

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Design of Topologies for Interpreting Assays on Digital Microfluidic Biochips

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Daniel Thomas Grissom

June 2014

Dissertation Committee:

Dr. Philip Brisk, Chairperson

Dr. Frank Vahid

Dr. Qi Zhu

Dr. Walid Najjar

Copyright by

Daniel Thomas Grissom

2014

The Dissertation of Daniel Thomas Grissom is approved:

 Committee Chairperson

University of California, Riverside

iv

ACKNOWLEDGMENTS

 I would like to thank Dr. Philip Brisk for his continual dedication to, not only our

microfluidic research, but also to my personal growth and well-being. From the day I met

Dr. Brisk, he has shown a true desire to challenge me, while ensuring that I am enjoying

my work and keeping my sanity. His guidance and countless hours of mentoring have

been foundational to my success at the University of California, Riverside (UCR) and has

undoubtedly helped shape my career aspirations.

Much of the work in this dissertation has already been published and I thank the

Institute of Electrical and Electronics Engineers (IEEE) and the Association for

Computing Machinery (ACM) for allowing me to include significant portions of my

work in this dissertation from the following published works:

 ACM Journal on Emerging Technologies in Computing Systems [28] (CHAPTER

2)

 ACM Proceedings of the Great Lake Symposium on VLSI [30] (CHAPTER 3)

 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

[31] (CHAPTER 3)

 ACM Proceedings of the Design Automation Conference [29] (CHAPTER 4)

I would like to thank the following entities for their generous awards, fellowships

and stipends which made it possible for me to focus on research during my time at UCR:

 The National Science Foundation (NSF) for the Graduate Research Fellowship

 UCR for their initial fellowship aid and Dissertation Year Fellowship

v

DEDICATION

This dissertation is dedicated to:

 Jesus Christ, my personal savior, who gave me the idea and strength to become a

graduate student

 Maritza Grissom, my beautiful wife, who has learned to say “duh” when I talk about

microfluidics so it feels like it should all actually make sense to everyone listening

 William & Sandra Grissom, my amazing parents, who paid my way through

undergrad and have loved and supported me through it all

 Joanna, Michael, Rebecca, Jonathan & Jeremiah, my older siblings, who have

always been there for me

 The orphans, widows and all the beautiful people of Sub-Saharan Africa, who have

been my inspiration for advancing the field of microfluidics

vi

 ABSTRACT OF THE DISSERTATION

Design of Topologies for Interpreting Assays on Digital Microfluidic Biochips

by

Daniel Thomas Grissom

Doctor of Philosophy, Graduate Program in Computer Science

University of California, Riverside, June 2014

Dr. Philip Brisk, Chairperson

In the last decade, digital microfluidic biochips have emerged as a viable candidate

for the automation and miniaturization of biochemistry; however, digital microfluidic

designs in previous works typically suffer from two short-comings: 1.) they are unable to

respond to live feedback and errors; 2.) they are application-specific, rather than

programmable. In the early years of digital microfluidic research, the synthesis problems

of scheduling, placement and routing were performed offline (before runtime) due to

their algorithmic complexity, typically yielding application-specific devices that could

perform only one type of biochemical reaction and could not respond to live feedback in

a timely manner, due to the complexity of their algorithms.

This dissertation offers topological solutions toward realizing digital microfluidic

biochips that are both dynamic and programmable in nature. We begin by presenting

vii

interpretation, which is a form of dynamic synthesis. Instead of static compilation which

generates a deterministic electrode activation sequence, interpretation acts like an

operating system that manages resources as an assay is being executed, allowing for

resources to be allocated and dispatched dynamically in response to live feedback from

integrated sensors and video monitoring. We also present new language constructs

necessary to incorporate control flow into digital microfluidic biochips (DMFBs). We

then introduce virtual topologies, a virtual organization of electrodes into “city streets and

blocks,” which help simplify dynamic synthesis flow algorithms; we show two new

virtual topologies and describe scheduling, placement and routing algorithms to

accompany them, yielding fast, reliable, dynamic, programmable DMFBs. Finally, we

present a field-programmable, pin-constrained (FPPC), topology which, for the first time,

offers a solution to reduce the cost of a DMFB while maintaining programmability. We

include results which show our FPPC design to be the least expensive when compared to

prior pin-constrained and direct addressing DMFBs, while offering unmatched flexibility

next to its closest competitors in price. We conclude with the first detailed cost analysis

and shed light on the relationship between PCB layer count, pin count and cost. Our

results reveal that the minimization of pin-count, if not done carefully, can necessitate

additional PCB layers and yield a more expensive DMFB.

viii

TABLE OF CONTENTS

Acknowledgments ... iv

Dedication ... v

ABSTRACT OF THE DISSERTATION ... vi

Table of Contents .. viii

List of Figures .. xii

List of Appendix Figures .. xvi

List of Tables .. xvii

CHAPTER 1 Introduction ... 1

1.1 - DMFB Droplet Manipulation ... 2

1.2 - DMFB Device Technology Overview .. 4

1.3 - High-Level Assay Synthesis Overview .. 6

1.3.1 - Scheduling .. 7

1.3.2 - Placement ... 8

1.3.3 - Droplet Routing .. 10

1.3.4 - Pin-Mapping ... 13

1.3.5 - Wire Routing .. 15

1.4 - DMFB Design Objectives .. 16

1.4.1 - Dynamic DMFBs .. 16

1.4.1.1 - Barriers to Dynamic DMFBs ... 19

1.4.2 - Programmable DMFBs .. 21

1.4.2.1 - Barriers to Programmable DMFBs ... 22

1.5 - Contributions .. 23

CHAPTER 2 Interpretation ... 24

2.1 - Introduction .. 24

2.1.1 - Interpretation vs. Compilation ... 25

2.1.2 - Contribution ... 27

2.2 - Virtual Topology .. 28

ix

2.2.1 - Synthesis Simplifications .. 29

2.2.2 - Deadlock-Free 2D-Mesh Routing .. 31

2.2.2.1 - Analogue to 2D-Mesh Topology .. 32

2.2.2.2 - Differences from 2D-Mesh Topology ... 33

2.3 - Interpretation .. 34

2.4 - BioCoder Language and Extensions ... 35

2.4.1 - Lack of Universality in LoC Compilation .. 35

2.4.2 - Object-Oriented Organization ... 36

2.4.2.1 - Example .. 38

2.4.3 - Extensions for Feedback and Control Flow ... 39

2.4.3.1 - Example .. 41

2.5 - System overview and runtime environment ... 42

2.5.1 - Intermediate Bytecode Format and Interpreter ... 43

2.5.1.1 - Bytecode Instruction Format .. 44

2.5.1.2 - I/O Operations ... 45

2.5.1.3 - Droplet Identification ... 46

2.5.1.4 - Keeping Track of Time ... 47

2.5.2 - Interpreting a DAG on the Virtual Topology ... 49

2.5.2.1 - Scheduling .. 49

2.5.2.2 - Binding ... 51

2.5.2.3 - Droplet Transportation Protocol (DTP) .. 52

2.5.3 - CFG Execution ... 56

2.6 - Simulation Results .. 56

2.6.1 - Experiment #1: Fault-tolerant Splitting ... 57

2.6.2 - Experiment #2: In-vitro Diagnostics .. 63

2.6.3 - Experiment #3: Baseline Assays ... 66

2.7 - Conclusion .. 71

CHAPTER 3 An Efficient Virtual Topology .. 73

3.1 - Introduction .. 73

3.1.1 - Contribution ... 74

3.2 - Related Work .. 75

3.2.1 - Scheduling .. 75

3.2.2 - Placement ... 76

3.2.3 - Routing ... 76

x

3.2.4 - Combined Methods ... 77

3.3 - Virtual Topology .. 78

3.3.1 - Module Topology and Synchronization .. 79

3.4 - Fast Online Synthesis ... 83

3.4.1 - Scheduling .. 83

3.4.2 - Placement ... 85

3.4.2.1 - Left-Edge Binding Algorithm ... 86

3.4.2.2 - Path-Based Binding Algorithm .. 89

3.4.2.2.1 - Generating Path-Compressed Graph 93

3.4.2.2.2 - Selecting Storage Module Location ... 95

3.4.2.2.3 - Binding Storage To Holders... 96

3.4.3 - Routing ... 101

3.5 - Experiments .. 105

3.5.1 - Benchmarks .. 105

3.5.2 - Implementation Details .. 107

3.5.3 - Experiment 1: Left-Edge Binding vs. Path Binding 107

3.5.4 - Experiment 2:Topology Exploration .. 108

3.5.5 - Experiment 3: Comparison To Fast Free Placer ... 111

3.6 - Conclusion .. 114

CHAPTER 4 Pin-Constrained Topology .. 116

4.1 - Introduction .. 116

4.1.1 - Contribution ... 118

4.2 - Related Work .. 118

4.3 - Pin-Constrained Assignment .. 120

4.3.1 - DMFB Operations and Synchronization .. 122

4.3.1.1 - Droplet Transport .. 122

4.3.1.2 - Droplet Dispensing and Outputting ... 126

4.3.1.3 - Merging/Mixing.. 126

4.3.1.4 - Storage, Detection, and Splitting ... 128

4.4 - FPPC-DMFB SYNTHESIS .. 129

4.4.1 - Scheduling .. 129

4.4.2 - Placement/Binding ... 130

4.4.3 - Droplet Routing .. 131

xi

4.4.3.1 - Route Computation... 131

4.4.3.2 - Droplet Dependencies and Deadlock ... 131

4.4.3.2.1 - Routing Algorithm .. 132

4.4.4 - Co-optimizing Pin Assignment and Wire Routing .. 136

4.5 - EXPERIMENTAL METHODOLOGY ... 140

4.5.1 - Wire Routing Cost Analysis .. 140

4.5.1.1 - Cost Computation... 141

4.6 - EXPERIMENTAL RESULTS ... 145

4.6.1 - Benchmarks .. 145

4.6.2 - PCB Layers & Orthogonal Capacity ... 147

4.6.3 - Wire Routing Cost Analysis .. 149

4.6.3.1 - Metric Selection ... 149

4.6.4 - PCB Cost Results ... 152

4.6.5 - Performance ... 156

4.6.5.1 - Comparison to General DMFB .. 156

4.6.5.2 - Comparison To Pin-Constrained DMFBs.. 158

4.7 - CONCLUSION .. 160

CHAPTER 5 Conclusion .. 161

References ... 166

Appendix ... 174

xii

LIST OF FIGURES

Figure 1-1: (a) A continuous-flow microfluidic device operates on 2

Figure 1-2: (a) A DMFB is a planar array of electrodes; (b) Cross-sectional 3

Figure 1-3: Basic microfluidic operations form the building blocks for assays 3

Figure 1-4: A microfluidic system typically consists of three major parts 7

Figure 1-5: A typical microfluidic synthesis flow dictates that a microfluidic 7

Figure 1-6: An operation, such as the mix operation from Figure 1-5 (M1) 9

Figure 1-7: (a) Placement failure occurs because there is insufficient space 10

Figure 1-8: (a) The interference region (‘IR’) of a droplet at the beginning 11

Figure 1-9: The droplet router produces an electrode activation sequence 12

Figure 1-10: Activating a pin on a (a) direct-addressing DMFB activates 13

Figure 1-11: A DMFB has printed circuit boards (PCBs, green layers) 14

Figure 1-12: Example of the linear state machine model of DMFB 17

Figure 1-13: (a) A static synthesis flow performs scheduling, placement 18

Figure 1-14: Offline vs. online synthesis tradeoffs. ... 20

Figure 1-15: A DMFB “App Store” would allow a user to download 22

Figure 2-1: A control-flow graph for a simple drug-discovery assay 25

Figure 2-2: Example of the linear state machine model of DMFB control 27

Figure 2-3: In response to an error detected in state k, the assay is paused 27

Figure 2-4: (a) A tile is the fundamental building block of the virtual topology 29

Figure 2-5: The operations of a scheduled DAG are bound to the modules 31

xiii

Figure 2-6: (a) A module rotary (the cycle formed by four streets surrounding 33

Figure 2-7: (a) Overview of the BioCoder system and output, highlighting 37

Figure 2-8: (a) BioCoder code for a sample assay and (b) the representative 39

Figure 2-9: A BioConditionalGroup contains BioConditions 40

Figure 2-10: (a) BioCoder code illustrating the use of conditionals; (b) CFG 42

Figure 2-11: Illustration of the left-edge binding solution. 52

Figure 2-12: Legal turns (black) and prohibited turns (dashed outline) 53

Figure 2-13: (a) Clipping an exchange rotary (‘ER’); (b) passing through 55

Figure 2-14: (a) Deadlock in a module rotary; (b) Module rotary with street 56

Figure 2-15: Output from system showing (a) the initial 2-level protein 60

Figure 2-16: (a) Parallel and (b) sequential CFG implementations of the in-vitro .. 63

Figure 2-17: BioCoder specification of the sequential in-vitro assay for a 99% 65

Figure 2-18: Simulator output for a particular run of the sequential in-vitro 66

Figure 2-19: PCR, In-Vitro and Protein DAG specifications 67

Figure 3-1: Virtual topology imposed onto a DMFB. .. 78

Figure 3-2: The entrance cells (I1/I2) and exit cells (O1/O2) of (a) a 3x3 module .. 79

Figure 3-3: An assay time-line showing that each fixed time-step (TS) is 80

Figure 3-4: Intra-module droplet processing/routing for microfluidic operations. .. 82

Figure 3-5: Two DMFB scenarios with droplets that are going to be split 85

Figure 3-6: Illustration of the left-edge binding solution ... 86

Figure 3-7: Pseudocode for our left-edge-based binding algorithm 87

Figure 3-8: (a) Randomly-bound sequencing graph for a simple assay 91

xiv

Figure 3-9: Pseudocode for our path-based binder. .. 92

Figure 3-10: Pseudocode for the GeneratePathCompressedGraph() function. 95

Figure 3-11: Pseudocode for the SelectModuleLocations() function. 96

Figure 3-12: Pseudocode for the BindStorageToHolders() function 99

Figure 3-13: (a-k) Transformations that take place at the corresponding times 100

Figure 3-14: Droplets 1 and 2 are traveling from source 1 and 2 (S1/S2) to 104

Figure 3-15: Three different topologies showing modules stacked vertically 109

Figure 4-1: Pin diagram for a 10×16 FPPC-DMFB which can accommodate 121

Figure 4-2: At least 3 repeatable pins are needed to move a droplet along a 123

Figure 4-3: The number or size of modules can be changed and the 3-phase 124

Figure 4-4: Moving two droplets concurrently is (a) feasible when moving 124

Figure 4-5: Multiple droplets moving through the vertical bus will result............. 125

