
A Digital Microfluidic Biochip Synthesis Framework
Daniel Grissom1, Kenneth O’Neal1, Benjamin Preciado1, Hiral Patel1, Robert Doherty1, Nick Liao2, Philip Brisk1

1Department of Computer Science and Engineering

University of California, Riverside
Riverside, CA 92521

2The Bishop’s School

La Jolla, CA 92037-4799

Abstract—Synthesis of digital microfluidic biochips (DMFBs) is a
crucial to the advancement and realization of miniaturized,
automated, programmable biochemistry solutions; synthesis is
performed in three steps: scheduling, placement and routing. In
principle, algorithms for specific steps should be interchangeable
with one another; however, different research groups typically
develop algorithms for each step in isolation from one another.
Thus, it is difficult to compare algorithms against one another, or
to determine which algorithms for different steps share synergies.

We introduce an open source DMFB synthesis framework to
encourage collaboration between researchers working in the
area. We introduce a common interface and describe the internal
data structures that must be updated to ensure that the interfaces
are adhered to. We also present and describe a number of high-
quality 2D and 3D debugging tools that provide graphical output
for each stage of synthesis.

Keywords-Digital Microfluidic Biochip (DMFB), Scheduling,
Placement, Routing

I. INTRODUCTION
Digital microfluidics [11] is an emerging technology that

will automate and miniaturize many chemical and biochemical
analyses in the future. Digital microfluidic biochips (DMFBs)
actuate discrete droplets of liquid on a 2-dimensional grid and
are expected to play an important role in the development and
evolution of fully integrated, programmable laboratories-on-
chip (LoCs). DMFB technology has been demonstrated as a
viable solution for assays (biochemical protocols) including
clinical pathology [14], protein crystallization [18] and DNA
amplification and analysis [14], among others.

Fig. 1 shows a DMFB as a 2D array of control electrodes; a
droplet is centered atop a control electrode, but overlaps its
neighbors. A process called electrowetting induces droplet
motion. As shown in the cross-sectional view on the right-
hand-side of Fig. 1, the droplet is centered atop control
electrode CE2. The droplet will remain in this position while
CE2 remains activated and no neighboring electrodes are
activated. Deactivating CE2 and activating adjacent electrode
CE1 (CE3) moves the droplet left (right), providing transport.
Droplets can be split, mixed, and stored, which provide the
fundamental capabilities required for assay execution.

The space on top of a control electrode where a droplet may
be stored is called a cell. Individual cells, or groups of cells,
can perform other functions, such as heating or detection, if an
external device is attached to (or placed in the appropriate
vicinity of) a DMFB. The output of an assay may be one or
more droplets and/or readings from sensors or other detectors.

Figure 1. A DMFB with a 2D array of electrodes (left) and cross-sectional

view of a DMFB (right).

Figure 2. DMFB synthesis is composed of three, sequential, steps: operation

scheduling, module placement and droplet routing.

A droplet actuation cycle is the time required to move a
droplet from one cell to the next. During each actuation cycle, a
new group of electrodes can be activated to induce motion. For
a 100Hz DMFB [19], each droplet actuation cycle is 10ms, and
thus, each droplet can change its location up to 100 times in 1s.
From the DMFB’s perspective, an actuation cycle is specified
as a vector of 0s and 1s, one bit for each control electrode,
which is essentially the machine language for the device. A
sequence of vectors therefore defines an executable program
(at the machine language level) that runs on the DMFB.

Chemists and biochemists, however, do not want to specify
assays at such a low level, and have little interest in device-
specific semantics. Consequently, higher-level languages have
been introduced for specifying biochemical protocols [4].
DMFB synthesis is the process of converting a high-level assay
specification into an executable program for a DMFB.

Fig. 2 illustrates DMFB synthesis. Assays are specified as
directed acyclic graphs (DAGs). Synthesis involves three steps:
scheduling the operations [7][9][10][12][14], placing modules
onto the device [6][15][16], and routing droplets [13][19];
algorithms that perform multiple steps at once, to synergize
cross-boundary optimization, have also been proposed [16].

