
Rapid Online Fault Recovery for Cyber-physical
Digital Microfluidic Biochips

Christopher Jaress, Philip Brisk
Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA, USA

chrisjaress@gmail.com, philip@cs.ucr.edu

Daniel Grissom
Department of Engineering and Computer Science

Azusa Pacific University
Azusa, CA, USA

dgrissom@apu.edu

Abstract—Microfluidic technologies offer benefits to the
biological sciences by miniaturizing and automating chemical
reactions. Software-controlled laboratories-on-a-chip (LoCs)
execute biological protocols (assays) specified using high-level
languages. Integrated sensors and video monitoring provide a
closed feedback loop between the LoC and its control software,
which provide timely information about the progress of an
ongoing assay and the overall health of the LoC. This paper
introduces a cyber-physical control algorithm that rectifies hard
and soft faults that are detected dynamically while executing an
assay on a digital microfluidic biochip (DMFB), one specific LoC
technology. The approach is scalable (i.e., there is no fixed limit
on the number of faults that may occur), and runs efficiently in
practice, thereby limiting the performance overhead incurred
when a hard or soft fault occurs during assay execution.

Keywords—Digital Microfluidic Biochip, Error Recovery

I. INTRODUCTION
A digital microfluidic biochip (DMFB) [20] is a device that

manipulates discrete droplets of liquid via electrostatic
actuation atop a 2-dimensional grid of electrodes. Compared to
existing laboratory-on-a-chip (LoC) technologies that
manipulate continuous flows of fluid, DMFBs offer three key
advantages: (1) the ability to manipulate fluids individually; (2)
the ability to immerse solids within liquids without the risk of
clogging one or more microchannels; and (3) compatibility
with a wide variety of fluid volumes. DMFB applications
include DNA sequencing, immunoassays, point-of-care
diagnostics, and many others [11].

Recent DMFBs integrate devices such as heaters [13],
photo-detectors [14, 29], impedance sensors [22], or magnetic
separators [6], which provide feedback to a PC that controls the
execution of an assay (biochemical reaction) running on the
DMFB, forming a feedback-control loop as shown in Fig. 1.
Such a cyber-physical DMFB can execute assays that
incorporate sensory feedback and real-time decision-making
into their specification. Historically, assays were specified as
directed acyclic graphs (DAGs) without decision-making or
control flow. A cyber-physical DMFB can now execute assays
specified as control flow graphs (CFGs), as shown in Fig. 2,
which include conditions and loops whose behavior is driven
by sensor feedback. Each CFG node contains a DAG, and the
last operation in each DAG is either a branch or the CFG exit
point, signifying that the assay has terminated.

Each control flow operation signifies a reconfiguration
point, as it is not possible to predict control behavior at
compile-time, and the precise configuration of droplets at the
start point of each DAG is not guaranteed to be the same each
time that a CFG node is invoked for execution. Consequently,
it is necessary to re-compile each DAG on-the-fly as the CFG
executes, i.e., the system employs a just-in-time (JIT) compiler.
Each call to the compiler must schedule, place, and route the
assay in real-time, i.e., the assay pauses while the compiler
solves these interdependent NP-complete problems. In this
context, a premium must be placed on the runtime of the JIT
compiler, as opposed to solution quality.

Fig. 1. A feedback-control loop for a cyber-physical DMFB with integrated
capacitive-touch sensors.

Fig. 2. Software architecture of a system that executes assays specified as
control flow graphs (CFGs) in real-time.

This work was supported in part by NSF Grant CNS-1035603. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the NSF.

Within the context of an online JIT compiler, this paper
introduces a cyber-physical control model for DMFBs that
enables recovery from faults that occur during assay execution.
A hard fault refers to a device-level failure that renders a
portion of the DMFB unusable. DMFBs offer abundant spatial
parallelism, so a typical hard fault manifests itself as a loss of
some parallelism. In the worst case, a hard fault could block
the area that interfaces with an external device, such as a
heater, or could block access to an I/O reservoir on the
perimeter of the chip. Most hard faults are not catastrophic.