Figure 4-6: Pin-activation sequence showing how a single droplet (D2) 127

Figure 4-7: The electrode/pin activation sequence (from Cycle 1 to 4) that 128

Figure 4-8: Pin-activation sequence for splitting a droplet (D2) and storing 129

Figure 4-9: Split operations are converted to a split and two stores for synthesis. 130

Figure 4-10: Cyclic routing dependencies can be broken by first routing 132

Figure 4-11: Psuedocode for route computation .. 133

Figure 4-12: (a) The pin-mapping for a pin-constrained DMFB for a PCR 136

Figure 4-13: The original FPPC-DMFB [30] detailing the (a) pin-mapping 138

Figure 4-14: The wire-routing model for the FPPC-DMFB generalizes 140

Figure 4-15: A top-down and cross-sectional view of a PCB showing dim 144

xv

Figure 4-16: The component layout for PCB size estimation. The electrode 145

Figure 4-17: An FPPC-DMFB variant that replaces 3-phase busses with direct ... 146

Figure 4-18: Two-layer wire-routing solution for FPPC_4_MODULE................. 151

Figure 4-19: Total wire-routing fabrication costs per DMFB board, including 155

xvi

LIST OF APPENDIX FIGURES

Figure A - 1: PCR Benchmark; DAG for polymerase chain reaction mixing tree .. 175

Figure A - 2: InVitro1 Benchmark; DAG for an in-vitro diagnostics assay 176

Figure A - 3: InVitro2 Benchmark; DAG for an in-vitro diagnostics assay 177

Figure A - 4: InVitro3 Benchmark; DAG for an in-vitro diagnostics assay 178

Figure A - 5: InVitro4 Benchmark; DAG for an in-vitro diagnostics assay 179

Figure A - 6: InVitro5 Benchmark; DAG for an in-vitro diagnostics assay 180

Figure A - 7: ProteinSplit1 Benchmark; DAG for a protein synthesis assay 181

Figure A - 8: ProteinSplit2 Benchmark; DAG for a protein synthesis assay 182

Figure A - 9: ProteinSplit3 Benchmark; DAG for a protein synthesis assay 183

Figure A - 10: ProteinSplit4 Benchmark; DAG for a protein synthesis assay 184

Figure A - 11: ProteinSplit5 Benchmark; DAG for a protein synthesis assay 185

Figure A - 12: ProteinSplit6 Benchmark; DAG for a protein synthesis assay 186

Figure A - 13: ProteinSplit7 Benchmark; DAG for a protein synthesis assay 187

file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130271
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130272
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130273
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130274
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130275
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130278
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130279
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130280
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130281
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130282
file:///C:/DannyG/Microfluidics/Documentation/Dissertation/Content/Dissertation_Clean.docx%23_Toc389130283

xvii

LIST OF TABLES

Table 2-1: Prototypes for six BioCoder functions that are supported by EWoD 37

Table 2-2: BioExpressions create simple or complex, nested expressions 41

Table 2-3: Microfluidic operations and BioCoder functions that enable droplet 41

Table 2-4: Recovery synthesis time (averaged over 10 runs) for a 2-level protein ... 62

Table 2-5: Average recovery assay runtime (averaged over 10 runs) showing 62

Table 2-6: Average sequential InVitro completion time and sample usage 64

Table 2-7: Static compiler synthesis results for 7 deterministic benchmarks 69

Table 2-8: Online Interpreter (using the virtual topology) synthesis results 69

Table 2-9: Scheduling results for various scheduling methods for large 70

Table 3-1: Table of benchmarks showing the number of different operation 106

Table 3-2: Module library for mix operations for PCR and ProteinSplit assays 106

Table 3-3: Results showing the route lengths (RL) and computation times 108

Table 3-4: Results showing the number of modules that can fit and the resultant .. 110

Table 3-5: Results showing the sizes of the DMFBs and resultant route lengths ... 110

Table 3-6: Results showing Path Binding (PB) vs. KAMER Placement (KP) 113

Table 4-1: PCB Fabrication Parameters. ... 144

Table 4-2: The left side gives a description of the 21 DMFB wire-routing 148

Table 4-3: The left side shows various metrics used for the Advanced Circuit 151

Table 4-4: Wire routing costs for the 21 benchmarks, sorted in order of 153

Table 4-5: Experimental results comparing the direct-addressing DMFB 157

xviii

Table 4-6: Results from Zhao's [90] and Luo's [52] pin-constrained designs for ... 158

Table 4-7: The three benchmark assays from Xu [83] and Luo [52] 159

1

CHAPTER 1 INTRODUCTION

Over the last decade, microfluidics has emerged as a viable technology for

automating and miniaturizing biochemical reactions. Instead of mixing fluids together on

the order of milliliters and liters in test tubes and beakers, microfluidic devices can

perform many of the same reactions by manipulating nanoliter-sized quantities of fluid on

a small lab-on-chip (LoC) device. Microfluidic LoCs have been designed to execute a

multitude of different biochemical applications including in-vitro diagnostics and

immunoassays used in clinical pathology [75], DNA polymerase chain reaction (PCR)

mixing stages used to amplify DNA [50] and protein crystallizations [81].

Figure 1-1 shows the two major types of microfluidic LoCs. Continuous-flow

microfluidic devices (Figure 1-1(a)), also called analog microfluidic biochips, perform

biochemical reactions, known as assays, by actuating pumps to open and close micro-

valves [57]. On these devices, fluid flows through tiny channels in a continuous fashion

similar to how water flows through the pipes in a house. In contrast, a newer LoC

platform known as a digital microfluidic biochip (DMFB) performs assays by

manipulating discrete droplets of fluid around a 2D-array of electrodes (see Figure

1-1(b)).

Although continuous-flow microfluidic devices are more mature and offer a solid

platform for executing microfluidic assays, their micro-channel and micro-valve locations

are permanently etched into the device, as seen in Figure 1-1(a), which limits the LoC’s

capabilities since fluids can only be mixed and transported via the pre-planned layout.

2

Typically, continuous-flow devices are designed and fabricated to perform a single assay.

DMFBs, however, offer a generic 2D-array of electrodes on which various microfluidic

operations can be performed with much less restriction (see ‘Section 1.1 - DMFB ’).

Since DMFBs typically have no permanent regions for mixing and transportation, they

are inherently reconfigurable in nature, which make them an excellent candidate for a

general-purpose microfluidic device that can perform a wide assortment of assays.

 (a) (b)

Figure 1-1: (a) A continuous-flow microfluidic device operates on continuous flows of fluid that flow

through micro-channels; (b) A digital microfluidic biochip (DMFB) operates on discrete droplets

that move around a 2D-array of square electrodes.

1.1 - DMFB DROPLET MANIPULATION

DMFBs execute assays by manipulating nanoliter-sized droplets of fluid on a 2D-

array of electrodes, as seen in Figure 1-2(a), and are typically based on a phenomenon

known as electrowetting on dielectric (EWOD) [63]. An EWOD-based DMFB, as seen in

Figure 1-2(b), consists of a top and bottom plate coated with a hydrophobic layer (to

prevent fluids from sticking to the DMFB). The bottom plate has an array of droplet-

sized control electrodes, while the top plate has a single conducting electrode that spans

the entire array (Figure 1-2(a)) of control electrodes. Each droplet is sandwiched

between the bottom and top plates and will hold its place if its underlying electrode

remains activated.

3

(a) (b)

(c)

Figure 1-2: (a) A DMFB is a planar array of electrodes; (b) Cross-sectional view of electrode array;

(c) A droplet is transported from control electrode 2 (CE2) to CE3 by activating (white) CE3, while

deactivating (black) CE2, allowing for droplets to be transported around the DMFB.

Figure 1-3: Basic microfluidic operations form the building blocks for assays to be executed.

In Figure 1-2(b), a droplet is seen to overlap neighboring electrodes; when a

neighboring electrode is activated, electrowetting causes an electric field change,

inducing increased wetting and surface tension on that side of the droplet, which causes it

to flow toward the newly activated electrodes [63]. Thus, Figure 1-2(c) shows that if

CE3 is activated while CE2 is being deactivated, the entire droplet will move to cover

CE3. As seen in Figure 1-3, with the proper sequence of electrode activations, several

4

fundamental microfluidic operations can be performed: droplet transportation, splitting,

merging, mixing and storage. Sensor-based detection operations execute by moving a

droplet to a detector (placed above an electrode) and storing the droplet there; among the

most popular sensors beginning to be employed in microfluidic systems, optical sensors

can be used to measure wavelength/color (e.g., a certain reaction may be considered

complete when the solution turns a certain wavelength/color) [49][65][71], while

capacitive sensors can be used to measure the volume and validate the presence of a

droplet [64]. Dispense and output operations are performed by I/O reservoirs on the

perimeter of the DMFB.

If a droplet is not centered over or adjacent to any activated electrodes, it will drift

across the DMFB in an undetermined and unpredictable manner. In contrast, activating

an electrode underneath a droplet will hold it in place as long as the electrode remains

activated, inducing the storage operation seen in Figure 1-3.

1.2 - DMFB DEVICE TECHNOLOGY OVERVIEW

There are several classes of DMFBs that provide varying levels of droplet control.

Typical direct-addressing (individually-addressable) DMFBs have one control pin for

each electrode (i.e. control pins for an array of electrodes) so each

electrode (droplet) can be independently controlled at all times. However, the wiring cost

of independently controlled electrodes, especially as array sizes grow, has motivated

cheaper designs [82].

Cross-referencing DMFBs use control pins to control an array of

electrodes [23]. In this scheme, each row and each column has a single control pin; when

5

a particular column and row are activated, the electrode at is activated.

Multiple columns and rows can be simultaneously activated, but may cause superfluous

electrode activation, yielding undesired droplet movement [80]. Thus, once a route for a

direct-addressing DMFB is computed, each droplet-actuation cycle is serialized across

multiple droplet-actuation cycles, resulting in prolonged routing times and increased

algorithmic complexity.

Pin-constrained DMFBs represent another addressing scheme. An assay is first

synthesized as if on a direct-addressing DMFB; then, special heuristics attempting to

solve the clique partitioning problem (NP-Hard) are used to minimize the total number of

control pins, based on which electrodes can be activated together without causing

undesired droplet movement [80].

Active-matrix addressing designs are emerging which give independent control of

 electrodes while using only control pins [60]. Active matrix

addressing can scale without growing prohibitively expensive, while maintaining the

maximum level of flexibility and control so that assays can be programmed with minimal

levels of algorithmic complexity; however, the fabrication process of these devices is

difficult and has not yet been mastered.

To summarize, pin-constrained designs offer minimal product costs, are inflexible,

and cannot be reprogrammed after being manufactured; cross-referencing DMFBs are

reprogrammable, but add another layer of complexity that must be handled to serialize

droplet motion [80]. Individually-addressable and active-matrix DMFBs provide the most

programmability and flexibility, in terms of droplet control; however, individually-

6

addressable designs are expensive and the active-matrix fabrication process is not stable

enough to yield reliable devices.

1.3 - HIGH-LEVEL ASSAY SYNTHESIS OVERVIEW

A digital microfluidic system typically consists of three parts, as seen in Figure 1-4:

a PC controller, a micro-controller and a “wet” DMFB which contains the droplets where

the microfluidic reaction is performed. The PC controller performs the computations

which map a microfluidic reaction to a DMFB; this process is known as synthesis and

yields an electrode activation sequence (see ‘Section 1.3.3 - Droplet Routing’) which is

sent to the microcontroller. The microcontroller and its accompanying circuitry amplifies

and “plays” this sequence of signals to the DMFB to activate the DMFB’s electrodes, in

turn performing the microfluidic reaction. Today, modern DMFBs have optical and

capacitive sensors which can communicate back to the PC and microcontroller to help

ensure proper execution of the microfluidic reaction and provide feedback for error

recovery.

Figure 1-5 details the general synthesis flow used for DMFBs. An assay can be

represented as a directed acyclic graph (DAG), where the nodes represent microfluidic

operations (e.g. mix, split, etc.) and the edges represent precedence (i.e., a partial order of

operations). The left side of Figure 1-5 depicts a simple assay in which two droplets are

input, mixed, and finally, output from the DMFB.

7

Figure 1-4: A microfluidic system typically consists of three major parts: a PC controller, a

microcontroller and a DMFB.

Figure 1-5: A typical microfluidic synthesis flow dictates that a microfluidic assay is represented in

the form of a DAG; in Stage 1, its operations are scheduled and placed onto the DMFB array and

droplets are routed between operation locations. In Stage 2, pin-mapping and wire routing are

performed to eliminate unused electrodes and connect the electrodes to an external edge of the device

to be driven by a microcontroller.

1.3.1 - SCHEDULING

The first step of synthesis is scheduling. In this step the scheduler assigns an absolute

start and stop time to each operation (e.g., the mix operation, M1, will execute from time

1 to 4). The scheduler must ensure that no operation starts before any of its parent

operations end and that there are enough resources to simultaneously perform any

concurrently scheduled operations (e.g., the scheduler must guarantee that two detection

8

operations are not scheduled at the same time if there is only one available detection

module on the DMFB).

1.3.2 - PLACEMENT

Once a schedule has been computed, placement is performed. The placer decides

where on the DMFB to perform each operation. For input operations, an input reservoir

containing the appropriate fluid is selected. However, operations such as mixing and

splitting can be performed at a variety of different locations on the DMFB. For example,

in Figure 1-5, the mix operation M1 is placed in the 2×2 array of cells in the top-right

corner of the DMFB. However, M1 could be placed in any unoccupied 2×2 array of cells

on the DMFB. This array of cells used to denote the location of an operation is temporary

and is known as a module. As seen in Figure 1-6, a mix operation may be placed into a

variety of different module sizes, although the time it takes to complete the mix operation

may vary based on the module size. This allows the placer flexibility when placing

operations. It should be noted, however, that if the placer changes the module size, the

schedule may need to be recomputed because of the new module’s required change in

operation length.

9

Figure 1-6: An operation, such as the mix operation from Figure 1-5 (M1), leverages a module

library to select its duration and module shape (7 distinct horizontal/vertical orientation options

shown given the 4 module shapes) and is then placed anywhere onto an empty DMFB.

At each time-step of the schedule, all of the executing operations and stored droplets

must be placed at different locations on the chip while simultaneously ensuring that

modules are arranged in such a way as to avoid placement failure (e.g., Figure 1-7(a)). In

particular, operations that required specialized external devices, such as heating or

detection, must be placed on DMFB locations that are accessible to the appropriate

specialized devices [76]. In addition, module placement should leave enough space

around modules to prevent droplet routing failure; in the case of a poor placement, a

droplet may not be able to reach its destination because every possible path is being

blocked by an existing module (as seen in Figure 1-7(b)), causing the assay to fail.