II. MOTIVATION AND CONTRIBUTION
Researchers working on DMFB synthesis introduce new

algorithms every year. In practice, these algorithms are
developed in isolation; there appears to be no interoperability
between the implementations, and little, if any, source code is
publicly released. Ideally, the algorithms would be compatible
with one another, and research groups that wish to work on one

problem (e.g., droplet routing) would not need to implement
schedulers and placers to provide a basis for their research.

It is difficult to identify synergies between algorithms
published by different research groups that have not been tested
together. Both paper writing and software development is
prone to human error; there is non-negligible likelihood that
pseudocode in one paper does not precisely match what was
implemented, or omits key details. Lastly, researchers who try
to implement algorithms based on pseudocode written in other
papers may inadvertently implement certain steps incorrectly.

 To address these concerns, we developed a DMFB synthesis
framework with well-defined internal data structures and
interfaces between each step. We implemented several DMFB
synthesis algorithms [12][13][14][15] within this framework,
and compared them with new algorithms that we developed
internally [6][7][10]. All algorithms that we have implemented
are included in our source code release [1]. Our framework
includes visualization tools that create high-quality graphical
output after each synthesis step. In our experience, these tools
have proven invaluable for debugging and comparison, and we
believe that they will provide value to other researchers as well.

III. DMFB SYNTHESIS FRAMEWORK OVERVIEW
Fig. 3 illustrates our DMFB synthesis framework, including

inputs, intermediate outputs between stages, final output, and
graph visualization tools. Black boxes represent software
modules (synthesis tasks) and/or data visualization tools; the
document boxes represent human-readable, plaintext files that
are produced and/or consumed by the software modules that
comprise the simulator. Synthesis algorithms are implemented
in C++, while visualization tools are implemented in Java; each
stage of synthesis outputs a human-readable text file, which can
be read as an input to the next stage or a visualization tool. An
externally available, graph-drawing tool, GraphViz [2], can
visualize the assay specification (as a DAG) as it is modified
and annotated by the intermediate steps of the synthesis flow.

Figure 3. Flowchart of the synthesis toolflow. Black boxes represent

synthesis stages and visualization tools; white document boxes represent I/O
files. The synthesis steps performed are scheduling, placement, and routing.

The synthesis flow is modular. Each step can execute as a
standalone command-line program, or all steps can execute
atomically; in the latter case, output of intermediate files for
visualization purposes is optional, as each stage can propagate
its internal data structures to its successor. When one or more
steps executes as a standalone program, the synthesis engine
uses a built-in utility class to perform I/O and to construct and
destruct all internal data structures. The utility function
performs file I/O in a manner that is transparent to the user;
thus, we do not describe the syntactical structure of the
interface files; our source code [1] documentation describes the
interface files' syntax in detail. Here, we focus on the internal
data structures used by the framework and visualization tools.

A. Visualization Suite
Visualization provides two key capabilities that will assist

users of our framework: debugging, and high quality visual
output that can be integrated into papers and presentations. The
remainder of this section highlights these capabilities. We use
the Polymerase Chain Reaction (PCR) mixing stage [14] as a
running example; PCR is also included with our source code
release [1].

1) Input and Pre-Scheduling Visualization
The user specifies an assay as a DAG by writing a text file.

In the future, we plan to provide interface support so that the
user could specify the assay using the BioCoder language [4];
BioCoder’s compiler would then be modified to output the
DAG in a format that is compatible with our framework. Our
framework translates the assay specification file into a .dot file
format, which is compatible with GraphViz. With the
GraphViz file, the user can visually verify the assay
specification and update it if an error is found. As shown in
Fig. 4 (left), each node in the DAG is annotated with
information, including its operation type (e.g., dispense, mix,
etc.), length of duration, and its name (if available).