A cyber-physical DMFB can detect a hard fault in real-time
by comparing the behavior of a droplet with its expected action
based on a control signal sent to the device. For example, if an
electrode adjacent to a droplet is activated, the expected action
is droplet motion; if the droplet does not move in response,
then we can assume that the droplet is stuck and the region of
the chip surrounding the droplet is no longer usable. The
remainder of the assay must be recompiled to avoid the faulty
area. Fast re-compilation methods are needed to achieve high
throughput in the presence of faults and to avoid spoilage of
samples and reagents.

Soft faults, in contrast, represent erroneous assay operations
that do not indicate device failure. For example, one droplet
may be split into two droplets of significantly unequal volume
[2, 3], or the concentration of a droplet may not be within the
calibrated range of the sensor [29]. If so, the erroneous droplet
must be discarded, and the part of the assay that produced the
droplet is re-executed. Likewise, this entails (re-)compiling a
portion of the assay to introduce new operations whose
necessity could not be predicted statically.

Contribution: This paper contributes a compiler and runtime
monitoring system for cyber-physical DMFBs to enable fast
dynamic fault recovery. Compared to prior work, our system
offers the following advantages: (1) This is the first control
mechanism for cyber-physical DMFBs that handles hard and
soft faults in a unified fashion; (2) the algorithm is scalable,
i.e., there is no hard upper bound on the number of faults that
can be tolerated; (3) the algorithm is faster than all prior
scalable fault recovery algorithms that have been published to
date; and (4) the general approach is intuitive and easy to
implement, which favors rapid software development and a
lower likelihood of errors and bug fixes later on.

II. BACKGROUND AND APPROACH
 Checkpoints are automatically inserted into an assay to test
for observable errors, [29]. Each checkpoint routes a droplet to
a sensor/detector for assessment; if the assessment fails, an
error recovery subgraph (a static program slice [27] containing
all operations that may affect the droplet at the checkpoint) is
inserted into the assay (Fig. 3), and the schedule, placement,
and routing plan are updated. Checkpoint and error recovery
subgraph insertion can be done manually or by a compiler.

 The assay is initially specified as a DAG. Checkpoints and
error recovery subgraphs are inserted into the assay, converting
into an executable CFG, as shown in Fig. 2. Each checkpoint
ends with a condition based on sensory feedback: if an error
occurs, control transfers to the error recovery subgraph; if there
is no error, control transfers to the next operation.

Fig. 3. A soft faults occurs at runtime in a scheduled DAG. An error
recovery subgraph is introduced and the updated DAG is rescheduled.

III. RELATED WORK
Cyber-physical integration enables real-time detection and

fault recovery; several algorithms have been introduced to
reschedule assay operations and reconfigure the DMFB to
recover from faults. Table 1 lists the algorithms and their
relevant properties in comparison to algorithms introduced in
this paper. With the exception of Luo et al. [14], all of these
techniques focus explicitly on hard or soft faults, but not both.

Zhao et al. [29] pioneered real-time soft fault detection and
recovery for DMFBs. Their approach had two limitations: (1)
all operations stop during recovery, including those that do not
depend on droplets involved in the fault; and (2) operations
within the error recovery subgraph must be fault-free.
Subsequent work has addressed these limitations [14, 15].

Maftei et al. [16] and Alistar et al. [2] detect hard faults
offline; their compiler avoids the use of faulty DMFB regions;
they do not detect or recover faults that occur online.

Alistar et al. [1] and Luo et al. [15] enumerate all
combinations of soft faults that might occur during assay
execution, and generate all of the error recovery subgraphs that
could reconfigure the system at runtime. These approaches
reduce recompilation times, but can only tolerate a small
number of faults due to exponentially large storage costs. They
are non-scalable and cannot tolerate hard faults.

Many assays produce intermediate droplets that are not
used. Early DMFB compilers dispose of all unneeded droplets,
as there was no motivation to store them. Hseih et al. [10] and
Luo et al. [14] optimistically store some of these intermediate
droplets, as they can reduce the overhead of the fault recovery
process. Our approach can support droplet re-use if desired.

Table I shows that: (1) prior work has used dynamic
recompilation to recover from soft, but not hard, faults; (2) list
scheduling is preferred, presumably due to its efficiency; (3)
only one paper has used a polynomial-time placement
heuristic, and its runtime is quadratic [14]; and (4) prior work
has not considered droplet routing on recompilation.