10

 (a) (b)

Figure 1-7: (a) Placement failure occurs because there is insufficient space for M7 to be placed given

the placement of modules M1-M6; (b) Routing failure occurs because the droplet (D) is attempting to

reach the detection zone (marked with magnifying glass lenses) but cannot because modules M1-M3

are placed in such a way that block all paths to the destination.

1.3.3 - DROPLET ROUTING

Next, once operations have been scheduled and their corresponding modules have

been placed onto the DMFB, droplet routing is performed to compute paths between the

modules where each operation is performed. Operations can be routed from input

reservoirs to modules, from modules to modules, and from modules to output reservoirs.

Referring back to the scheduled DAG in Figure 1-5, the edges also represent the points

in the assay when a droplet may need to be routed to a new location on the DMFB.

The router must ensure that a droplet reaches its destination and that it does not

collide or interfere with any other droplets currently being routed or performing an

operation (e.g., a newly routed droplet could interfere with an ongoing mix). To avoid

11

droplet interference, a set of simple rules is followed. An interference region is defined as

the cells directly adjacent to a droplet, as seen in Figure 1-8(a). A droplet actuation

cycle (or cycle) is the discrete time-step that it takes for a droplet to move from the center

of one electrode to the center of an adjacent electrode; the cycle length is determined by

the electrode size, applied voltage and fluidic properties, and thus, can differ from system

to system. At the beginning of each cycle, an interference region is set around each

droplet at its current location. As a droplet moves, its interference region expands to

include the entire region around the two cells the droplet occupied during that cycle (see

Figure 1-8(b)). No droplet can move into a cell containing another droplet or into the

interference region of any other droplet at any time, unless those droplets are part of the

same merge or split operation. This set of rules keeps droplets safe by prohibiting any

other droplets to move into potentially adjacent cells at any time during a cycle.

(a) (b)

Figure 1-8: (a) The interference region (‘IR’) of a droplet at the beginning of a cycle represents its

static constraints; (b) The interference region at the end of a cycle demonstrate its dynamic

constraints.

 (1.1)

 (1.2)

 (1.3)

12

For the sake of completeness, a formal description of the fluidic constraints, as

detailed in ref. [78], is included in Equations 1.1-1.3. Let be the number of droplets in

the system, and . Then, the constraints seen in Equations 1.1-1.3 must hold

for all pairs of droplets and . The 2D microfluidic array is represented by the

coordinates , where is used to represent the location of droplet at

the beginning of cycle . We assume that no droplet is initialized inside the

interference region of any other droplet . Equation 1.1 ensures that the locations of

and are not adjacent to each other at the end of cycle . Equation 1.2 and Equation

1.3 guarantee that and never enter each other’s interference regions (the extended

region seen in Figure 1-8(b)) at any time during cycle .

The output of the droplet router is a list of electrodes to activate each cycle; a cycle is

the time it takes to move a droplet from one electrode to the next. In Figure 1-9, a "dry"

controller (e.g., a PC and/or microcontroller) sends signals to activate electrodes during

each cycle on the "wet" DMFB.

Figure 1-9: The droplet router produces an electrode activation sequence, driven by a

microcontroller (left), which corresponds to droplet movement on the DMFB.

13

1.3.4 - PIN-MAPPING

Once droplet routing is complete, an optional step called pin-mapping can be

performed when DMFB manufacturers want to reduce the cost of the device. As

mentioned in ‘Section 1.2 - DMFB Device Technology Overview’, in an individually

addressable DMFB, each electrode is wired to an external electrical pin on the edge of the

DMFB; in turn, each pin is connected to and driven by the microcontroller such that each

electrode can be independently controlled (see Figure 1-10(a)). Individually addressable

DMFBs offer the most flexibility in terms of droplet coordination; however, they are

expensive to fabricate because the number and complexity of wire routes that must exist

to connect each electrode to an external pin on the DMFB can require an increasing

number of printed circuit board (PCB) layers (Figure 1-11(a)), which significantly adds

to the cost of a DMFB.

 (a) (b)

Figure 1-10: Activating a pin on a (a) direct-addressing DMFB activates (white) exactly 1 electrode

per pin; (b) a pin on a pin-constrained DMFB activates 1+ electrodes per pin, depending on the pin

layout.

14

(a)

(b)

Figure 1-11: A DMFB has printed circuit boards (PCBs, green layers) underneath the substrate

containing the control electrodes that serve as the medium for wire-routing. A microcontroller sends

signals to and interfaces with the DMFB via one or more integrated circuit (IC) clips. (a) A direct

addressing DMFB, may require many PCB layers, while (b) a pin-constrained DMFB is designed to

perform wire routing with fewer PCB layers.

Pin-constrained DMFBs employ pin-mapping techniques to reduce the wire-routing

complexity by connecting multiple electrodes together in such a way that activating a

single external pin (via a single signal from the microcontroller) can activate multiple

electrodes (Figure 1-10 (b)). In Figure 1-5, the pin-mapping step removes the 10 non-

used electrodes and connects the remaining electrodes in such a way that reduces the

number of pins from 15 to 7.

15

The scheduling, placement and routing steps of synthesis are performed as on a

direct addressing DMFB for a particular assay (as seen in Stage 1 of Figure 1-5); then the

resultant electrode activation sequence is examined to compute a pin-mapping that will

successfully execute the synthesized assay using fewer pins [82]. The drawback of this

approach is that the DMFB is now physically tailored to execute a single assay.

1.3.5 - WIRE ROUTING

The last stage of synthesis is wire routing. The control electrodes reside on the lower

substrate of the DMFB (seen in Figure 1-2(b)), while the wire-routing is performed

below this substrate on one or more printed circuit board (PCB) layers (the green layers

in Figure 1-5 and Figure 1-11). In an individually addressable DMFB, this stage

computes wire-routes to connect each electrode to its own pin on the peripheral of the

DMFB, allowing the DMFB to be controlled by the microcontroller signals (Figure

1-11(a)).

In a pin-constrained DMFB, the wire router must first connect all of the electrodes

together with the same pin-number. For example, in Figure 1-11(b), all the electrodes

with a “1” must be connected together (done so with the red wires), all the electrodes

with a “2” must be connected with each other (blue), and so on and so forth. Each

network of wires connecting a group of electrodes with the same pin-number is known as

a net. Once the nets are connected together, a wire must be routed to connect each net to

its own pin on the peripheral of the DMFB. Because of the reduction of electrodes and

combination of pin signals, pin-constrained devices typically have fewer and smaller

PCB layers, making them much more cost-effective than direct addressing DMFBs.

16

1.4 - DMFB DESIGN OBJECTIVES

This dissertation addresses two major objectives and goals in the design of DMFBs:

1. DMFBs that are dynamic in nature

2. DMFBs that are programmable

The following sub-sections provide a brief background and explain why these objectives

are important and why they are not currently being addressed.

1.4.1 - DYNAMIC DMFBS

High-level synthesis for DMFBs has been studied for over a decade and began by

employing a static compilation flow [73]. In a static compilation flow, scheduling,

placement and routing are performed in their entirety and the output is compiled into a

deterministic electrode activation sequence, as described in ‘Sections 1.3.1 - Scheduling’

and ‘Section 1.3.3 - Droplet Routing’; however, a number of errors can occur during the

execution of an assay, such as:

 A droplet might not move as intended from one electrode to the next

 A mix operation might not reach a uniform concentration in its pre-allotted time

 A droplet might not split into two droplets of perfectly equal size, as expected

The deterministic nature of static compilation assumes that there are no errors during

assay execution; thus, without live feedback from the DMFB, it is very difficult to know

if an assay run by a deterministic state machine (i.e., static compilation) has executed

properly since there is no way to detect and respond to an error.

 Figure 1-13(a) shows the basic order of a static synthesis flow (i.e., static

compilation) and that scheduling, placement and routing are performed exactly once; the

17

resultant electrode activation sequence attempts to execute the assay in its entirety. In

fact, static synthesis is typically performed for a particular assay during the DMFB design

process and the electrode activation sequence is compiled as a bit-vector (containing the

On/Off signals for each electrode at each cycle) onto the DMFB long before an end-user

ever receives the final biochip; the resultant electrode activation sequence mimics droplet

movement and is the driver for droplet actuation, as seen in Figure 1-12. Since an assay

is compiled once during the design process, complex, long-running algorithms (e.g., it

could take hours to compute synthesis steps) are typically used to yield highly-optimized

results (e.g., shortest overall execution time; fewest number of electrodes utilized)

[73][75][76].

Figure 1-12: Example of the linear state machine model of DMFB control. The output of each state is

the subset of electrodes in the DMFB that will be activated during each time step (shown in gray).

The state machine is timed, based on the activation frequency, typically 100Hz. In this example, two

droplets are transported to a common location so that they can be merged, and two droplets are

stored in place.

Today’s DMFBs can now integrate optical and capacitive sensors for detecting live

errors during an assay’s execution [21][64][71]. Although many of these sensors were

developed during the same time-frame as the initial DMFB synthesis publications

[65][73][75], synthesis works have not attempted to dynamically integrate live feedback

18

from sensors until more recently [6][7][36][52][53][54]. A dynamic synthesis flow, as

seen in Figure 1-13(b), may perform an initial synthesis for an entire assay, but executes

smaller portions in between sensor-feedback checkpoints. A dynamic synthesis flow can

continue executing the assay as originally synthesized until an error is detected, at which

point it will re-synthesize the assay to account for the unexpected events.

(a)

(b)

Figure 1-13: (a) A static synthesis flow performs scheduling, placement and routing exactly once, and

will break in the presence of errors since it cannot adjust to live feedback; (b) a dynamic synthesis

flow computes an initial schedule, placement and routing, but then executes portions of the assay

while checking sensor feedback. If an error is found, portions of the assay can be re-synthesized.

Error-recovery is not the only reason for a dynamic synthesis flow. In addition, live-

sensor feedback allows dynamic decisions to be made about intermediate results. For

example, given the completion of a clinical diagnostic on a DMFB, one might want to

continue by running a particular sub-assay based on whether the initial result was positive

or negative. Thus, dynamic synthesis also allows the introduction of control flow into

DMFB research.

19

1.4.1.1 - BARRIERS TO DYNAMIC DMFBS

There are two major problems with current synthesis methods that make them poor

dynamic synthesis algorithm candidates for DMFBs:

1. Current synthesis algorithms take too long

2. Current synthesis algorithms do not guarantee legal solutions

As mentioned in the ‘Section 1.4.1 - Dynamic DMFBs’, static synthesis methods

typically employ long-running algorithms that can take hours or days to yield results. In

contrast, many assays only take seconds or minutes to perform in their entirety; thus, in a

dynamic environment where synthesis methods are called to re-map an assay in response

to runtime errors or control flow, it is not feasible to wait hours or even minutes to re-

synthesize portions of the assay. Synthesis methods are needed that can dynamically

interpret the assay (in response to live feedback) in milliseconds (or less) such that the

overall execution time of the assay is not impacted in any significant way.

In contrast to static offline compilers, which synthesize assays as deterministic state-

machines, a dynamic online interpreter will act more like a virtual machine which

manages the DMFB’s resources and interprets assays on-the-fly. Figure 1-14 shows the

tradeoffs that need to be made when moving synthesis online. During offline compilation,

optimized designs are created with little concern to algorithmic runtime (time need for

synthesis) since the synthesis process is run once and the compiled “executable binary” is

packaged into an application-specific device. With a programmable DMFB, the end-user

will have to wait each time a programmed assay is synthesized. Furthermore, each time a

branch is taken, the user will have to wait as the target assay of the branch is interpreted

20

online. Thus, new synthesis methods are needed that concede optimality in assay length

(i.e. schedules) and area to reduce algorithmic runtimes from seconds/minutes to

milliseconds and achieve a greater amount of flexibility [52].

Figure 1-14: Offline vs. online synthesis tradeoffs.

Secondly, current synthesis algorithms do not guarantee legal solutions. For

example, a droplet routing algorithm has the task to compute routes from any source to

any destination, as dictated by the placement stage; however, all previous droplet routing

algorithms found cases that proved to be unroutable (no path existed from source to

destination) or yielded deadlock (i.e., so much congestion existed that droplets would get

stuck in an irresolvable “traffic jam” and be unable to reach their destinations)

[11][16][26][88]. In these cases, it may be possible to re-perform the scheduling and

placement stages in an attempt to provide routable problems; however, these operations

are computationally expensive in the context of dynamic synthesis and can cause the end-

user to wait for significant periods of time, while his or her assay is being executed, in an

attempt to find a new synthesis solution. Thus, it is imperative that dynamic synthesis

methods guarantee a valid solution on the first attempt to successfully execute the assay

to completion.

21

1.4.2 - PROGRAMMABLE DMFBS

It is crucial that DMFBs remain programmable. In an effort to optimize and reduce

the cost of DMFBs (see ‘Section 1.3.4 - Pin-Mapping and ‘Section 1.3.5 - Wire

Routing’), many papers have been published in the microfluidics community detailing

algorithms to design assay-specific DMFBs [39][40][41][50][51][82][86]. Although there

is a valuable place for this type of research, this means that only a few, select applications

will make their way to DMFB technologies, as seen fit and profitable by the handful of

DMFB vendors currently in existence. In contrast, we believe that the continued

development of programmable DMFBs could enable researchers around to globe to

specify and execute their own experimental assays, taking advantage of real-time sensory

feedback to perform biochemical reactions with greater accuracy and speed than ever.

Ultimately, programmable DMFBs will ease and encourage the development of new

applications, allowing this emerging technology the exposure and traction that it needs to

fully catch on in the scientific community and general populous.

Just as the iPhone is made more useful by its robust app market, we believe that

DMFBs will become ubiquitous as independent researchers are able to contribute their

own DMFB assay protocols to the scientific community for fast, concise, and reliable

reproduction of scientific experiments and clinical tests. Imagine an assay is developed to

detect a new strain of flu. Instead of having to develop a unique DMFB hardware

solution, an end-user (presumably a physician’s office, but, perhaps, someday a patient

him/herself) can simply download and install the new assay protocol onto their low-cost,

programmable DMFB and purchase a “fluids kit” that has the necessary reagents to

22

perform the assay (see Figure 1-15). This overall usage flow promises to be much more

efficient concerning both time and money.

Figure 1-15: A DMFB “App Store” would allow a user to download an assay specification to run on

their own DMFB; separate fluid kits could be developed and purchased, as well.

1.4.2.1 - BARRIERS TO PROGRAMMABLE DMFBS

As mentioned in ‘Section 1.3.4 - Pin-Mapping’, ‘Section 1.3.5 - Wire Routing’,

and ‘Section 1.4.2 - Programmable DMFBs’, many synthesis flows map assays to

highly-optimized pin-constrained DMFBs that, although cost effective, are severely

limited in application. Typically, these DMFBs are designed to perform a small handful

of assays (e.g., 3), at most, and are not able to perform much else. Work exists which

takes an already-existing DMFB design and attempts to map two independent droplet

movements onto it to obtain a general-purpose DMFB [51]; although this may lead to

some limited opportunities for error-recovery and very basic assays, it does not allow for

more-complex, generic assays to be synthesized on low-cost DMFBs. Thus, it is

imperative that synthesis algorithms and DMFBs are designed to not only be inexpensive,

but also to perform any sequence of basic operations, instead of specific assays.