2) Scheduling Visualization
Scheduling computes the start and stop time for each

operation in the DAG [7][9][10][12][14]; this information is
added to each node. The scheduler outputs an updated .dot file
for visualization, as shown in Fig. 4 (center).

Figure 4. GraphViz visualization for the assay prior to synthesis (left),

scheduled (center), and placed (right). All text is legible in native output files.

3) Placement Visualization
Placement determines the specific location on the DMFB

where each assay operation will start, at the times computed by
the scheduler [6][15][16]. The placer annotates each node in
the DAG with the location of the module, and outputs a .dot
file, as shown in Fig. 4 (right).

We have also implemented Java applications that can depict
the placement in 2- or 3-dimensions. Schedules are computed
on the granularity of time-steps, which are typically 1s or 2s for
most assays. An assay operation must start at the beginning of
a time-step, and must finish at the end of a time-step.

The 2D placement visualizer draws an image of the DMFB,
with modules placed, for each time-step. Fig. 5 shows an
example. The “TS 5” label in the upper left hand corner
indicates that this placement occurs at the fifth time-step of the
assay. The light blue cells depict two concurrent mixing
operations. The dark ovals above each mixer provide
information about the two mixing operations with respect to
their location in the DAG.

The light red cells depict the interference region (IR)
[6][15][17] of the mixing operations. Any droplet that
inadvertently enters the interference region of an operation will
mix with the droplet(s) engaged in the operation, which could
result in contamination. Similarly, two operations that overlap
with one another at the same time-step and location will cause
inadvertent mixing. The visualization tool is thereby useful for
debugging placement algorithms.

Fig. 5 depicts I/O reservoirs on the periphery of the DMFB,
each of which displays the type of fluid it contains; the output
reservoir is simply labeled “output.” The cells with insignias—
fire and magnifying glasses—indicate that external devices that
perform heating and detection are available at those locations.
The heater is essentially a physical element that is placed above
or below the chip. The detector, for example, could be an
infrared camera, completely external to the chip, but focused
directly on those specific cells.

Fig. 6 depicts a 3-dimensional visualization, in which the
third dimension (vertical axis) is time. This allows the user to
view the scheduled and placed assay operations at each time
step, as the assay proceeds. The DMFB is shown at the bottom;
a red plane above the DMFB is drawn for each time-step, and
time-steps are clearly labeled. Operations that have been placed
on the DMFB stretch vertically above the cells that execute
them. Modules are labeled with a module number, which can
be used to find the corresponding assay operation in the DAG
(e.g. Fig. 4, right). The placement is rotated so that it can be
viewed from all angles; the user can also “fly” through the 3-
dimensional space using keyboard controls to view the
placement from any desired perspective.

4) Routing Visualization
The Java graphics suite uses two different approaches to

display droplet routes. As shown in Fig. 7, the cyclic-route
view draws an image for each droplet actuation cycle that
droplets are in motion. The droplets are numbered, and the light
red cells surrounding each droplet represent its interference
region (IR). Similar to modules, two droplets will inadvertently
mix if one enters the interference region of another.

Figure 5. Sample 2-dimensional placement visualization (the bottom half of

the DMFB is clipped for space). All text is legible in native output files.

Figure 6. Sample 3-dimensional placement visualization.

Figure 7. Sample cyclic-routing visualization depicting where each droplet is
located at a particular droplet actuation cycle. Droplet interference regions are
shown in transparent red, while the droplet colors indicate its status (green =
free to move; yellow = waiting to avoid droplet interference; red = droplet has

reached its destination). All text is legible in native output files.

The droplet color in Fig. 7 is a status indicator which
displays whether the droplet is free to move forward along its
route (green), is waiting for another droplet to move out of its
way (yellow), or has reached its destination and has stopped
(red). Other colors not shown in Fig. 7 indicate droplet merging
or I/O operations.

The tool draws an image for each actuation cycle of each
“routing phase” (i.e, the droplet routes computed for each time-
step in the schedule). For each routing phase, the frames are
compacted into a movie, where each frame equals 10ms,
creating a real-time video for a 100Hz DMFB.