The contribution of our work is an online recompilation
technique for hard and soft faults that is scalabile, achieves a
linear time complexity for placement, and accounts for droplet
routing. The time router’s complexity is O(MN) [21], as it uses
Soukup’s routing algorithm internally [24]. The average case
performance of Soukup’s router is less than its worst-case time
complexity, and our online alternative to placement guarantees
routability and helps the router converge quickly.

IV. ONLINE FAULT RECOVERY

A. Virtual Topology
The key to enable fast and efficient JIT compilation is the

notion of a virtual topology [7], as shown in Fig. 4. A virtual
topology segregates specific regions of the chip (work
modules) to perform assay operations (mixing, dilution,
storage, etc.), while leaving space (streets) between modules
for droplet transport. External devices (heaters, detectors, etc.)
may enhance the functionality of a work module, but do not
affect droplets transported on a street.

Virtual topologies eliminate certain mistakes that arise from
the interdependence between schedulers, placers, and routers.
In Fig. 5(a), the schedule dictates that seven concurrent
modules execute: in principle, there is enough free space on the
chip to perform all operations, however, a 4x6 contiguous
region cannot be found for module M7; this is an established
problem called fragmentation, which occurs in dynamic
placement for runtime reconfigurable FPGAs [5, 12]. In Fig.
5(b), a legal placement has been found, but the placed modules
abut one another, blocking the path that droplet D would like to
take to reach the detector on the other side of the chip. Lastly,
Fig. 5(c) illustrates the complex and chaotic nature of the
routing in the presence of many droplets [26].

Since the JIT compiler places a premium on runtime, the
time spent to detect and correct the problems shown in Fig.
5(a) and (b) is unacceptable. The virtual topology eliminates
these problems completely: the number of on-chip resources is
clearly articulated to the scheduler. For example, in Fig. 4,
there are four work modules that can perform mixing, splitting,
and storage; one can perform heating, and another can perform
detection. The scheduler has exact knowledge of what
resources are available for different assay operations. As all
operations occur in work modules, placement becomes a
conceptually simpler binding problem [7]. Routing path
blockages cannot occur, since the virtual topology ensures that
all droplet routing paths (input port-to-module; module-to-
module; module-to-output port) are blockage-free. Lastly, the
virtual topology eliminates the chaos depicted in Fig. 5(c) due
to the orderly layout of streets, and prior work [7] has
demonstrated provably deadlock-free routing algorithms.

Fig. 4. Depiction of a virtual topology [7].

 (a) (b) (c)

Fig. 5. Online DMFB placement is challenging because of: fragmentation
(a); legal placements may have adverse affects on routing (b); and routing a
large number of droplets at once can be chaotic (c) [26, Fig. 8(a)].

In a virtual topology, each work module has dedicated
virtual I/O ports, which restrict the locations where droplets
may enter or exit (Fig. 6). If a work module can store k
droplets, then it requires k virtual input (and output) ports,
along with an interference-free path from each virtual input
port to its corresponding virtual output port within the module;
this enables droplets to enter and leave independently without
interfering with one another. The virtual I/O ports play an
important role in ensuring provably deadlock-free routing at
the point where droplets enter and exit work modules [7].
Droplets are allowed to wait in I/O cells as long as necessary,
and spacing between them ensures that arriving droplets do not
interfere with departing droplets during routing.

B. Fault Recovery Model
We assume that the assay is specified as a control flow

graph with checkpoints and error recovery subgraphs inserted
a-priori. We review our system’s soft fault handing capabilities
[8] and introduce techniques to handle hard faults.

TABLE I. COMPARISON BETWEEN THE FAULT RECOVERY TECHNIQUES INTRODUCED IN THIS PAPER AND PRIOR WORK; THE LIMITATIONS AND
WEAKNESSES OF PRIOR WORK COMPARED TO OURS ARE HIGHLIGHTED.