23

1.5 - CONTRIBUTIONS

This dissertation details significant contributions to the primary design objectives,

detailed in ‘Section 1.4 - DMFB Design Objectives’, of achieving programmable and

dynamic DMFBs. In CHAPTER 2, we present interpretation, which is a form of

dynamic synthesis. Instead of static compilation which generates a deterministic

electrode activation sequence, interpretation acts like an operating system that manages

resources as an assay is being executed, allowing for resources to be allocated and

dispatched dynamically in response to live-feedback. We also provide new language

constructs necessary to incorporate control flow into DMFBs. CHAPTER 3 presents the

idea of a virtual topology, which is an abstract organization of electrodes into “city streets

and blocks,” which help simplify dynamic synthesis flow algorithms; we introduce

several variations of a virtual topology and detail scheduling, placement and routing

algorithms that accompany them to yield fast, reliable, dynamic, programmable DMFBs.

CHAPTER 4 details a pin-constrained physical topology which offers a solution to

reduce the cost of a DMFB while maintaining programmability. Our design is pin-

constrained, and thus, very inexpensive, but also designed to perform basic microfluidic

operations, making it general-purpose in nature. In this chapter, we provide the first

detailed cost analysis for DMFB PCB layers and shed light on the relationship between,

PCB layer count, I/O pin count and cost. Finally, CHAPTER 5 concludes by

summarizing the general findings of this dissertation.

24

CHAPTER 2 INTERPRETATION

2.1 - INTRODUCTION

At present, LoC programming is either done at the machine level (i.e., manually

choosing a sequence of actuation signals to send to the device over time), or is highly

restricted, e.g., to assays that can be represented as DAGs without control flow and

without the ability to take action based on feedback provided by the device. This chapter

introduces a software interpreter that performs online execution of assays featuring

control flow, allowing them to be scheduled and executed immediately in response to

live, sensor-based feedback. To allow the programmer to express control flow operations,

language extensions to a high-level biochemical programming language are introduced as

well. The long-term objective of this research is to open the door for new microfluidic

capabilities and applications.

Figure 2-1 motivates the need for control-flow and online interpretation with a drug

discovery application. The assay performs a test (Test 1), detects the result, and then

automatically responds by determining that it has found a valid solution, or continues

exploring the solution space by executing new assays (Test 2 and 3) with varying

concentrations. Figure 2-1 shows the first few tests, but this procedure could be extended

and repeated hundreds or thousands of times, adjusting various parameters along the way,

until a valid solution is found.

 Without control-flow, this application is intractable for all but the smallest examples

because the designer must create a single DAG offline that describes and handles each

25

possible path through the application [6]. Instead, an online interpreter could leverage

control-flow to instantly schedule and dispatch new assays (in Figure 2-1, the boxes

labeled Test 1-3) upon detection of any terminating, dependent assays.

Figure 2-1: A control-flow graph for a simple drug-discovery assay that increases (++) or decreases (--)

concentrations based on the results of previous tests.

Although synthesis has been performed entirely offline up to this point, Ho,

Chakrabarty and Pop suggest that online systems are forthcoming with the development

of “specialized heuristics” which can perform synthesis in milliseconds [36]; Luo,

Chakrabarty, and Ho [52] have implemented one such specialized heuristic for an error

detection and recovery scheme based on check-pointing: at each checkpoint, a droplet is

routed to a sensor that detects whether its concentration is satisfactory; if not, the assay is

re-synthesized on-the-fly to repeat the sequence of operations that produced the droplet,

interleaving the schedule of these newly-introduced operations with concurrent

operations that do not depend on the droplet that failed the checkpoint.

2.1.1 - INTERPRETATION VS. COMPILATION

Historically, assays have been specified as DAGs, without control flow. A typical

compilation sequence is shown in Figure 1-5. The DAG is first scheduled [20][33][61]

[65][75]; dimensions for each operational module are selected [77][83]; scheduled

operations are then placed onto the 2D grid, ensuring that no concurrently executing

26

operations overlap to prevent interference [45][76][87]; lastly, non-interfering droplet

routes are computed to deliver droplets to the appropriate DMFB locations at appropriate

times [11][16][38][48][66][67][69][78][88]; in some cases, all of these problems can be

solved in conjunction with one another [56].

The control program that is generated by the compiler is a linear state machine, as

shown in Figure 2-2. Each state specifies a subset of electrodes that will be activated; it

typically takes 10 ms to transport a droplet to an adjacent cell, and mixing/dilution times

during assay execution are on the order of seconds or tens-of-seconds. The linear state

machine control model is wholly deterministic, which is acceptable for a scheduled DAG

with no operation variability. To cope with bounded variability, it is possible to

enumerate schedules for all possible combinations of operation times, which is

exponential in the general case [6]. An alternative approach, which can accommodate

assay operations that fail and require partial re-computation, is to pause assay execution

temporarily and recompile the assay on-the-fly [7][52][90]. Although this overall

approach results in the execution of a non-linear state machine, it uses dynamic

recompilation to replace one linear state machine with another, as shown in Figure 2-3.

27

Figure 2-2: Example of the linear state machine model of DMFB control. The output of each state is the subset

of electrodes in the DMFB that will be activated during each time step (shown in gray). The state machine is

timed, based on the activation frequency, typically 100 Hz [88]. In this example, two droplets are transported to

a common location so that they can be merged, and two droplets are stored in-place.

Figure 2-3: In response to an error detected in state k, the assay is paused and recompiled, which includes the

insertion of new states to recompute fluids that have been lost due to erroneous processing, which may execute

concurrently with other ongoing assay operations that were not adversely affected. The output is a new linear

state machine that compensates for and corrects the errors that occurred.

2.1.2 - CONTRIBUTION

We have developed a compiler and runtime system to translate assays specified

using a high-level language into an executable form appropriate for a DMFB. Assays are

specified using BioCoder [9], a C++ library for biological protocol specification

developed at Microsoft Research, India. We present new language extensions to

BioCoder that facilitate user-specified control-flow operations (e.g., conditionals, loops,

droplet-transfer mechanisms). The interpreter can execute assays with control flow, use

feedback from the DMFB to make control flow decisions, and does not rely on complex

re-synthesis methods that dynamically recompile the assay when control flow becomes

28

unpredictable [6][7][52][90]. To date, prior compilers targeting DMFBs are limited to

assays specified as DAGs and cannot handle arbitrary control flow or feedback from

sensors integrated onto the DMFB. The framework presented herein addresses these

challenges through dynamic interpretation, thereby enlarging the space of assays that can

be compiled onto EWoD devices.

2.2 - VIRTUAL TOPOLOGY

The system outlined in this chapter interprets assays dynamically, rather than

compiling them statically and then (possibly) recompiling dynamically. Similar to prior

work by Griffith et al. [26], the approach taken here imposes a virtual topology (Figure

2-4) on the DMFB that restricts the functions that different cells can perform; the

interpreter exploits the restrictive structure to achieve fast algorithmic runtimes. Input and

output reservoirs are placed on the perimeter of the DMFB, as seen in Figure 2-4(b). The

city blocks are referred to as (work) modules, because all non-I/O assay operations occur

there. Each module can perform one operation (e.g., merging, mixing or splitting) or can

store up to four droplets. External devices such as heaters or optical detectors can be

affixed to the DMFB above or below a module. All streets are 1-way; eight 1-way streets

meet together at rotaries, which offer an abstraction like a network router. Droplets travel

clockwise through these rotaries.

Without loss of generality, a droplet traveling north that enters a rotary could

continue straight, or turn left (west) or right (east); our routing algorithms do not allow

droplets to reverse directions, so a droplet would not enter a rotary traveling north and

then exit traveling south. A tile consists of a module and the four adjacent streets

29

surrounding it, as shown in Figure 2-4(a). If the module is 5x5, then a tile requires a

10x10 array of cells. Tiles are then repeated in two dimensions to form the virtual

topology. For example, Figure 2-4(b) shows a virtual topology that is a 2x2 array of tiles.

 (a) (b)

Figure 2-4: (a) A tile is the fundamental building block of the virtual topology and contains a work

module (blue) where operations are performed and a network of one-way “streets” (red/black) for

droplet transportation; (b) the virtual topology is imposed onto a DMFB by tiling the fundamental

building blocks to create a 2D array of tiles.

2.2.1 - SYNTHESIS SIMPLIFICATIONS

The virtual topology simplifies the problems of scheduling, placement and routing,

which facilitates low-overhead dynamic interpretation and responsiveness to control

flow:

Scheduling: With no virtual topology, the scheduler estimates the number of

modules it can support from the dimensions of the microfluidic array. Ambitious

estimations overestimate the number of concurrent operations that can occur on the

DMFB surface and often leads to placement and routing errors; in these, cases, resource

30

estimation and scheduling will need to be performed again. In contrast, a virtual topology

provides a concise number of resources that are guaranteed to fit in the array, ensuring

that placement and routing errors do not occur; thus, scheduling only needs to be

performed once to compute an initial schedule.

Placement: Rather than placing operations at any location on the DMFB, the

interpreter dynamically binds operations to modules, as shown in Figure 2-5. In

principle, any available work module can be chosen; when multiple modules are

available, the best choice is generally the one that is closest to the sources of the

droplet(s) that are the operation’s inputs; this minimizes droplet transportation latency.

Routing: The traditional approach to droplet routing is chaotic and disorderly, in

part, driven by the fact that the placement of assay operations is likewise. The virtual

topology, in contrast, imposes an orderly network of city streets that all droplets must

follow. This limits the number of legal routes between each source-destination pair,

which simplifies the process by which routes are computed. The approach taken here is to

adapt deadlock-free 2D mesh network routing algorithms [18] to be compatible with

DMFB technology. Thus, droplet routing follows a simple protocol, rather than solving a

challenging constrained-optimization problem.

31

Figure 2-5: The operations of a scheduled DAG are bound to the modules indicated during the

specified time steps.

2.2.2 - DEADLOCK-FREE 2D-MESH ROUTING

The virtual topology organizes the DMFB as a 2D-mesh network of work modules,

where the rotaries play a role akin to network routers. One contribution of this chapter is

to adapt deadlock-free 2D-mesh routing algorithms [18] to DMFBs using this virtual

topology. Deadlock-free routing is important in an online system where assays are

scheduled and executed on-the-fly because it is imperative to guarantee droplets can

reach their destination.

To motivate the design for our virtual topology, we highlight the similarities and

differences between our virtual topology and a 2D-mesh network in the following sub-

sections. Later on, ‘Section 2.5.2.3 - Droplet Transportation Protocol (DTP)’ shows

how 2D-mesh routing algorithms are leveraged to achieve deadlock-free routing in our

32

system. Griffith et al. [26], it should be noted, also achieved deadlock-freedom in their

virtual topology, but did so by limiting the injection rate of droplets into the system.

2.2.2.1 - ANALOGUE TO 2D-MESH TOPOLOGY

As shown in Figure 2-4, a tile contains a module surrounded by one-way streets on

each side. The module has an entry and exit on each side and each corner of the tile

contains an intersection in which droplets can choose to stay in the current tile or travel to

a neighbor (Figure 2-6(a)). The four streets and intersections surrounding the module

form a counter-clockwise traffic circle called the module rotary. In Figure 2-6(c),

exchange rotaries, which allow droplets to move from one tile to its neighbors, are

formed between tiles.

The virtual topology presented here shares many similarities with 2D-mesh

networks:

Modules and I/O to Processors: In a computer network, processors send packets to

one another. Likewise, a DMFB can route droplets from one module to another, or

between modules and I/O reservoirs.

Module Rotaries to Routers: Figure 2-6(a) depicts a module rotary, which is

similar to a traffic circle. The four intersections marking its corners are the entry points of

the tile. The four streets (which are unidirectional) are similar to the buffers in a network

router, shown in Figure 2-6(b).

Exchange Rotaries to Wires: Figure 2-6(c) depicts an exchange rotary. The cells

extending from the module rotary (the inputs and outputs in Figure 2-6(a)) are similar to

wires in a 2D-mesh (Figure 2-6(d)). The exchange rotary connects four adjacent tiles,

33

which form an inner cycle, similar to cycles formed among adjacent routers in a 2D-

mesh, e.g., Proc(0, 1) in Figure 2-6(d).

Streets to Buffers: Streets hold droplets, similar to input buffers of routers (see

Figure 2-6(a-b)).

 (a) (b)

 (c) (d)

Figure 2-6: (a) A module rotary (the cycle formed by four streets surrounding a module and their

intersections) is similar to (b) a 2D-mesh network router; (c) an exchange rotary (the clockwise inner

loop) and a long counterclockwise cycle (outer loop) of a tiled virtual topology form equivalent

connections to a (d) 2D-mesh network.

2.2.2.2 - DIFFERENCES FROM 2D-MESH TOPOLOGY

Integrated circuits use wires to propagate signals, which are stored in buffers (flip-

flops); in general, there is a clear separation between logic, storage, and interconnect. In

contrast, DMFBs use cells for droplet transportation and storage. Also, the 2D-mesh

34

router (Figure 2-6(d)) employs a crossbar (Figure 2-6(b)), which allows up to four

signals to pass through concurrently. Exchange rotaries within DMFBs cannot employ

crossbars, as droplets passing through the crossbar would inadvertently mix with one

another.

2.3 - INTERPRETATION

The ability to perform deadlock-free droplet routing enables abstraction layers that

share some principle similarities with the TCP/IP stack used in computer networks. This,

in turn, facilitates an intermediate bytecode format (motivated by virtual machines, such

as the JVM), which simplifies the design of the interpreter. Without loss of generality,

suppose that we want to dynamically issue the command: “Mix droplets x and y.” Under

the recompilation paradigm described previously, the placement must be updated to make

room for the new mixing operation (which, literally, could be anywhere on the chip,

especially if other ongoing operations need to be moved), and then routes to deliver the

two droplets must be computed algorithmically on-the-fly. In contrast, our interpreter

could select any available work module, knowing that the droplet transportation protocol

will deliver the two droplets (unless the device suffers from a physical failure). Similarly,

this capability facilitates the interpretation of assays that feature control flow operations,

as runtime decisions (i.e., which module executes each assay operation) can be made

dynamically with minimal overhead.