Lower-end machines, such as netbooks and tablets, may not
be able to handle the computational complexity of drawing
images for each droplet actuation cycle and creating a movie.
Thus, the visualization suite includes a compact-route view,
shown in Fig. 8, which draws a single image for each route.
The electrodes are numbered so that the user can see the exact
path the droplet is taking. Although the DMFB may contain
multiple droplets at once, only a single droplet’s path is drawn
in any image; otherwise, the image would be too chaotic and
aesthetically displeasing to the human user. Debugging a router
using this tool would be tedious; however, it remains a useful
tool for visualization on low-end computing devices.

5) Simulation Visualization
The graphics suite has two packages that can display the

entire simulation process to the user:

The cyclic simulator draws an image for each droplet
actuation cycle; it includes all images drawn by the cyclic
routing visualizer, as described in the preceding subsection. It
also adds images for the cycles between routing phases where
assay operations occur; it shows droplets being processed
inside the modules, as shown in Fig. 9. Once again, the tool can
stitch the images together to form a movie. This is the most
complete representation of the assay from the perspective of
the DMFB, as all executing operations are visually shown.

The compact simulator is designed for low-end machines
where the time required to draw images for all droplet actuation
cycles may be prohibitive. This simulator interleaves the 2D
placement images (e.g., Fig. 5) with the compact routing
images (e.g., Fig. 8). For each routing phase, one image for
each droplet is included. This provides a quick and efficient
representation of the simulation in progress, but at a coarser
granularity of detail than the cyclic simulator.

Figure 8. Sample compact-routing image showing the path a single droplet

takes. All text is legible in native output files.

IV. INTERNAL DATA STRUCTURES
Each step of the synthesis framework can be performed in

isolation as a standalone program, or the complete synthesis
flow can execute atomically as a single program. In the latter
case, the necessary internal data structures maintained by the
synthesis engine are modified and passed along from the
scheduler to the placer, and then to the router.

To ensure that any scheduling algorithm can be used with
any combination of placement and routing algorithms, our
framework defines four interfaces that impose common I/O
formats for each step. As long as the implementation of a given
algorithm adheres to these formats, it can execute automatically
(i.e., as a standalone program). The framework outputs
intermediate synthesis results as human-readable text files,
which can be saved for later processing.

As shown in Fig. 10, the Synthesis engine (class) maintains
an instance of a scheduler, placer and router. These instances
inherit from global classes that force all algorithms
implementing these steps to use the same functions, parameters
and internal data structures for interfacing. This minimizes the
number of changes that a user must make to the source code to
implement a new algorithm in the framework.

As shown in Table I, the synthesis engine includes five
internal data structures, which are passed between the
scheduler, placer, and router. Table I shows which synthesis
steps read (R) and write (W) these data structures, and which
methods do not access them at all (-).

Figure 9. Illustration of droplet movement within a module.

Figure 10. Synthesis engine contains an instance of a scheduler, placer and

router, as well as internal data structures passed between synthesis steps.

TABLE I. INTERNAL DATA STRUCTURES OF SYNTHESIS ENGINE
SHOWING WHETHER THE SCHEDULER (S), PLACER (P) OR ROUTER (R) READS

(R) OR READS AND WRITES (W) TO THE DATA STRUCTURE.

C++ type and name S P R
DAG	
 *dag W W R
DmfbArch	
 *arch R R R
vector<ReconfigModule*>	
 *rModules - W R
map<Droplet*,vector<RoutePoint*>*>	
 *routes - - W
vector<unsigned	
 long	
 long>	
 *tsBeginningCycle - - W

All interface files are human-readable, well-structured text
files. A utility class called Util handles all file I/O, according to
the I/O specifications (see our source code download [1] for
details). Util reads the appropriate file to populate all internal
data structures when a stage of the flow begins, and outputs its
result to a text file when the stage is finished.

