

Multi-terminal PCB Escape Routing for Digital Microfluidic Biochips using Negotiated Congestion

> Jeffrey McDaniel University of California, Riverside October 9, 2014

Digital Microfluidics

Discrete droplets are moved around a 2D array of electrodes

Basic Operations

 Five basic operations are combined to perform biology and chemistry experiments (assay)

Synthesis process

- 1. Schedule operations of the experiment, or assay
- 2. Place the components on to the DMFB array
- 3. Route the fluids between the components to perform the necessary operations
- 4. Perfrom the pin mapping of electrodes to external control pins
- 5. Route the wires on the PCB

Pin Mapping

- Direct addressing: external control pin for each electrode
- Pin constrained: multiple electrodes share a control pin

Problem Definition

Given

- A pin mapping of electrodes
- The size of the chip
- The wire capacity between electrodes

Graph Representation

- Routing Resource Graph (RRG) for a single tile
- Wire capacity of three between electrodes

Graph Representation Cont'd

A 2x3 grid of tiles. Only the electrode in the middle is used.

Multi-Terminal Escape Routing

- 1. Super Escape node connects to every node on the edge
- 2. Route from Super Escape to first sink encountered on pin group

Multi-Terminal Escape Routing Cont'd

 Route from existing path to next sink encountered on pin group

Multi-Terminal Escape Routing Cont'd

4. The process continues...

Multi-Terminal Escape Routing Cont'd

5. until all sinks in the pin group have been found.

Successful Single Layer Routing

The direct addressed PCR
chip routed successfully on a z single layer.

Failed Single Layer Routing

- The red lines indicate successfully routed pin groups.
- The green lines indicate pin groups that intersect one of the existing channels

Multiple PCB Layer Routing

Key Observations

- Unable to route all chips on a single layer
- Multiple PCB layers are allowed

General Idea

- Route as many pin groups as possible on one layer
- Push remaining pin groups to the next layer
- Repeat until all pin groups have been routed

1. Route pin groups one at a time using the single layer method

2. If current route intersects with a previous route, push it to a later layer

3. Route as many pin groups as possible on the current layer

- 4. Continue until all pin groups have been routed
 - Each color represents a separate layer.

Direct Addressing Results

Benchmark	Pin	Layered Pathfinder		[1]	
	Count	Time (s)	Layers	Time (s)	Layers
PCR_DA	62	0.320	1	0.557	2
$Protein_DA$	54	0.301	1	0.597	2
$InVitro_DA$	59	0.335	1	0.406	2
$Multi_DA$	81	0.411	1	1.028	2
IA 10×10	100	0.183	1	0.363	2
IA 15x15	225	32.842	1	3.936	2
IA 15×19	285	54.558	2	8.412	3
IA 30×30	900	1436.7	5	219.247	6

 S.-H. Yeh, J.-W. Chang, T.-W. Huang, and T.-Y. Ho. Voltage-aware chip-level design for reliability-driven pin-constrained EWOD chips. *Proceedings of the International Conference on Computer-Aided Design - ICCAD* '12, 2012

Pin Constrained Results

Benchmark	Pin	Layered Pathfinder		[1]	
	Count	Time (s)	Layers	Time (s)	Layers
$Zhao_PCR$	14	15.338	4	2.162	5
Luo_PCR	22	18.824	5	3.401	6
Zhao_Protein	27	10.655	3	1.688	4
Luo_Protein	21	11.435	4	1.700	4
Zhao_InVitro	25	14.350	4	2.371	5
Luo_InVitro	21	16.358	5	2.278	5
Zhao_Multi	32	15.995	5	3.181	5
Luo_Multi	27	16.204	6	4.543	6
FPPC 12x15	33	17.941	4	1.777	5

 S.-H. Yeh, J.-W. Chang, T.-W. Huang, and T.-Y. Ho. Voltage-aware chip-level design for reliability-driven pin-constrained EWOD chips. *Proceedings of the International Conference on Computer-Aided Design - ICCAD* '12, 2012

Conclusion

- Developed a Multi-Terminal Wire Routing algorithm for Digital Microfluidics based on Negotiated Congestion
- Extended the router for multiple PCB layers
- Extended existing single layer router to multiple PCB layers
- Reduced number of layers by 26.59% on average from an existing algorithm