	 	
Reference	

Overview	 of	 Fault	 Detection	 and	 Recovery	 During	 Recovery	 Online	 Recompilation	 Algorithms	 	
Fault	 	
Type	

Fault	 	
Detection	 Scalable	

Droplet	 	
Re-‐use	

Assay	
Pauses	

Tolerance	 to	
further	 faults	

	
Scheduling	 Placement	 Routing	

Zhao	 et	 al.	 [28]	 Soft	 Online	 Yes	 Yes	 Yes	 No	 Computed	 Offline	
Alistar	 et	 al.	 [1]	 Soft	 Online	 No	 No	 No	 Yes	 Enumerated	 Offline	 No	
Alistar	 et	 al.	 [3]	 Soft	 Online	 Yes	 No	 No	 Yes	 O(nlogn)*	 No	 No	
Maftei	 et	 al.	 [16]	 Hard	 Offline	 Yes	 No	 N/A	 N/A	 N/A	
Luo	 et	 al.	 [15]	 Soft	 Online	 No	 No	 No	 Yes	 Enumerated	 Offline	
Hsieh	 et	 al.	 [10]	 Soft	 Online	 Yes	 Yes	 No	 Yes	 Ref.	 [14]	 or	 [27]	
Alistar	 et	 al.	 [2]	 Hard	 Offline	 No	 N/A	 N/A	 N/A	 N/A	
Luo	 et	 al.	 [14]	

	
Both	 Online	 Yes	 Yes	 No	 Yes	 O(nlogn)*	 O(MN)**	 No	
Both	 Online	 Yes	 Yes	 No	 Yes	 Iterative	 Improvement	 No	

Our	 Work	 Both	 Online	 Yes	 Yes	 No	 Yes	 O(nlogn)*	 O(P)***	 [12]	 O(MN)**	
*	 	 	 	 n	 is	 the	 number	 of	 assay	 operations	 (vertices	 in	 the	 DAG);	 list	 scheduling	 [7,	 24]	 has	 an	 O(nlogn)	 time	 complexity.	 	
**	 	 	 	 M	 and	 N	 are	 the	 DMFB	 length	 and	 width.	 O(MN)	 is	 the	 time	 complexity	 of	 Soukup’s	 algorithm	 [24],	 used	 for	 path	 planning	 during	 routing	 [21].	
***	 	 P	 is	 the	 number	 of	 modules	 placed	 on	 the	 chip	 during	 reconfiguration;	 the	 O(P)	 time	 complexity	 is	 reported	 in	 ref.	 [12].	

Fig. 6. Each work module in a virtual topology has dedicated virtual I/O
ports where droplets can enter and leave without interfering with one another.

Soft Fault Recovery: Any erroneous droplets that are no
longer usable are transported to a waste reservoir. Control flow
transfers to the error recovery subgraph. The JIT compiler
schedules, places, and routes the error recovery subgraph on
the virtual topology using fast and efficient algorithms, e.g., list
scheduling [7, 25], a binding algorithm (in lieu of placement)
that selects a work module for each scheduled operation [7];
and a fast routing algorithm [7].

 In contrast, Luo et al. [14] recompute the placement at each
time step of the updated schedule. If the target chip is area-
constrained, this approach may fail. Since Luo et al. do not
include routing results, it is not possible to determine if the
placements obtained by their tool are routable or not.

Hard Fault Recovery: Hard faults that occur on the DMFB
surface can ruin a virtual topology. A fault in a module cell
renders it unusable, while a relatively small number of faults
that occur in routing cells could potentially block every pair of
paths between two modules in the topology. To fix the
situation, we reconfigure the virtual topology when a fault
occurs to use smaller modules, as shown in Fig. 8.

 The algorithm to repair the virtual topology in response to a
hard fault is derived from an algorithm for online FPGA
placement called Keep All Maximal Empty Rectangles
(KAMER) [5]. KAMER represents the free space on the
DMFB [12] using a set of overlapping maximal empty
rectangles (MERs). An empty rectangle is maximal if no other
rectangle encloses it. KAMER treats each work module
(including its surrounding interference region [26]) as an
operation; the MERs are shown in Fig. 7(a).

 Assume that a hard fault affects one cell in the DMFB, as
shown in Fig. 7(b). The 3x3 faulty region (FR) surrounding the
cell must be avoided for the remaining lifetime of the chip. We
treat the FR as a non-reconfigurable operation that persists
through all future placements. Any modules that intersect the
FR must be reconfigured; they are removed from the list of
active modules and KAMER updates its set of MERs, as
shown in Fig. 7(b).