35

2.4 - BIOCODER LANGUAGE AND EXTENSIONS

BioCoder [9] is a C++ library developed at Microsoft Research, India, for specifying

biological protocols in an unambiguous fashion. BioCoder’s compiler converts the assay

specification into an English language description that is similar to a recipe in a

cookbook. BioCoder’s original purpose was to eliminate ambiguities that often occur

when biological protocols are disseminated in peer-reviewed literature. The authors of the

paper that introduced BioCoder suggested that it could be used as an input language to

program an LoC; however, their initial work did not attempt to do so.

2.4.1 - LACK OF UNIVERSALITY IN LOC COMPILATION

BioCoder was designed to specify a wide variety of assays including many that are

not compatible with the DMFBs that we target in this chapter. For example, BioCoder

supports solid chemical data types and centrifugation; DMFBs cannot manipulate solids,

and do not generally have integrated centrifuges; therefore, they cannot perform these

operations. Unlike computer hardware and software, biochemistry has no theoretical

notion akin to Turing completeness that can bound the capabilities of LoCs [8]. Similarly,

there is no “universal” set of components akin to “universal” logic gates (e.g., NAND, or

AND-OR-INV) that can provably implement any combinational logic function.

On the one hand, any language or library for specifying biological protocols must

evolve as new components are developed for use: new operators (languages) or functions

(libraries) to specify the usage of these components must be added; otherwise, the

language or library itself will become stale over time. On the other hand, a compiler

targeting a specific LoC technology is likely to support only a subset of the language; for

36

example, any attempt to compile an assay that includes a centrifugation operation

targeting a DMFB must fail, due to the lack of a centrifuge. This generally does not occur

in software compilation. For example, many microcontrollers do not contain hardware

multipliers, dividers, or floating-point units, but can still support these operations in

software; compilation only fails when the device has insufficient memory. As

biochemistry has no notion of a universal operator, compilation fails when the assay

specification does not match the physical resources of the target device.

2.4.2 - OBJECT-ORIENTED ORGANIZATION

As mentioned earlier, BioCoder is a C++ library containing a variety of structs,

global variables, and static functions. BioCoder’s compiler creates an internal data

structure that represents an assay as a DAG. The DAG is traversed to convert the assay

into English language output. Assay information is not saved, and the data structure is

deallocated during the traversal. We discovered that this library format was incompatible

with the instantiation and maintenance of multiple assays at the same time.

One of our goals was to introduce control flow into biochemical specifications in

order to support assays where decisions are taken based on feedback from the LoC. This

requires a control flow graph (CFG) where each basic block is represented as a BioCoder

assay (i.e., a DAG). Naturally, any CFG containing control flow requires multiple assays.

BioCoder was converted to several C++ classes that enabled the construction of

protocols comprised of multiple assays that no longer mangled one another when

constructed. To specify an assay, the user instantiates an instance of the BioCoder class;

assay operations are specified as method calls. The compiler converts the program into a

37

graph-based intermediate representation using a new class that we introduced called

AssayProtocol, which effectively represents the CFG. AssayProtocol enables the

protocol to be saved, copied, and executed multiple times (if desired).

BioCoder Functions Supported by DMFBs
Microfluidic Operations BioCoder Function

Dispense void measure_fluid (Fluid f, Volume v, Container c)
Output void drain (Container c, string outputSinkName)
Mix/Merge void vortex (Container c, Time t)
Split void measure_fluid (Container c1, Volume v, Container c2)
Heat void store_for (Container c, float temp, Time t)
Detect string measure_fluorescence (Container c, Time t)

Table 2-1: Prototypes for six BioCoder functions that are supported by EWoD-based LoCs.

All original BioCoder functionality was left intact, so it remains possible to convert

the assay to an English-language description or graphical representation if desired.

Figure 2-7(a) depicts the new capabilities within the original BioCoder flow.

(a)

 (b)

Figure 2-7: (a) Overview of the BioCoder system and output, highlighting the addition in this work;

(b) System overview, showing the BioCoder environment, the runtime environment, and the interface

between them.

38

Table 2-1 lists six BioCoder functions that are compatible with the capabilities of

EWoD-based LoCs. In our new implementation, these functions are methods of the

BioCoder class. The data types Fluid, Volume, Time and Container used in Table 2-1

are part of the original BioCoder specification. In traditional benchtop chemistry, the

meaning of container is literal—e.g., it could be a test tube, beaker, or flask that contains

fluid; in the case of our LoC, a Container is effectively used as a proxy for a droplet,

which represents embodiment, rather than containment, of fluid.

2.4.2.1 - EXAMPLE

Figure 2-8 illustrates a simple protocol built using BioCoder. Containers represent

droplets that carry fluids from one step to the next, while instances of the Fluid class act

as input reservoirs. The protocol dispenses and mixes 10µl of a sample and reagent for

1s, heats the mixture for 1s at 50°C, detects the fluorescence for 1s, splits and outputs the

two resultant droplets to the “output” and “waste” reservoirs. Each edge in the assay

protocol graph represents a droplet flowing from one operation to the next, i.e., the fluidic

analogue of a data dependency.

39

 (a) (b)

Figure 2-8: (a) BioCoder code for a sample assay and (b) the representative DAG structure. This

assay does not require control flow.

2.4.3 - EXTENSIONS FOR FEEDBACK AND CONTROL FLOW

To support feedback and control-flow constructs, several new BioCoder classes have

been created: BioSystem, BioConditionalGroup, BioCondition, and BioExpression. A

BioSystem contains a list of BioCoder protocols and BioConditionalGroups which

dictate the order in which the BioCoder assays are executed at runtime. As seen in

Figure 2-9, a BioConditionalGroup is an IF/ELSE-IF/ELSE statement, where each IF,

ELSE-IF and ELSE in the BioConditionalGroup is a BioCondition. Each

BioCondition contains a BioExpression which can be evaluated to true or false at

runtime and is used to determine which assay protocols to execute next.

BioCoder * bio = BioSys->addBioCoder();

Volume reservoirVol = bio->vol(100,ML);

Volume dropVol = bio->vol(10, UL);

Time time = bio->time(1, SECS);

Container tube1 = bio->

 new_container(STERILE_MICROFUGE_TUBE2ML);

Container tube2 = bio->

 new_container(STERILE_MICROFUGE_TUBE2ML);

Fluid reagent = bio->new_fluid("reagent", reservoirVol);

Fluid sample = bio->new_fluid("sample", reservoirVol);

bio->first_step("Dispense Fluids");

bio->measure_fluid(sample, dropVol, tube1);

bio->measure_fluid(reagent, dropVol, tube1);

bio->next_step("Mix Fluids");

bio->vortex(tube1, time);

bio->next_step("Heat Fluids at 50 C");

bio->store_for(tube1, 50, time);

bio->next_step("Detect Fluorescence");

bio->measure_fluorescence(tube1, time);

bio->next_step("Split Fluid");

bio->measure_fluid(tube1, dropVol, tube2, false);

bio->next_step("Output Fluid");

bio->drain(tube1, "waste");

bio->drain(tube2, "output");

bio->end_protocol();

40

Figure 2-9: A BioConditionalGroup contains BioConditions (BC1-BC3). A BioCondition is

evaluated by its BioExpressions (BE1-BE4).

Table 2-2 shows the five general types of BioExpressions. BioExpressions with

operation types of AND, OR, and NOT are composed of one or more BioExpressions,

which may be nested. BioExpressions are evaluated recursively at runtime to determine

the result (True or False). The one- and two-sensor comparisons support decision-making

based on feedback from sensors on the device. The functionality of the comparison

depends on the data type returned by the sensors.

A BioConditionalGroup can have as many ELSE-IF statements as desired and is

not ready to be processed until each of its BioConditions’ dependent protocols have

executed. Each BioExpression determines which BioCoder protocols its parent

BioCondition is dependent upon. This value is passed in explicitly in the case of an

unconditional expression. In the one- and two-sensor comparison expressions, the

dependent BioCoder protocols are determined implicitly as the BioCoder protocols

which contain sensor1 and sensor2 (for a two-sensor compare). The

measure_fluoresence() function (and other detection functions) return unique strings

that act as tags for that specific reading and is the input for the one- and two-sensor

compare expressions.

The control flow mechanism treats each protocol as a DAG, and uses control flow to

determine which protocols to execute (in sequence) at runtime. In this respect, it is also

41

necessary to transfer droplets from one protocol to the next, depending on which

conditions are met. Table 2-3 lists new operations and functions that we added to

BioCoder to enable the transfer of droplets from one protocol to another.

BioExpression Types
Expression

Type
C++ Style Operator

Evaluation
Type

BioCoder Construction

Unconditional true, false Direct BioExpression (BioCoder *parent, bool unconditional)
One-Sensor
Comparison

>, <, ≤, ≥, == Direct BioExpression (string sensor1, OpType ot, double constant)

Two-Sensor
Comparison

>, <, ≤, ≥, == Direct BioExpression (string sensor1, OpType ot, string sensor2)

AND/OR && / || Nested BioExpression (OpType andOr)
NOT ! Nested BioExpression (BioCoder *notExp)

Table 2-2: BioExpressions create simple or complex, nested expressions for branching functions.

New BioCoder Features for Control Flow
New Microfluidic Operation New BioCoder Function

Transfer_In string reuse_fluid (Container con)
Transfer_Out string save_fluid (Container con)

Table 2-3: Microfluidic operations and BioCoder functions that enable droplet transfers between

protocols.

2.4.3.1 - EXAMPLE

Figure 2-10 shows an example BioCoder protocol that uses conditionals. This

example illustrates the instantiation of a BioConditionalGroup, BioExpression, and

BioCondition in sequence, followed by setting up the targets of the condition that form

CFG edges (the addNewCondition method) and the mechanism to transfer droplets from

one basic block to another (the addTransferDroplet method). Admittedly, this syntax is

somewhat unwieldy compared to a more straightforward if-then-else statement. The

fundamental challenge here is that BioCoder represents each assay as a DAG, and

extending that representation to a model that includes control flow would break

BioCoder’s ability to output an English language description of each DAG—at present,

42

BioCoder’s cookbook-style output is linear and does not naturally support conditionals.

This requirement forced us to create a syntax that is far from ideal. However, this syntax

can easily be hidden by a simple graphical user interface (GUI) wrapper program that

presents high-level if-else options while calling the underlying BioCoder functions.

Nevertheless, we hope to switch to a more convenient syntax in the future and extend

BioCoder’s English language output capabilities to account for it.

 (a) (b)

Figure 2-10: (a) BioCoder code illustrating the use of conditionals; (b) the resultant CFG.

2.5 - SYSTEM OVERVIEW AND RUNTIME ENVIRONMENT

Figure 2-7(b) shows an overview of the BioCoder environment, including the

interface between the compiler and the runtime system. A chemist (programmer)

specifies the “BioSystem” of assay protocols and dependencies (control-flow and droplet-

transfer). The compiler transfers its protocols and BioConditionalGroups into

// BioCoder protocol declarations & operations

BioCoder * bioMixDet = BioSys->addBioCoder();

bioMixDet->measure_fluid(sample, dropVol, tube);

bioMixDet->measure_fluid(reagent, dropVol, tube);

bioMixDet->vortex(tube, time);

d1 = bioMixDet->measure_fluorescence(tube, time);

to = bioMixDet->save_fluid(tube);

BioCoder * bioSave = BioSys->addBioCoder();

ti_save = bioSave->reuse_fluid(tube);

bioSave->drain(tube, "save");

BioCoder * bioWaste = BioSys->addBioCoder();

ti_waste = bioWaste->reuse_fluid(tube);

bioWaste->drain(tube, "waste");

// Conditional Groups

BioConditionalGroup *bcg = BioSys->addBioCondGroup();

BioExpression *be = new BioExpression(d1, OP_LT, 0.5);

BioCondition *bc = bcg->addNewCondition(be, bioSave);

bc->addTransferDroplet(to, ti_save);

bc = bcg->addNewCondition(NULL, bioWaste);

bc->addTransferDroplet(to, ti_waste);

bio->end_protocol();

43

microfluidic DAGs and conditional groups (CGs), which are passed as a direct input to

the runtime system.

The pre-runtime system constructs a CFG from the DAGs and CGs given as input

from BioCoder. The runtime system then selects which basic block to execute based on

the conditions that are evaluated at runtime. DAG operations are scheduled, bound to the

“work module” areas of the LoC (Figure 2-4) at runtime, and executed dynamically;

details are described in the following subsections.

The runtime system is a program that runs on a PC that sends signals to the LoC to

actuate fluid motion; in our implementation, the LoC is simulated in software. The

runtime system receives the AssayProtocol data structure produced by the BioCoder

compiler and processes it to induce assay execution. This section describes the key

algorithms that are used to determine how and where to apply the different assay

operations shown in Figure 1-3 (i.e., transportation, splitting, merging, mixing and

storage).

2.5.1 - INTERMEDIATE BYTECODE FORMAT AND INTERPRETER

Conceptually, the set of signals sent to a DMFB during each cycle can be viewed as

a machine language. If the DMFB is comprised of N cells, then N binary signals are sent

to the device (e.g., a ‘1’ activates an electrode, and a ‘0’ leaves it off). This is a relatively

low level of abstraction; however, this level is the target of the static compilation and re-

compilation approaches shown in Figure 1-5. The virtual topology (Figure 2-4(b)) raises

the level of abstraction at which the DMFB can be controlled. Recall that a device's

control program executes on a PC or microcontroller that sends signals to the DMFB in

44

order to activate the electrodes that induce droplet motion. Under static compilation, the

device's control program is a realization of the linear state machine model (Figure 2-2

and Figure 2-3).

The interpreter is a software application that accepts a partially compiled BioCoder

assay (its CFG representation) and decomposes each operation into a short sequence of

bytecode instructions that are executed dynamically. The bytecode format does not

include timing information; the interpreter is responsible for keeping track of time, and its

foremost responsibility is to issue and execute bytecode instructions at the correct time.

2.5.1.1 - BYTECODE INSTRUCTION FORMAT

The virtual topology enables the device control program to evolve from a state

machine into a fully functional virtual machine with its own intermediate bytecode

language that is simple, yet operates at a much higher level of abstraction. Bytecode

instructions are categorized as operational (O-type) and transport (T-type).

Each O-type instruction has the form (opcode, module-id), where the opcode

specifies the operation to perform, and the module-id specifies which module to perform

the operation. All modules support four basic opcodes: {start-mix, stop-mix, split, store}

(merging is viewed as a precursor to mixing). If a module has an external device affixed

to the outside of the chip, such as a heater or detector, then it may support additional

opcodes such as {heater-on, heater-off, detector-on, detector-off}. There are some

straightforward restrictions, such as limitations on the number of droplets that a work

module can store (four for this topology), and, other than multi-droplet storage, each

work module can only perform one operation at a time.