A. Scheduler-Input Interface and Scheduling
The first interface defines the scheduler input. The

scheduler accepts two input files: the assay specification file,
and a DMFB architectural description file, as shown in Fig. 3.
The assay specification file contains the basic information
needed to construct the DAG; the Util class reads the text file
and creates a data structure of type DAG called dag to represent
the assay internally. Util annotates nodes with the operation
type, length, and other relevant information to help understand
the assay; the nodes do not (yet) contain any information about
start times, stop times, or module placement.

The DMFB architecture file contains the dimensions of the
chip, the locations of any input reservoirs (on the periphery)
and fixed resources (e.g. heaters and detectors), the droplet
actuation frequency of the DMFB, and the time-step length in
seconds. The Util function creates a data structure of type
DmfbArch called arch and populates it with this information.
The scheduler is then called with dag and arch passed as
parameters, as shown in Table I. The scheduler computes the
start and stop times of each node, and the module type to which
it is bound (e.g., a mixer, heater, detector, I/O, etc.).

B. Scheduler-to-Placer Interface and Placement
After scheduling, the Util class creates an output file that is

provided to the placer; it does this by flattening dag and arch
into a single text file, including all information added to the
nodes by the scheduler.

Prior to placement, an empty vector of reconfigurable
modules, rModules, is allocated, and dag and arch are either
recreated by Util (if the placer runs as a standalone program),
or passed along by the scheduler; dag, arch, and rModules are
passed to the placer.

From the interface perspective, the placer has two tasks: (1)
it creates a reconfigurable module, rMod, with a unique
identification number for each non-I/O node in dag and adds it
to rModules; and (2) it binds rMod to a node via pointers (e.g.,
dag->node->module = rMod); the placer also binds each I/O
operation to a valid port (e.g., dag->node->ioPort = port).

C. Placer-to-Router Interface and Router
Once placement completes, the Util class flattens dag

(which now contains references to specific modules in
rModules), arch and rModules to produce a text file that can be
passed to the router. Prior to routing, the Util class recreates
dag, arch and rModules from the interface file. Then, two new
empty data structures are created.

The first data structure is a list of droplet routes called
routes, as shown in Table I. The RoutePoint structure
represents the (x, y) coordinate of a droplet, the cycle number
representing when the droplet is at that given coordinate, and
the droplet’s status (e.g. waiting, processing, etc.). Thus, the
router maps each droplet to a vector of RoutePoints, which

wholly characterizes the droplet’s route. A droplet must have a
RoutePoint for each actuation cycle along its route. This is
certainly not the most time- and space-efficient representation
of a droplet’s route; however, it is easy to use and understand.

The second data structure is a vector of cycles called
tsBeginningCycle, which dictates the cycle at which each time-
step begins. Starting at time-step 0, a cycle should be added to
tsBeginningCycle for each time-step. This information is
determined in the router because a time-step cannot officially
begin until all droplets have been routed to their destinations.

The router is called with 5 parameters: dag (scheduled and
placed), arch, rModules (populated by the placer), routes
(empty) and tsBeginningCycle (empty). To adhere to interface
standards, the router creates a droplet-route pair
(pair(Droplet*, vector<RoutePoints*>*)) for each droplet in
the simulation and adds it to routes, adding a new RoutePoint
for each cycle the droplet is on the DMFB. The router must
also add the cycle number of the next time-step, which begins
immediately after the routing phase ends. This data structure
allows the visualization tool to display the time-step of each
droplet actuation cycle during simulation.

D. Router Output Interface
Util is called when the router completes, and produces two

output files for visualization. One file is used to create the
cyclic-route and cyclic-simulation visualizations (Fig. 7), and
the other produces the compact-route visualizations (Fig. 8).

E. Interface Bypass
The interface files created as output for each synthesis step

are used as input to the visualization suite, which was written in
Java. In practice, the visualization files are optional, and the
entire synthesis flow can run as one atomic program, passing
the internal data structures between steps; suppressing file I/O
can reduce runtime and clutter in the file system.