 The next step is to introduce smaller work modules with
limited functionality (slower mix times [19] and reduced
storage capacity), as shown in Fig. 7(c). The preferred strategy
is to introduce the largest module that can fit into the
reallocated space, to minimize the resulting increase in mixing
time [19]. We then query the MER data structure to return the
largest rectangle representing free space on the chip. If the
MER is large enough to accommodate a new work module,
then we add it to the chip. This repeats until no MER can
accommodate any more work modules.

Fig. 7. On a 15x13 DMFB with 4x3 modules, (a) the MERs initially consist
of the three horizontal and three vertical streets; (b) a hard fault (HF) and its
surrounding faulty region (FR) makes Mod 4 unusable, resulting in two new
MERs; (c) a smaller 1x3 module (Mod 5) with well-defined I/O ports is
introduced and placed within the larger MER.

 (a) (b)

Fig. 8. Two hard faults (HFs) and their faulty regions (FRs) abut against a
module. Although they will not interfere with an operation inside the module,
(a) output cell O2 is unusable because there is no unobstructed path out of the
module, thus (b) only one set of I/Os can be used in this module.

 The last step is to determine the number of droplets that
each new work module can accommodate, and select the
location of the virtual I/O ports which restrict the locations
where droplets may enter or exit the module (see Fig. 6).

 There must be a path from an adjacent street to each virtual
I/O port; otherwise, the port becomes inaccessible. In Fig. 8, a
3x4 module can store up to two droplets with two pairs of
virtual I/O ports; however, two hard faults block access to
virtual output port O2. As a result, the work module can only
store one droplet. In principle, we could reconfigure virtual
input port (I2) to be bi-directional; however, doing so would
break the deadlock-free droplet routing property [7]. With less
storage capacity, reducing the module size is feasible, but
doing so would increase the latency of mixing operations [19].

Fig. 9 presents pseudocode for the fault recovery process.

V. SIMULATION RESULTS
We implemented cyber-physical error detection and

recovery in a publicly available open source compiler and
simulator for digital microfluidics [8]. The experiments
compare the performance and effectiveness of error detection
and recovery using the virtual topology to an approach similar
to the work by Luo et al. [14], which we call free placement
(FP). Both approaches employ list scheduling [7, 25] and a
greedy droplet routing algorithm [19]. FP uses KAMER for
placement [5, 12], but not for dynamic fault recovery.

ReconfigureFault(3x3 Fault Region F)
// Data structures
1. MER data structure (includes pre-existing 3x3 fault regions): MER
2. List of modules placed on the DMFB: L

// Remove modules affected by the fault from the virtual topology
3. If F occurs in a work module M or within M’s interference region
 L.remove(M)
4. ElseIf the center of F occurs in a street and F intersects the interference

region of at least one work module
5. Select a work module M whose interference region intersects F
6. L.remove(M)
7. EndIf

// Update the MER data structure
8. MER.insert(F)
9. For each module M∈L
10. MER.insert(M)
11. EndFor

// Introduce new, smaller work modules in the vicinity of the
// fault, and reconstruct the virtual topology
12. Do
13. Boolean stop ← True
14. For each max. empty rectangle R∈MER
15. If R.area() >= Minimum module area
16. M ← CreateNewWorkModule(R)
17. MER.insert(M)
18. stop ← False
19. EndIf
20. EndFor
21. While(stop = False)
22. L←RebuildVirtualTopology(MER)

// Add virtual inputs and output ports of each work module
// introduced as part of the reconfiguration process.
23. For each newly inserted module M
24. Select the maximum number of droplets that M can store
25. Add virtual input and output ports for each droplet
26. EndFor

// Remove virtual input and output ports (if necessary) from work
// modules that abut the faulty region F.
27. For each module M abutting F
28. For each virtual I/O port P blocked by F
29. Remove P and its partner port from M
30. Reduce the max. number of droplets that M can store
31. EndFor
32. EndFor

Fig. 9. Pseudocode describing virtual topology reconfiguration in response to
a hard fault.

The virtual topology employs a restricted variation of
KAMER to reconfigure itself when hard faults are detected;
however, this is done once per fault discovery, and should not
be confused with the usage of KAMER as a free placer that
reconfigures the placement when each operation starts/stops.