45

Each T-Type instruction has the form (src, dst) or (droplet-id, src, dst), which

transports a droplet from the source (src) to a destination (dst). If the source contains a

single droplet, then the identifier of the droplet is implicit and is not needed; if it contains

multiple droplets, then the droplet-id field is required for disambiguation. This generally

occurs in two situations: (1) a work module stores multiple droplets, only one of which

will be transported; or (2) a work module performs a split operation, thereby creating

multiple distinct droplets; the default behavior is then to store the two droplets that have

been created. If a T-type instruction transports a droplet to a module, it is stored

implicitly, until an O-type instruction initiates an operation.

2.5.1.2 - I/O OPERATIONS

An important issue with respect to the design of the virtual machine is whether I/O

operations should be O-type or T-type instructions. DMFB I/O mechanisms presently

lack standardization, and there exist several different ways to move droplets onto a chip

[64]. One approach is to generate a droplet from a pressurized off-chip source, such as a

pipette or needle; once on the chip, the droplet should be transported to an appropriate

location for storage or other processing, unless it is deposited precisely onto the location

where it will be used or stored. In this case, the amount of time required to input the

droplet is non-negligible compared to the time required to transport a droplet.

An alternative approach is to store fluids in on-chip reservoirs; the amount of fluid

stored in a reservoir is significantly larger than the size of a droplet. In this case,

individual droplets for processing can be “split” from the reservoir, and then transported

46

to their appropriate locations. In this case, the input process is simply a variation of

droplet transport.

The first input approach naturally lends itself to an O-type operation, especially since

it is timed. This approach is sufficient as long as there are known a-priori locations on the

DMFB where droplets will be deposited; our convention is to place such locations on the

perimeter of the chip. Thus, each location can have a unique identifier and can easily be

specified as a source, even though it is not a work module and cannot perform other

operations, such as mixing and splitting. Once a droplet has been input to the device, it

can be transported to its location for processing using a T-type instruction. In contrast, the

second approach naturally lends itself to a T-type operation, since the droplet is split and

transported away from the reservoir over a relatively short sequence of time steps (see

ref. [64], Fig. 9, for details).

The interpreter implements both options, in order to best support different types of

input mechanisms. Output and disposal operations are represented as T-type instructions,

as no meaningful “processing” is applied to a droplet in order to remove it from the chip.

2.5.1.3 - DROPLET IDENTIFICATION

Some additional internal bookkeeping is necessary to track the names and

identification numbers of droplets. The discussion of this bookkeeping has been omitted,

thus far, in order to simplify the discussion. In practice, droplet names are only needed to

disambiguate the situation where multiple droplets reside in a module; this may occur as

a result of a split operation, or if the module stores more than one droplet. In this case, a

T-type operation of the form (src, dst) would be ambiguous, as it is unclear which droplet

47

should be transported. Similarly, mixing operations merge two previously distinct

droplets into one, thus an appropriate naming convention is required.

The interpreter adopts the following conventions regarding droplet numbering. Let n

denote the next available identification number for a new droplet. Initially, n = 0.

Dispensing: Each droplet that is injected into the DMFB is assigned identification

number n; n is then incremented.

Mixing: When droplets having identification numbers i and j are mixed, i < j, the

resulting droplet receives identification number i; identification number j is no longer

available for future droplets and cannot be reclaimed.

Splitting: When a droplet having identification number i is split, the resulting

droplets are assigned identification numbers i and n; n is then incremented.

Disposal: When a droplet having identification number i is transported off-chip (e.g.,

to an output or waste reservoir) its identification number is no longer available for future

droplets and cannot be reclaimed.

2.5.1.4 - KEEPING TRACK OF TIME

The bytecode format does not include timing information. The virtual machine,

which interprets BioCoder assays, is responsible for keeping track of time between

starting and stopping assay operations. It is important to understand that the bytecode

format is never compiled directly to a human-readable text file (except internally for

development and debugging purposes); instead, the virtual machine issues and executes

commands in an on-the-fly fashion, using a work queue of operations that have been

stamped with information regarding their execution time.

48

For example, to mix two droplets in work module M for 20 seconds, the virtual

machine would immediately issue the bytecode instruction (start-mix, M) and, at the

same time, add a command (stop-mix, M) to the work queue, with the time t+20 seconds,

where t is the present time. The work queue is implemented as a priority queue, where the

highest priority entry is the next bytecode instruction (among all those in the queue) that

needs to execute. This way, as time progresses, the interpreter only needs to compare the

current time with the time at which the highest priority bytecode operation in the queue;

once that operation executes, the priority queue is once again adjusted so the highest-

priority operation sits in the queue. This ensures the correct execution of timing-driven

operations.

T-type instructions are variable-latency operations, because the time required to

transport a droplet from its source to its destination depends on the amount of congestion

in the DMFB. The interpreter maintains a separate list of in-transit droplets. When a

droplet completes its route, the corresponding T-type operation is removed from this list.

‘Section 2.5.2.3 - Droplet Transportation Protocol (DTP)’ describes the algorithms

used to perform on-line droplet routing.

For debugging purposes, the system can produce a time-stamped trace of bytecode

instructions. Each instruction is time-stamped with its start and finish times. Certain O-

type operations, such as splitting and merging, occur within a single time quantum, so

their execution time is treated as zero. Mixing and transport operations, in contrast,

require multiple time quanta, so their finish times are always later than their start times.

49

2.5.2 - INTERPRETING A DAG ON THE VIRTUAL TOPOLOGY

Three steps are required to compile a DAG onto the virtual topology: scheduling,

operation binding, and droplet routing. Since the droplet routing protocol/algorithm we

developed is specific to the virtual topology described in Figure 2-4, we describe it in

detail in this sub-section. However, the scheduling and binding algorithms we use are

applicable to virtual topologies, in general; thus, in an effort to keep the focus of this

chapter on interpretation, we only present high-level details for scheduling and binding

and save a more detailed presentation of these synthesis algorithms for ‘Section 3.4 -

Fast Online Synthesis’.

2.5.2.1 - SCHEDULING

We use a straightforward list scheduling algorithm for droplet-based LoCs targeting

the virtual topology [75]. The overall goal of the problem formulation is to find a legal

schedule having minimum latency. Scheduling is NP-complete, and list scheduling is a

naïve, but efficient, heuristic.

Each DAG in the CFG is scheduled separately; the interpreter manages control flow

transitions at runtime. DAG operations are scheduled in discrete time steps. At each time

step, the algorithm considers all sources (i.e., DAG vertices having no predecessors) for

scheduling. It selects as many of these operations as possible, within the resource limits

of the LoC and virtual topology. The scheduled operations are then removed from the

DAG and the process repeats until all operations have been scheduled. Storage operations

are inserted when gaps between dependent operations occur in the schedule. In our virtual

topology, each module can store up to four droplets, however, it cannot perform any

50

mixing operations if it is storing at least one droplet. The schedule computed by this

algorithm is somewhat inexact, as it does not account for droplet routing times; however,

this is not usually problematic, as droplet routing times are several orders of magnitude

faster than assay operations (e.g., milliseconds to move a droplet from one cell to its

neighbor, compared to seconds to perform an assay operation).

Suppose that the virtual topology provides M work modules, I input reservoirs, O

output reservoirs, and W waste reservoirs. These resources limit the number of different

compatible operations that can occur concurrently. During each time step t, mt mixing

operations, st storage operations, it input operations, ot output operations, and wt waste

operations as long as the following equations are satisfied:

 , , , and (2.1)

Assay operations that require external components, such as sensors or heaters, must

be scheduled onto modules that provide those elements. Without loss of generality, the

number of heating operations scheduled concurrently cannot exceed the number of

modules on-chip to which heaters are affixed, etc.

Similarly, there may be some constraints imposed on the fluidic input process. For

example, if the LoC has two input reservoirs supplying fluid A, then it is impossible to

schedule two input operations for fluid type A concurrently.

In some cases, resource constraints cannot be satisfied based on an assay’s demand

for operational and storage resources; when this occurs, the only option is to switch to a

larger LoC device that provides more modules.

51

2.5.2.2 - BINDING

After scheduling, each DAG operation is annotated with the time-step and resource

type to which it is bound: the three operational resource types are general modules,

heating modules, and detecting modules; the three I/O resource types are input, output,

and waste reservoirs.

The binder selects appropriate resources for each operation that has been scheduled.

For illustrative purposes, we briefly describe a simple, greedy, efficient binding algorithm

adapted from the Left Edge Algorithm used for dogleg routing in VLSI [35] and register

allocation in high-level synthesis [44]; Figure 2-11 shows an example. Operations are

first separated into bins based on the module-type they were assigned during the

scheduling phase. The bins are then sorted by their starting time-step. Finally, each

resource (e.g., module or I/O) is paired with a bin of operations that matches its resource

type and non-overlapping operations are bound to that resource until it reaches the end of

the bin. Since a legal schedule satisfying resource constraints has been established,

operations will be bound to a compatible resource at the end of the algorithm.

The focus of this chapter is interpretation and language constructs, and thus, we do

not go into great detail about synthesis algorithms here. For pseudocode and a detailed

explanation of our left-edge binding algorithm, please see ‘Section 3.4.2.1 - Left-Edge

Binding Algorithm’. In general, it is a good strategy to bind each operation to a resource

nearby the resources that supply its inputs (left-edge binding does not do this). For

example, if we want to mix fluid inputs A and B, it may be a good idea to choose a

module that is relatively close in proximity to their two input reservoirs. Thus, we also

52

present a path-based binding algorithm, in detail, which takes spatial locality into

account, in ‘Section 3.4.2.2 - Path-Based Binding Algorithm’.

Figure 2-11: Illustration of the left-edge binding solution.

2.5.2.3 - DROPLET TRANSPORTATION PROTOCOL (DTP)

The DTP chooses a path in the virtual topology for each droplet, and then routes the

droplets along their respective paths while satisfying all droplet interference constraints,

as described in ‘Section 1.3.3 - Droplet Routing’. Deadlock prevention is the foremost

responsibility of the DTP. In this respect, the rotaries in the virtual topology take on a

role similar in principle to network routers; however, there are several important

differences that we mention here. Firstly, most network routers contain an internal

crossbar that connects input ports to output ports; packets or flits are selected from one

(or more) input buffers and are transmitted to the corresponding output buffers. This type

of router topology is not feasible in DMFB technology, as the droplets in transit across a

crossbar would necessarily collide with and contaminate one another. A second

difference, which generalizes from the first, is that digital logic has an implicit separation

of logic, storage, and routing resources; with respect to routing networks, this means that

53

buffers, crossbars, and wires are distinct. In contrast, the DMFB has a single resource (a

cell) that performs both storage and transport in the context of the rotary; this has

significant implications for protocol design which are discussed in detail in the

subsequent paragraphs. Lastly, certain mechanisms, such as virtual channels [17], which

can ensure deadlock freedom in computer networks, cannot be applied to droplets due to

the lack of a crossbar in a rotary; thus, more restrictive mechanisms are needed to prevent

deadlock from occurring.

Figure 2-12: Legal turns (black) and prohibited turns (dashed outline) in XY routing.

The DTP adapts dimension-ordered routing (e.g., XY or YX routing in 2D) for the

DMFB virtual topology. Conceptually, XY routing moves each droplet from its source

position (x1, y1) to its destination position (x2, y2), by first traveling along the x-axis to

(x2, y1) and then traveling along the y-axis to complete the route. XY routing is

deterministic and non-adaptive, but worked well enough for our purposes.

XY and YX work by preventing two turns in each cycle, as seen in Figure 2-12.

Another class of routing algorithms that can be used with the virtual topology, based on

the turn model, prevent deadlock by carefully selecting and prohibiting a single turn from

each cycle. Negative-first (NF), north-last (NL) and west-first (WF) routing algorithms

all prohibit one turn in each cycle to eliminate deadlock [25]. Odd-even (OE) routing is

54

another adaptive algorithm that prevents deadlock by prohibiting some types of turns in

certain tile columns [15]. For brevity and scope, we omit further discussion of network

routing algorithms and assume XY is used for the remainder of this work.

XY routing requires several modifications to account for rotaries, the I/O reservoirs

on the perimeter of the DMFB, and the process by which droplets enter and exit a

module. The four streets and intersections surrounding a module form a counter-

clockwise traffic circle called a module rotary, shown in Figure 2-6(a). The term

exchange rotary is introduced to refer to the original rotaries which allow droplets to

move from a tile to one of its neighbors. Figure 2-6(c) shows that droplets travel

clockwise through an exchange rotary, and counterclockwise through one or more

module rotaries. Groups of droplets traveling along XY paths can form cycles in module

and exchange rotaries, and therefore, preventing the formation of these cycles prevents

deadlock.

Four specific rules are required:

1.) Module Entries and Exits: Droplets may not make prohibited turns (Figure

2-12) when leaving source and entering destination modules. To ensure routability in

light of prohibited turns, entries and exits are placed on all four sides of the module.

2.) Droplet I/O: To prevent forbidden turns, input, output, and waste reservoirs are

placed on the DMFB perimeter and the allowable turns that a droplet may make at an

entry point are limited.

3.) Exchange Rotaries: In Figure 2-13(a), a droplet clips an exchange rotary if it

touches one intersection before leaving. In Figure 2-13(b) and (c), a droplet passes

55

through an exchange rotary if it touches at least two intersections. As droplets move

clockwise within an exchange rotary, a clip implies a left turn, and passing through

implies that the droplet continues traveling straight or turns right. Figure 2-13(d) depicts

exchange rotary deadlock when four droplets attempt to pass through; no droplet can

progress without maintaining spacing constraints (Figure 1-8). In Figure 2-13(e),

deadlock is eliminated if at least one droplet clips the exchange rotary. To prevent

deadlock in an exchange rotary, at most three droplets that wish to pass through may

enter concurrently.

 (a) (b) (c) (d) (e)

Figure 2-13: (a) Clipping an exchange rotary (‘ER’); (b) passing through an ER while traveling

straight; (c) passing through an ER while turning right; (d) deadlocked ER; (e) non-deadlocked ER.

4.) Module Rotaries: Figure 2-14(a) illustrates module rotary deadlock. Droplet 16

creates a dependency chain which causes deadlock; however, if it does not enter the

module rotary, then a bubble is created which ensures that the sequence of droplets can

proceed, starting with Droplet 1. To prevent deadlock in a module rotary, no droplet may

enter an exchange rotary unless the system can guarantee that there is space for it to exit

into the next street; if the street is full, then the droplet must wait for space to become

available prior to entering the exchange rotary. Droplets attempting to enter a street from

an adjacent module or input reservoir must also wait until that street has room; in Figure

2-14(b), Droplets 1, 2, 3, 5 and 6 must wait for this reason.

56

(a) (b)

Figure 2-14: (a) Deadlock in a module rotary; (b) Module rotary with street capacity rules being

enforced to prevent deadlock.