V. IMPLEMENTATION STATUS AND USABILITY STUDY
The framework compiles successfully under gcc in both

Windows (using the MinGW toolchain [3]) and Linux; the
visualization tools are written in Java, and, hence, are portable.

The simulator was used successfully in an undergraduate-
level senior design project course at UC Riverside. Four
undergraduate students were presented with the simulator, and
access to the graduate student who was the primary developer.
The initial version of the simulator had implemented list
scheduling [14], a default placer in which all modules are
placed on pre-defined locations on the chip, and a default
router that transported one droplet at a time from its source to
destination, using Dijkstra’s algorithm to compute the route.

 The students were given papers to read on scheduling,
placement, routing, and DMFB technology in general. The
instructor spent a significant amount of time with them to make
sure that they understood the pseudocode for all algorithms that
would be implemented. The instructor also explained
algorithmic techniques, such as genetic algorithms and
simulated annealing, which are used in some of the papers.

Within a 10-week period, the students were able to
implement two genetic scheduling algorithms [12][14], a

simulated annealing-based placer [15], and one router of non-
trivial complexity [13]. Several of the students have continued
to work with the simulator, either as volunteer researchers or
for independent-studies course projects, and other students
(mostly undergraduates and M.S. students) have joined the
project as well. Our present effort, which is ongoing, is to
implement all existing scheduling, placement, and routing
algorithms for direct-addressing DMFBs within the framework,
in order to facilitate an honest and unbiased comparison.

The framework has also been used to produce new research
results, including two new scheduling algorithms [7][10] and a
fast online DMFB synthesis flow that is intended for dynamic
interpretation, rather than static compilation [6].

The results of the algorithms implemented in the simulator
are similar to previously published results; it is difficult to
obtain the exact results reported by others for iterative
improvement algorithms [12][14][15] because the random
number seeds used for the experiments were not published. As
the schedules and placements may differ as well, we did not
obtain the same routing instances as prior work [13], so the
routing times are likewise different. Unsurprisingly, the
schedulers based on genetic algorithms [12][14] achieve better
quality results than standard list scheduling [14]; however, the
runtime of the genetic algorithms is significantly higher, as
they are iterative improvement algorithms, whereas, list
scheduling is a greedy heuristic. The new heuristic scheduling
algorithms that we have since developed [7][10] have narrowed
the solution quality gap considerably, although they run a bit
slower than standard list scheduling.

VI. RELATED WORK
BioCoder is a high-level language for biological protocols

developed at Microsoft Research, India [4], and its compiler
has been open-sourced. BioCoder creates a visual DAG output
of each assay, similar to our visualization suite, and also
outputs an unambiguous “cookbook-style” specification of
each assay. The objective of this latter output option is to
reduce ambiguity in assay specifications in peer-reviewed
scientific literature, which is subject to human error. As
mentioned earlier, we plan to modify BioCoder’s compiler to
generate DAGs that are compatible with our framework.

Micado [4] is an AutoCAD plug-in that automatically
generates the control layer for continuous fluid-flow based
microfluidic chips based on multi-layer soft lithography—a
completely different microfluidic technology than DFMBs.

To the best of our knowledge, no other tools to support
programmable microfluidics research are presently available.

VII. CONCLUSION AND FUTURE WORK
We encourage researchers who want to study DMFB

synthesis to download and use our framework. We hope that
they will develop and contribute new algorithms using this
framework, as it provides a common platform for comparison.
The framework can also be used to create undergraduate and
graduate courses on the topic of programmable microfluidics,
and to support undergraduate senior design projects and
graduate-level projects and theses.

In the future, we plan to add functionality to the simulator
for cross-referencing and pin-constrained DMFBs that support
constrained addressing schemes, and to introduce fault models
to support research on fault tolerance, testing, and recovery [8].

ACKNOWLEDGMENT
This work was supported in part by NSF Grant CNS-1035603.
Daniel Grissom was supported by an NSF Graduate Research
Fellowship.