We consider an exponential protein dilution assay with 5
levels (Protein-Split 5 [7]). We target a 15x19 DMFB with a
2x2 virtual topology where modules store up to two droplets.
We converted the assay to a CFG [8] by inserting checkpoints
and error recovery subgraphs [29]. We assume that stuck
droplet faults can be detected instantaneously [4, 18]. For each
experiment, we compile the assay using the virtual topology
(VT) and free placement (FP) approaches. The simulator steps
through the protocol at 100 Hz (10ms per cycle).

Our experiments measure the recovery time in response to
hard and soft faults, and whether or not hard fault recovery is
successful. All experiments were performed on a desktop PC
running an Intel i7 processor clocked at 3.4 GHz with 10GB
of DDR3 DRAM running Windows 8.1.

First, the assay is compiled using VT and FP; we report
the initial compilation time. After building the CFG, we
randomly selected 5 operations and simulated 5 soft faults;
Fig. 10(a) reports the recompilation time. We then randomly
selected 5 operations and simulated 5 hard faults; Fig. 10(b)
reports the recompilation time. Last, we randomly generated
102 fault scenarios and recompiled the assay using both
approaches; in two cases, FP failed; Fig. 10(c) reports the
average recovery times for the first two faults for VT and FP
for the 100 cases where both approaches were successful.

Fig. 10(a) shows three trends: (1) VT is marginally faster
than FP; (2) droplet routing, not scheduling or placement,
dominates recompilation time; and (3) the recovery time is to
less for faults that occur later in the schedule (since more of
the assay has executed, the DAG to be recompiled becomes
smaller as the simulation progresses toward completion). The
difference in runtime shown in Fig. 10(a) is mostly due to
placement, which shows that VT’s binding approach [7] is
more efficient than invocation of the KAMER placer.

In Fig. 10(b), FP fails to successfully recompile the assay
after the 3rd hard fault, while VT successfully recovers after all
5 faults; for the initial compilation step and dynamic recovery
from the first two hard faults, the results are similar to Fig.
10(a) for soft faults. Fig. 10(c) reports similar results as well.
Altogether, VT is more efficient than FP in terms of spatial
resource management as hard faults are introduced into the
chip. FP suffers from fragmentation, as the number of hard
faults increases, while VT does not.

These results clearly indicate that dynamic recompilation
could benefit from faster droplet routing algorithms whose
runtimes are comparable to the scheduler and placer (VT
binding and FP’s invocation of KAMER); since prior work
has established that droplet routing does not significantly
affect total assay execution time [7, 25, 26], there is reason to
believe that significant benefits could be accrued by
sacrificing routing solution quality to reduce runtime.

VI. CONCLUSION
Online error recovery for DMFBs necessitates fast and

efficient algorithms. Existing approaches do not effectively
deal with the interdependence between scheduling, placement,
and routing. The approach to error recovery outlined in this
paper sidesteps these issues by leveraging a virtual topology:
placement is converted to a binding problem, and fast,
provably deadlock-free routing algorithms can be used to
quickly converge. This paper has shown how to reconfigure a
virtual topology in response to hard faults, thus providing
graceful degradation as the chip ages. Prior work has
established the viability of virtual topologies for efficient
detection and recovery from soft faults.

REFERENCES
[1] Alistar, M., Maftei, E., Pop, P., and Madsen, J. 2010. Synthesis of biochemical

applications on digital microfluidics with operation variability. In Proceedings of
the IEEE Symposium on Design Test Integration and Packaging of
MEMS/MOEMS (Seville, Spain, May 05-07, 2010) DTIP ’10, 350-357.

[2] Alistar, M., Pop, P., and Madsen, J. 2013. Application-specific fault tolerant
architecture synthesis for digital microfluidic biochips. In Proceedings of the Asia
and South Pacific Design Automation Conference (Yokohama, Japan, Jan. 22-25,
2013), ASPDAC ’13, 794-800. DOI=
http://dx.doi.org/10.1109/ASPDAC.2013.6509697

[3] Alistar, M., Pop, P., and Madsen, J. 2012. Online synthesis for error recovery in
digital microfluidic biochips with operation variability. In Proceedings of the IEEE
Symposium on Design Test Integration and Packaging of MEMS/MOEMS
(Cannes, France, April 25-27, 2012) DTIP ’12, 53-58.