2.5.3 - CFG EXECUTION

Given the ability to execute a DAG, generalizing the runtime system to execute a

CFG is straightforward. Before executing a CFG, the DAG corresponding to each basic

block is scheduled to determine whether the LoC can meet its resource demand. If all

DAGs can be scheduled, then the CFG can execute. Much like a software program, CFG

execution proceeds one basic block at a time. Each DAG can be partially compiled in

isolation; however, the transfer of droplets from one DAG to another in response to a

conditional evaluation occurs dynamically. Referring to the right of Figure 2-7(b), the

entry and exit nodes of the CFG are known. Starting with the entry node, the system

dynamically schedules, binds, and executes each DAG. When the DAG finishes its

execution, its conditions are checked and the next DAG to execute is chosen. This

process repeats until the CFG exit node completes its execution.

2.6 - SIMULATION RESULTS

We developed a software simulator for EWoD-based LoCs in C++, and our compiler

and runtime system currently interface with it. At each time step, the runtime system

57

sends signals to the simulator indicating which electrodes to activate, based on the assay

operations that are currently executing and the droplets that are currently undergoing

transport. The simulator estimates the execution time of an assay based on operation

latencies provided in the Appendix.

We chose a low-end embedded processor to evaluate these benchmarks because

DMFBs have the potential to be used in battery-powered point-of-care diagnostic devices

[22] that can be deployed in remote rural areas, possibly in third-world countries; in such

a context, it would be a significant burden to transport a modern desktop or laptop PC to

control the DMFB, and then power it up. Initially, we considered a low-end

microcontroller implementation, but our code base was too large to fit into the limited

memory of the device. Instead, we compared the interpreter with the static compiler using

an Inforce SYS9402-01 development board, which features a 1GHz Intel Atom
TM

 E638

processor with 512MB RAM, running TimeSys 11 Linux; memory constraints were not a

concern using this more powerful platform.

2.6.1 - EXPERIMENT #1: FAULT-TOLERANT SPLITTING

A common assumption made when compiling assays onto EWoD-based DMFBs is

that every split operation is perfect, i.e., the two split droplets have equal volumes;

however, this may not be the case. Some assays require an exact volume and demand a

certain amount of precision when working to obtain a specific concentration. As droplet

volumes decrease, an uneven split may significantly bias assay results. After the split, the

volume of one of the two resulting droplets is measured. If the volume obtained from the

measurement is sufficiently close to half of the pre-split volume, then the split is deemed

58

to be successful; otherwise, it fails, and the two split droplets are re-merged and the split

operation repeats [7]. This process, which is naturally probabilistic, can be expressed as a

loop using the extensions to BioCoder.

Alistar et al. offer two solutions to this problem. The first modifies the DAG to form

a fault tolerant sequencing graph (FTSG) where each split is attempted a fixed number of

times [6]. This changes the assay scheduling problem formulation, because splits are now

variable-latency operations, whose exact latencies cannot be known until runtime. The

second solution applies incremental re-synthesis (e.g., Figure 2-3) in response to an

erroneous split: when a split-error occurs, the resultant droplets are discarded and a

recovery sub-graph is called upon to reproduce the droplet to be split again [7]. This

eliminates the primary limitation of their former approach—fixing the number of times a

split may be performed—but the re-synthesis process is more complex, as it re-executes

lengthy operations that may not need to be performed again.

To evaluate our interpreter and virtual topology (INT), we compare against Alistar’s

online re-synthesis (ORS) idea in which time-redundant graphs are re-synthesized online

when a fault is encountered in order to reproduce the erroneously split droplets. Their

approach suffers from two limitations, which our implementation addresses here. Firstly,

it appears that their placer does not address the challenge of specialized modules with

external devices, e.g., detection operations must be placed on top of cells above or below

an integrated sensor. Secondly, their approach does not perform routing, so those

overheads are taken into account. Therefore, our implementation considers their general

ORS approach to error detection and recovery, but uses a different fast online synthesis

59

flow [31] that accounts for specialized modules during placement and includes a routing

algorithm.

We used a truncated 2-level version (for the sake of clarity and demonstration) of a

larger 3-level protein dilution assay [76], as shown in Figure 2-15(a). We do not have a

dilute operation, and thus, we replaced each 5s dilute operation with a 3s mix and 2s split

operation. For the entire assay, dispense operations are 7s, mix operations are 3s, split

operations are 2s and output operations are 0s. The detect operations trailing a split are

5s, while the detect operations preceding an output are 30s. These timings were kept

consistent for INT and ORS and both assays were implemented using our enhancements

to BioCoder. INT uses a 20x20 DMFB, allowing for 4 total work modules with 4

detectors; ORS uses a 15x19 DMFB, allowing for 6 total work modules, and has 4

detectors as well.

Figure 2-15(a) shows the initial sequencing graph executed by ORS, while Figure

2-15(b) shows the control flow graph executed by INT (for a failure probability of 10%).

The Lev1Split DAG contains the first mix and split seen in Figure 2-15(a). The program

loops between Lev1Det and Lev1MRS (Merge and Re-Split) until the split is successful.

When the first split succeeds, Lev2Split is scheduled and executed, which performs the

2
nd

 level of splits (containing the bottom 2 splits). Since there are two splits, there are

detect and merge-re-split (MRS) loops for the occasions when the left split, right split, or

both splits fail (DAGs ending in “-L”, “-R”, and “-B”, respectively). Finally, when all

splits have been properly performed, Lev3End executes the final dispense, mix, detect

and output nodes.

60

 (a) (b)

Figure 2-15: Output from system showing (a) the initial 2-level protein DAG executed by the online

re-synthesis model and (b) the control-flow graph executed by our interpreter.

We are primarily interested in the synthesis and assay runtimes introduced by split

recovery errors in INT and ORS. We ran INT with error probabilities of 10%, 25%, 50%,

75% and 90% on each split node. Our simulator does not model the physics of the droplet

split and detection process. Instead, our virtual sensor returns a probability in the range

[0, 1). If the probability is less than the error probability/threshold, we assume that the

split is successful; otherwise, we assume that the split is a failure. This applies to all

splits, even if part of a merge-re-split. We performed 10 runs for each of the 5 error

probabilities (50 total runs) and averaged the results for each error rate. Next, we

61

examined the control-flow of each of the 50 runs and reproduced the same exact errors in

the ORS system to obtain comparative numbers.

Table 2-4 reports the computational time that both INT and ORS spent performing

synthesis and responding to faults for different error probabilities. INT uses the

interpreter to synthesize the assay in an online fashion, while ORS computes an initial

synthesis result up-front, and then re-synthesizes the assay each time that a fault occurs.

Table 2-5 shows the assay runtime (operation + routing time) for the same error

probabilities as seen in Table 2-4. Each table has a fault-free baseline, meaning these

numbers show synthesis and assay runtimes, respectively, for the 2-level protein

application when no errors occur. For ORS, this is the DAG seen in Figure 2-15(a). For

INT, this represents the execution path seen in Figure 2-15(b) of Lev1Split → Lev1Det

→ Lev2Split → Lev2Det-B → Lev3End because this is the path that executes when no

errors occur.

As shown in Table 2-4, ORS takes less time than INT to generate an initial fault-free

schedule, although INT generally spends less total time handling errors online (T). Table

2-4 also shows that INT spends less time, on average, in response to each error (PE). One

thing to note is that the per-error time (PE) is greater than the total time (T) for both 10%

and 25% error rates; this occurs because the average number of errors per run (EPR) is

less than 1 for both of these error rates. Thus, an error does not occur every single run and

causes the total synthesis time to be less than the synthesis-per-error time.

62

Average Recovery Synthesis Time With Fault-Free Baseline

Synth.

Meth.

Fault-

Free

Base-
line

10% Error 25% Error 50% Error 75% Error 90% Error

EPR

Synth.
(ms) EPR

Synth.
(ms) EPR

Synth.
(ms) EPR

Synth.
(ms) EPR

Synth.
(ms)

PE T PE T PE T PE T PE T

INT 89.1 0.5 2.6 1.3 0.8 4.3 3.4 3.5 2.9 10.0 8.0 3.0 23.9 20.6 3.1 62.8

ORS 72.0 0.5 3.8 1.9 0.8 3.8 3.0 3.5 3.4 11.9 8.0 3.8 30.4 20.6 3.6 74.9

Table 2-4: Recovery synthesis time (averaged over 10 runs) for a 2-level protein assay with varying

percentages of error for split operations. Results show the average number of errors per run (EPR),

average synthesis time per error (PE), and average total synthesis (T). Results are given for the

online re-synthesis (ORS) model, and our interpreter (INT) with control-flow and virtual topology.

Average Recovery Assay Runtime (Schedule + Route Length) With Fault-Free Baseline

Synthesis Method
Assay Runtime (s)

Fault-Free Baseline 10% Error 25% Error 50% Error 75% Error 90% Error

INT (Control Flow) 134.89 5.17 8.30 33.03 74.38 181.82

ORS (Re-synthesis) 118.36 10.11 14.65 61.94 170.30 406.48

Table 2-5: Average recovery assay runtime (averaged over 10 runs) showing the average amount of

time (schedule and route length) added to the assay by errors for a 2-level protein assay with varying

percentages of error for split operations. Results are shown for the online re-synthesis (ORS) model,

and our interpreter (INT) with control-flow and virtual topology.

Table 2-5 shows the baseline assay execution time for a fault-free run and the

average additional overhead incurred to re-execute operations for varying error rates.

Although ORS produces a better fault-free result, INT adds much less recovery time to

the assay because it does a merge and re-split instead of executing more complicated

recovery operations [7]. Another concern, which we did not explicitly model, is that ORS

may recursively encounter further errors when re-executing recovery operations that

include splits themselves, that were originally successful in the original run. This would

further add to the assay execution time. This experiment demonstrates that interpretation

can seamlessly address reliability challenges that arise due to operation variability in

DMFBs.

63

2.6.2 - EXPERIMENT #2: IN-VITRO DIAGNOSTICS

In-vitro diagnostics is a common microfluidic application, where four human

physiological fluids (plasma, serum, urine, and saliva) are assayed for glucose, lactate,

pyruvate, and glutamate measurements to identify metabolic disorders [75].

The in-vitro assay mixes each of the four samples with each of the four reagents and

then transports the 16 resultant droplets to optical detectors for measurement. These 16

mixes can be part of the same assay, and performed concurrently, as shown in Figure

2-16(a). Our BioCoder implementation of this assay runs in 47.93s in our simulator.

It is also possible to rewrite the assay using our interpretation engine and virtual

topology to preserve reagents. Figure 2-16(b) shows a CFG created by BioCoder that is

composed of four assays, each of which performs four mix operations where a human

sample is mixed with a single reaction; Figure 2-17 shows the BioCoder specification.

The four assays are executed sequentially, and the protocol stops as soon as the first

positive reading occurs.

(a) (b)

Figure 2-16: (a) Parallel and (b) sequential CFG implementations of the in-vitro diagnostics assay.

64

Our optical sensor returns a random probability in the range [0, 1), and we assume

that a reading is irregular (i.e. positive) if the value returned is greater than some various

health thresholds. Table 2-6 shows the average results (over 10 runs) for the thresholds

75%, 90%, 95% and 99%, where a higher threshold represents a generally healthier

patient. Tests run at the 75% and 90% thresholds use less time and reagents. Although the

95% and 99% tests take more time, they do use fewer reagents, which may be preferable

in many contexts. Figure 2-18 reports the simulator output for a particular run with a

99% threshold; in this example, all four DAGs were executed and no tests were

determined to be irregular.

Average Sequential InVitro Completion Time/Sample Usage

Health/Pass Rate Completion Time (s)
Comparison To Parallel InVitro

Time Saving (s) % Reagent Usage

75% 28.04 19.90 32.5
90% 36.52 11.42 42.5
95% 57.72 -9.79 67.5
99% 78.86 -30.93 92.5

Table 2-6: Average sequential InVitro completion time and sample usage compared to the parallel

InVitro implementation. Averages were found over 10 runs for each health/pass rate.

65

Figure 2-17: BioCoder specification of the sequential in-vitro assay for a 99% threshold.

for (int r = 0; r < numReagents; r++)

{

 BioCoder * bio = BioSys->addBioCoder();

 for (int s = 0; s < numSamples; s++)

 {

 Container tube = bio->new_container(STERILE_MICROFUGE_TUBE2ML);

 Fluid S = bio->new_fluid(sampleNames[s] ,bio->vol(100,ML));

 Fluid R = bio->new_fluid(reagentNames[r] ,bio->vol(100,ML));

 if (s == 0 && r == 0)

 bio->first_step();

 else
 bio->next_step();

 bio->measure_fluid(S, bio->vol(10, UL), tube);

 bio->measure_fluid(R, bio->vol(10, UL), tube);

 bio->vortex(tube, bio->time(sampleMixTimes[s], SECS));

 bio->next_step();

 detects.push_back(bio->measure_fluorescence(tube, bio->time(sampleMixTimes[s], SECS)));

 bio->next_step();

 bio->drain(tube, "output");

 }

 bio->end_protocol();

 assays.push_back(bio);

}

// Conditional Groups

for (int r = 0; r < numReagents-1; r++)

{

 int i = numSamples * r;

 BioConditionalGroup *bcg = BioSys->addBioCondGroup();

 BioExpression *outer = new BioExpression(OP_AND);

 outer->addOperand(new BioExpression(detects[i], OP_LT, 0.99));

 outer->addOperand(new BioExpression(detects[i+1], OP_LT, 0.99));

 outer->addOperand(new BioExpression(detects[i+2], OP_LT, 0.99));

 outer->addOperand(new BioExpression(detects[i+3], OP_LT, 0.99));

 BioCondition *bc = bcg->addNewCondition(outer, assays[r+1]);

}

66

Figure 2-18: Simulator output for a particular run of the sequential in-vitro assay (99% threshold)

detailing the times at which each DAG in the CFG begins and ends. The output also shows the IF-

ELSE control-flow statements that are executed, including the sensor readings, boolean expression

evaluation and resultant branch. Finally, the overall runtime of the assay is shown at the bottom,

along with the number of each type of operation that was executed.