REFERENCES
[1] www.microfluidics.cs.ucr.edu
[2] www.graphviz.org
[3] www.mingw.org
[4] N. Amin, W. Thies, and S. Amarasinghe, “Computer-aided design for

microfluidic chips based on multilayer soft lithography,” in Proc. ICCD,
Lake Tahoe, USA, 2009, pp. 2-9.

[5] V. Ananthanarayanan and W. Thies, "Biocoder: a programming
language for standardizing and automating biology protocols," J. Biol.
Eng., vol. 4, no. 1, pp. 1204-1216, Dec. 2010.

[6] D. Grissom and P. Brisk, "Fast online synthesis of generally
programmable digital microfluidic biochips," in Proc. Int. Conf. HW/SW
Codesign and Sys. Synth. (CODES+ISSS), Tampere, Finland, 2012.

[7] D. Grissom and P. Brisk, "Path scheduling on digital microfluidic
biochips," in Proc. Design Automation Conference (DAC), San
Francisco, CA, 2012, pp. 26-35.

[8] T. Ho, K. Chakrabarty and P. Pop, "Digital microfluidic biochips: recent
research and emerging challenges," in Proc. Int. Conf. HW/SW Codesign
and Sys. Synth. (CODES+ISSS), Taipei, Taiwan, 2011, pp. 335-343.

[9] L. Luo and S. Akella, "Optimal scheduling of biochemical analyses on
digital microfluidic systems," in Proc. Conf. on Intelligent Robots and
Systems, San Diego, CA, 2007, pp. 3151-3157.

[10] K. O'Neal, D. Grissom and P. Brisk, "Force-directed list scheduling for
digital microfluidic biochips," in Proc. IFIP/IEEE Int. Conf. Very Large
Scale Integration (VLSI-SoC), Santa Cruz, CA, 2012.

[11] M. G. Pollack, A.D. Shenderov and R. B. Fair, "Electrowetting-based
actuation of droplets for integrated microfluidics," Lab Chip, vol. 2, no.
2, pp. 96-101, Mar. 2002.

[12] A. J. Ricketts, K. Irick, N. Vijaykrishnan and M. J. Irwin, "Priority
scheduling in digital microfluidics-based biochips," in Proc. Conf. on
Design Automation and Test in Europe (DATE), Munich, Germany,
2006, pp. 329-334.

[13] P. Roy, H. Rahaman and P. Dasgupta, "A novel droplet routing
algorithm for digital microfluidic biochips," in Proc. of the Great Lakes
Symp. on VLSI (GLSVLSI), Providence, RI, 2010, pp. 441-446.

[14] F. Su and K. Chakrabarty. "High-level synthesis of digital microfluidic
biochips," ACM J. Emerging Tech. Comput. Syst., vol. 3, no. 4, pp. 16.1-
16.32, Jan. 2008.

[15] F. Su and K. Chakrabarty, “Module placement for fault-tolerant
microfluidics-based biochips,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 11, no. 3, pp. 682-710, Jul. 2006.

[16] F. Su and K. Chakrabarty, "Unified high-level synthesis and module
placement for defect-tolerant microfluidic biochips," in Proc. Design
Automation Conference (DAC), Anaheim, CA, 2005, pp. 825-830.

[17] F. Su, W. Hwang and K. Chakrabarty, "Droplet routing in the synthesis
of digital microfluidic biochips," in Proc. Conf. on Design Automation
and Test in Europe (DATE), Munich, Germany, 2006, pp. 323-328.

[18] T. Xu, K. Chakrabarty and V. K. Pamula, "Defect-tolerant design and
optimization of a digital microfluidic biochip for protein crystallization,"
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29, no. 4,
pp. 552-565, April 2010.

[19] P-H. Yuh, C-L. Yang and Y-W. Chang, "BioRoute: a network-flow-
based routing algorithm for the synthesis of digital microfluidic
biochips," IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
27, no. 11, pp. 1928-1941, Nov. 2008.