[4] Basu, A. S. 2013. Droplet morphometry and velocimetry (DMV): a video
processing software for time-resolved label-free tracking of droplet parameters,
Lab-on-a-Chip 13, 10 (Mar. 2013), 1892-1901.
DOI=http://dx.doi.org/10.1039/C3LC50074H

[5] Bazargan, K., Kastner, R., and Sarrafzadeh, M. 2000. Fast template placement for
reconfigurable computing systems. IEEE Design & Test of Computers, 17, 1 (Jan.-
Mar. 2000) 68-83. DOI= http://dx.doi.org/10.1109/54.825678

[6] Choi, K., et al. 2013. Automated digital microfluidic platform for magnetic-
particle-based immunoassays with optimization by design of experiments.
Analytical Chemistry 85, 20 (Aug. 2013) 9638-9646. DOI=
http://dx.doi.org/10.1021/ac401847x

[7] Grissom, D., and Brisk, P. Fast online synthesis of generally programmable digital
microfluidic biochips. IEEE Trans CAD 33, 3 (Mar. 2014), 356-369. DOI=
http://dx.doi.org/10.1109/TCAD.2013.2290582

[8] Grissom, D., Curtis, C., and Brisk, P. 2014. Interpreting assays with control flow
on digital microfluidic biochips. ACM Journal on Emerging Technologies in
Computing Systems 10, 3 (Apr. 2014), article #24. DOI=
http://dx.doi.org/10.1145/2567669

[9] Grissom, D., O’Neal, K., Preciado, B., Patel, H., Doherty, R., Liao, N., and Brisk,
P. 2012. A digital microfluidic biochip synthesis framework. In Proceedings of the
IEEE/IFIP International Conference on VLSI and System-on-a-Chip (Santa Cruz,
CA, USA, October 07 - 10, 2012). VLSI-SOC ’12, 177-182, DOI=
http://dx.doi.org/10.1109/VLSI-SoC.2012.6379026

[10] Hsieh, Y-L., Ho, T-Y., and Chakrabarty, K. 2012. Design methodology for sample
preparation on digital microfluidic biochips. In Proceedings of the International
Conference on Computer Design (Montreal, Canada, Sep. 30 - Oct. 3, 2012)
ICCD’12, 189-194. DOI= http://dx.doi.org/10.1109/ICCD.2012.6378639

[11] Jebrail, M. J., Bartsch, M. S., and Patel, K. D. 2012. Digital microfluidics: a
versatile tool for applications in chemistry, biology, and medicine. Lab-on-a-Chip
12, 14 (Jul. 2012), 5452-2463. DOI= http://dx.doi.org/10.1039/C2LC40318H

[12] Lu, Y. Marconi, T., Gaydadjiev, G., and Bertels, K. 2008. An efficient algorithm
for free resources management on the FPGA. In Proceedings of Design
Automation and Test in Europe (Munich, Germany, March 10-14, 2008) DATE
’08, 1095-1098. DOI= http://dx.doi.org/10.1109/DATE.2008.4484923

[13] Luo, Y., Bhattacharya, B. B., Ho, T-Y., and Chakrabarty, K. Optimization of
polymerase chain reaction on a cyberphysical digital microfluidic biochip. In
Proceedings of the International Conference on Computer-Aided Design (San
Jose, CA, Nov. 18-21, 2013) ICCAD’13, 622-629. DOI=
http://dx.doi.org/10.1109/ICCAD.2013.6691181

[14] Luo, Y., Chakrabarty, K., and Ho, T-Y. 2013. Error recovery in cyberphysical
digital microfluidic biochips. IEEE Trans CAD 32, 1 (Jan. 2013), 59-72. DOI=
http://dx.doi.org/10.1109/TCAD.2012.2211104

[15] Luo, Y. Chakrabarty, K., and Ho, T-Y. 2012. Dictionary-based error recovery in
cyberphysical digital-microfluidic biochips. In Proceedings of the International
Conference on Computer-Aided Design (San Jose, CA, USA, November 05-08,
2012) ICCAD ’12, 369-376. DOI= http://dx.doi.org/10.1145/2429384.2429463

[16] Maftei, M., Pop, P., and Madsen, J. 2013. Droplet-aware module-based synthesis
for fault-tolerance digital microfluidic biochips. In Proceedings of the IEEE
Symposium on Design Test Integration and Packaging of MEMS/MOEMS
(Cannes, France, April 25-27, 2012) DTIP ’12, 47-52.

