34] M. Wan, Y. Ichikawa, D. Lidsky, J. Rabaey. An energy
conscious methodology for early design exploration of
heterogeneous DSPs. Proceedings of the IEEE 1998 Custom
Integrated Circuits Conference, p.111-117, Santa Clara, May
1998.

[35] Xilinx Corporation, Virtex-II Pro Platform FPGA Handbook,
January 31, 2002.

http://www.eedesign.com/story/OEG20000828S0020
http://developer.intel.com/design/strong
http://www.mips.com/
http://www.proceler.com/
http://support.xilinx.com/cgi-bin/powerweb.pl
http://support.xilinx.com/cgi-bin/powerweb.pl

	INTRODUCTION
	BINARY PARTITIONING OVERVIEW
	DECOMPILATION
	EXPERIMENTS
	Setup
	Partitioning results for MediaBench, NetBench, and EEMBC benchmarks
	Source vs. binary partitioning comparison

	FUTURE ISSUES
	CONCLUSIONS
	REFERENCES