[17] Mitra, D., et al. 2012. Automated path planning for washing in digital microfluidic
biochips. In Proceedings of the International Conference on Automation Science
and Engineering (Seoul, Korea, Aug. 20-24, 2012) CASE’12, 115-120. DOI=
http://dx.doi.org/10.1109/CoASE.2012.6386419

[18] Murran, M. A., and Najjaran, H. 2012. Capacitance-based droplet position
estimator for digital microfluidic devices. Lab-on-a-Chip 12, 11 (Mar. 2012) 2053-
2059. DOI= http://dx.doi.org/10.1039/c2lc21241b

[19] Paik, P., Pamula, V. K., and Fair, R. B. 2003. Rapid droplet mixers for digital
microfluidic systems. Lab-on-a-Chip 3, 4 (Nov. 2003), 253-259.

[20] Pollack, M. G., Shenderov, A. D., and Fair, R. B. 2002. Electrowetting-based
actuation of droplets for integrated microfluidics. Lab-on-a-Chip 2, 2 (Mar. 2002),
96-101. DOI=http://dx.doi.org/10.1039/b110474h

[21] Roy, P., Rahaman, H., and Dasgupta, P. 2010. A novel droplet routing algorithm
for digital microfluidic biochips. In Proceedings of the 20th Great Lakes
Symposium on VLSI (Providence, RI, USA, May 16 - 18, 2010) GLSVLSI ’10,
441-446. DOI= http://dx.doi.org/10.1145/1785481.1785583

[22] Shih, S. C. C., et al., Digital microfluidics with impedance sensing for integrated
cell culture and analysis. Biosensors and Bioelectronics 42, 4 (Apr. 2013) 314-320.
DOI= http://dx.doi.org/10.1016/j.bios.2012.10.035

[23] Shih, S. C. C., Fobel, R., Kumar, P., and Wheeler, A. R. 2011. A feedback control
system for high-fidelity digital microfluidics. Lab-on-a-Chip 11, 3 (Feb. 2011)
535-540. DOI= http://dx.doi.org/10.1039/C0LC00223B

[24] Soukup, J. Fast maze router. In Proceedings of the Design Automation Conference
(Las Vegas, NV, USA, June 19-21, 1978) DAC ’78, 100-102, DOI=
http://dx.doi.org/10.1109/DAC.1978.1585154

[25] Su, F., and Chakrabarty, K. 2008. High-level synthesis of digital microfluidic
biochips. ACM Journal on Emerging Technologies in Computing Systems 3, 4
(Jan. 2008), article #16. DOI= http://dx.doi.org/10.1145/1324177.1324178

[26] Su, F., Hwang, W., and Chakrabarty, K. 2006. Droplet routing in the synthesis of
digital microfluidic biochips. In Proceedings of Design Automation and Test in
Europe (Munich, Germany, March 06-10, 2006) DATE ’06, 1-6. DOI=
http://dx.doi.org/10.1109/DATE.2006.244177

[27] Weiser, M. 1984. Program slicing. IEEE Trans. Software Engineering 10, 4 (July
1984) 352-357. DOI= http://dx.doi.org/10.1109/TSE.1984.5010248

[28] Xu, T., and Chakrabarty, K. 2007. Functional testing of digital microfluidic
biochips In Proceedings of the IEEE International Test Conference (Santa Clara,
CA, USA, Oct. 21-26, 2007) ITC’07. DOI=
http://dx.doi.org/10.1109/TEST.2007.4437614

[29] Zhao, Y., Xu, T., and Chakrabarty, K. 2010. Integrated control-path design and
error recovery in the synthesis of digital microfluidic biochips. ACM Journal on
Emerging Technologies in Computing Systems DOI=
http://dx.doi.org/10.1145/1777401.1777404

 (a) (b) (c)

Fig. 10. Recovery time and success rate using the virtual topology (VT) and free placement (FP) [14] on the Protein-Split 5 assay running on a
15x19 DMFB with (a) five soft faults; (b) five hard faults; and (c) average recovery time for 100 simulated executions of VT and FP after compiling
and re-compiling the Protein-Split 5 assay with two hard faults.