2.6.3 - EXPERIMENT #3: BASELINE ASSAYS

Finally, we perform a standard set of benchmark assays commonly reported in

literature. The first assay is the mixing tree portion of a Polymerase Chain Reaction

(PCR), which is used for exponential DNA amplification in molecular biology. In-vitro

diagnostics were highlighted in the last section; here, we run five common in-vitro

configurations with different combinations of samples and reagents [65][75]. Finally, we

run a colorimetric protein assay based on the Bradford reaction [75]. DAGs for the PCR

SYSTEM (0s): Executing CFG 0

SYSTEM (0s): Executing DAG1(Glucose) on DMFB 1

SYSTEM (21.52s): DAG1(Glucose) complete

SYSTEM (21.53s): Evaluating Condition Dependencies - DAG1(Glucose)

IF ((DAG1_d1_READ = 0.29 < 0.99) AND (DAG1_d2_READ = 0.28 < 0.99)

 AND (DAG1_d3_READ = 0.45 < 0.99) AND (DAG1_d4_READ = 0.90 < 0.99))

 TRUE - Branching to DAG2(Lactate)

SYSTEM (21.53s): Executing DAG2(Lactate) on DMFB 1

SYSTEM (42.77s): DAG2(Lactate) complete

SYSTEM (42.78s): Evaluating Condition Dependencies - DAG2(Lactate)

IF ((DAG2_d1_READ = 0.86 < 0.99) AND (DAG2_d2_READ = 0.98 < 0.99)

 AND (DAG2_d3_READ = 0.60 < 0.99) AND (DAG2_d4_READ = 0.94 < 0.99))

 TRUE - Branching to DAG3(Pyruvate)

SYSTEM (42.78s): Executing DAG3(Pyruvate) on DMFB 1

SYSTEM (64.13s): DAG3(Pyruvate) complete

SYSTEM (64.15s): Evaluating Condition Dependencies - DAG3(Pyruvate)

IF ((DAG3_d1_READ = 0.29 < 0.99) AND (DAG3_d2_READ = 0.83 < 0.99)

 AND (DAG3_d3_READ = 0.97 < 0.99) AND (DAG3_d4_READ = 0.31 < 0.99))

 TRUE - Branching to DAG4(Glutamate)

SYSTEM (64.15s): Executing DAG4(Glutamate) on DMFB 1

SYSTEM (85.33s): DAG4(Glutamate) complete

SYSTEM (85.61s): CFG 0 complete (all droplets off system)

____________DMFB 1____________

8560 cycles

85.6 seconds runtime at 100Hz frequency

Dispenses=32, Mixes=16, Splits=0, Heats=0, Detects=16, Outputs=16

67

and protein assays, as well as the 5
th

 in-vitro assay (4 samples, 4 reagents), are seen in

Figure 2-19. Each of the seven assays represents a DAG with no control flow.

Figure 2-19: PCR, In-Vitro and Protein DAG specifications (see the Appendix for more details).

All assays have dispense times of 2s and other operation timings are as detailed in

the Appendix. We chose the 2x4 mixer (3s) for all PCR mixes. For the protein assay, we

chose the 2x4 mixer (3s) and 2x4 diluter (5s) for all mix and dilution operations,

respectively; because we did not have an explicit dilution operation implemented, we

divided the dilution operations into a mix node followed by a split operation that

consumed a total of 5s. All operation timings and sample/reagent configurations for the

in-vitro diagnostic family of assays are taken from Table I of ref. [75].

Here, we compare the performance of the interpreter and virtual topology (INT) with

a long-running static compiler (LRSC), with no virtual restrictions on placement and

routing; the compiler cannot handle assays featuring control flow, and therefore, could

not produce results for Experiments #1 and #2, as discussed in the preceding subsections.

We compare the schedule and route quality between LRSC and INT, while

simultaneously showing the tradeoff that is made between computation time and assay

68

time (schedule and route length). INT was run on a 20x20 DMFB (2x2 tile array); LRSC

was able to fit the assays onto a smaller 15x19 DMFB. As in other works, we assume a

droplet actuation frequency of 100 Hz [88].

For our LRSC, we chose a genetic scheduling algorithm [75], a simulated annealing-

based placer [76], and a fast maze router [66] to compile the DAGs onto a DMFB.

Scheduling is the most important synthesis task since it determines the bulk of the assay

time (scheduling units are on the order of seconds; routing units are on the order of

milliseconds). We selected a genetic scheduler because it tends to produce high quality

results in a relatively reasonable amount of time. Optimal scheduling based on integer

linear programming (ILP) [75] is also possible, but may run for days or weeks on DAGs

of non-trivial size. Placement does not significantly affect assay performance; however, it

is an important step when targeting very small DMFB architectures. We chose a

placement algorithm based on iterative improvement for similar reasons. The choice of

router is far less important, as prior work has noted that routing times do not significantly

impact the assay completion time [75]. We chose to implement a maze router [31][66]

primarily due to ease of implementation. To the best of our knowledge, the literature on

routing lacks a comprehensive comparison among all previously published routing

algorithms, so we do not claim that the maze router is either the fastest or best

performing.

Table 2-7 and Table 2-8 show the results of LRSC and INT, respectively, including

computation times and assay times (the actual time spent executing the assay, i.e.

schedule length and route lengths). The results show that LRSC can complete an assay,

69

from first dispense to last output, from 3s to 41.5s faster than INT. Thus, overall, LRSC’s

scheduling-routing solutions (SL+RL) are better than INT’s solutions; however, in an

online setting when synthesis/interpretation time will be experienced by the end-user who

is waiting for the computations to complete, these gains can be considered negligible

when compared to the increase in computation times from 2.8s to 22h.

Long-Running Static Compiler (LRSC):
Genetic Scheduler→Simulated Annealing Placer→Roy’s Maze Router

Benchmark
Scheduling (s) Placement (s) Router (s) Total Synthesis (s)

CT SL CT CT RL CT SL+RL CT+SL+RL

PCR 2.621 1 0.200 0.002 0.780 2.823 11.780 14.603
InVitro1 4.475 14 12.843 0.002 1.350 17.320 15.350 32.670
InVitro2 8.122 16 141.177 0.004 1.800 149.303 17.800 167.103
InVitro3 13.156 18 506.767 0.010 2.070 519.933 20.070 540.003
InVitro4 22.376 22 3,317.571 0.007 2.340 3,339.954 24.340 3,364.294
InVitro5 39.410 30 1,399.936 0.009 3.420 1,439.355 33.420 1,472.775
Protein 22.334 109 79,531.695 0.032 12.120 79,554.061 121.120 79,675.181

Table 2-7: Static compiler synthesis results for 7 deterministic benchmarks showing algorithmic

computation times (CT), the computed schedule lengths (SL) and computed route lengths (RL).

Online Interpreter (INT): List Scheduler→Module Binding Placer→XY Router

Benchmark
Scheduling (s) Placement (s) Router (s) Total Synthesis (s)

CT SL CT CT RL CT SL+RL CT+SL+RL

PCR 0.001 1 0.001 0.009 0.560 0.011 11.560 11.571
InVitro1 0.001 8 0.002 0.015 1.330 0.018 19.330 19.348
InVitro2 0.002 19 0.003 0.022 1.860 0.027 20.860 20.887
InVitro3 0.005 29 0.006 0.034 2.540 0.045 31.540 31.585
InVitro4 0.008 34 0.009 0.045 3.330 0.062 37.330 37.392
InVitro5 0.015 44 0.016 0.058 4.110 0.089 48.110 48.199
Protein 0.014 154 0.017 0.150 8.670 0.181 162.670 162.851

Table 2-8: Online Interpreter (using the virtual topology) synthesis results for 7 deterministic

benchmarks showing algorithmic computation times (CT), computed schedule lengths (SL) and

computed route lengths (RL).

Furthermore, although LRSC’s schedules and routing times (SL+RL) are shorter by

3s to 41.5s, the interpreter can make up this ground in several ways and still maintain its

fast synthesis times and remain suitable for online synthesis. One way is to utilize new,

fast schedulers that are targeted at certain types of assays. Two recent examples are path

scheduling [33] and force-directed list scheduling [61]. List scheduling, path scheduling

70

and force-directed list scheduling all run quickly, making it possible to run all three,

without great concern to computation time, and take the best schedule.

Table 2-9 shows the results of genetic, list, force-directed list and path schedulers on

ProteinSplit1-4 (assays with 1-4 levels of splits). Again, all results are on the low-

powered Atom processor. The results show that although the genetic algorithm generally

produces the best schedule, its computation time dwarfs the savings and makes it

impractical for online scheduling. On the other hand, although the computation time for

force-directed list scheduling begins to grow large as the assay size increases, the list,

path and force-directed list schedulers all claim superior results for at least one

benchmark. For the sake of simplicity and space limitations, we only include results for

INT with list scheduling.

Computation Time (CT) and Schedule Length (SL) For Various Schedulers On Large Assays

Benchmark
Genetic List Force-Directed List Path

CT (s) SL (s) CT (s) SL (s) CT (s) SL (s) CT (s) SL (s)

ProteinSplit 1 26.227 72 0.019 72 0.108 72 0.009 73

ProteinSplit 2 70.887 107 0.054 107 0.487 108 0.021 111

ProteinSplit 3 199.358 180 0.135 198 2.132 182 0.048 187

ProteinSplit 4 677.353 358 0.338 390 10.284 367 0.105 339

Table 2-9: Scheduling results for various scheduling methods for large ProteinSplit assays on a 20x20

DMFB with four work modules, each equipped with a detector. Scheduling computation times (CT)

and the computed schedule lengths (SL) are shown. The best overall scheduler for each benchmark is

emboldened.

In this particular case, however, the inferior schedule quality of the interpreter is

mostly due to a lack of resources. On a 20x20 DMFB, the interpreter can perform 4

concurrent mix operations, one in each of its 4 modules. The static compiler, on the other

hand, has sufficient room to comfortably fit 6 2x4 mixers on a smaller 15x19 DMFB. By

increasing the size of the DMFB, the interpreter can close the scheduling gap. For

71

example, we ran the largest assay, the protein assay, on a 30x20 DMFB that could fit 6

mixers and re-ran the interpreter; list-scheduler produced a schedule of 111s, only 2

seconds longer than the compiler’s schedule length. With new, highly-scalable DMFBs

being developed [34][60], increasing the array size does not increase the complexity and

cost of a DMFB as it did in the past; trading DMFB size for algorithmic simplicity is

becoming an easy tradeoff to make.

2.7 - CONCLUSION

This chapter introduced extensions to the BioCoder language to allow the

specification of biochemical protocols that feature control flow, and described the design

and implementation of a software interpreter that executes assays dynamically, as

opposed to the prior state-of-the-art where assays were compiled statically. The key

innovation that facilitates interpretation is the imposition of a virtual topology on top of a

DMFB which facilitates deadlock-free droplet routing through the simple adaptation of

deadlock-free routing algorithms for 2D computer mesh networks. This relieves the

interpreter of the need to explicitly schedule and place assay operations on the DMFB

and route droplets; instead, the interpreter binds assay operations to pre-positioned work

modules, and relies on the DTP to deliver the droplets to their locations in a timely

fashion. Experiment #1 (fault-tolerant splitting) and Experiment #2 (sequential in-vitro

diagnostics) validate the ability of the interpreter to execute assays that feature control

flow. Experiment #3 demonstrates that the computational overhead of the interpreter is

far less than that of static compilation and re-compilation methods.

72

 The drawback of this approach is area overhead: the streets, rotaries, and separation

between them occupy a significant number of cells that could otherwise be used to

execute more concurrent operations. It is clearly possible to pack the work modules in

more tightly, thereby replacing the droplet routing protocol with something simpler, yet

ineffective (e.g., route one droplet at a time), or a more complicated routing algorithm

with greater complexity. In particular, DMFBs are often I/O limited, especially for

portable point-of-care devices. The virtual topology introduced in this chapter is

compatible with direct-addressing and active matrix addressing DMFBs (see ‘Section 1.2

- DMFB Device Technology Overview’); our approach, however, is not compatible with

pin-constrained DMFBs, which use fewer control pins, but sacrifice flexibility in order to

do so. In contrast, the interpreter can execute any assay on the DMFB that satisfies the

resource constraints of the device. On the other hand, the cells shown in white in Figure

2-4 do not require electrodes, as they are not used; thus, the number of control pins in a

direct-addressing implementation of our interpreter can be reduced as well.

73

CHAPTER 3 AN EFFICIENT VIRTUAL TOPOLOGY

3.1 - INTRODUCTION

New features in control flow, programmability and interpretation (such as those

introduced in the previous chapter) will revolutionize microfluidic applications and

promise to broaden the usefulness of DMFBs. As described in previous chapters, these

features will further the importance of techniques that help speedup synthesis methods for

an online environment. In CHAPTER 2, we presented a virtual topology and briefly

described how it simplified the entire synthesis flow and helped enable online

interpretation; however, the main focus of CHAPTER 2 was to present the concepts of

interpretation, microfluidic programmability and control flow. In this chapter, we

introduce a new synthesis flow and an optimized virtual topology, which uses less space

than the topology described in CHAPTER 2. Furthermore, in this chapter, we thoroughly

examine the algorithmic details we employ to achieve fast online synthesis and show how

each method in our synthesis flow works together to achieve a valid solution.

In general, the objective of scheduling, placement, and routing is to minimize assay

execution time. In addition to the basic requirements for scheduling, placement and

routing (see ‘Section 1.3 - High-Level Assay Synthesis Overview’), we introduce three

new goals: (1) fast algorithmic runtimes; (2) placements that guarantee routability; and

(3) deadlock-free routing. Fast algorithmic runtimes are imperative for dynamic synthesis

and re-synthesis to facilitate control flow and error detection and recovery scenarios in a

way that does not cause large delays. Placements must be routable a-priori, because the

74

computational overhead to detect and rectify unroutable placements (e.g., Figure 1-7(b))

is significant. Droplet deadlocks are problematic because no droplet can advance toward

its destination, preventing completion of the assay; the computational overhead to detect

and rectify deadlock situations that may occur during routing is significant. The usage of

the virtual topology seamlessly achieves all three of these objectives by reducing the

algorithmic complexity of synthesis and providing the order and constructs necessary to

compute routable placements and deadlock-free routes on the first attempt.

3.1.1 - CONTRIBUTION

We present an online synthesis flow that can interpret assays and map them onto a

fully-addressable or active-matrix DMFB [60] in milliseconds, making it appropriate for

both offline and online synthesis. Our key contribution is a compact virtual topology that

defines distinct regions for module placement and droplet routing. With our topology in

mind, we present several necessary constraints and apply them to list scheduling [75] and

path scheduling [33] to quickly produce schedules. Placement, which has been solved in

the past by iterative improvement algorithms [76][87] or integer linear programming

(ILP) [45], is simplified to a binding problem, which can be solved efficiently in

polynomial-time. We introduce two binding solutions in detail; the first is a left-edge

binding algorithm, while the second is a more-intelligent path-based binding algorithm

that leverages spatial and temporal locality to produce superior results. The placement

defined by the virtual topology provides dedicated routing cells which ease the router’s

job. We simplify an existing router [66] to compute droplet paths very quickly.

75

The overall objective of this flow is to facilitate fast assay synthesis while minimally

compromising the quality of results. In particular, we show that a virtual topology, in lieu

of traditional placement, can significantly speed up the synthesis process without notably

lengthening assay execution time. We demonstrate how our new virtual topology can be

leveraged to reduce algorithmic runtimes and guarantee routability by addressing

previously-unresolved issues such as module synchronization and poor module

placement. The results show that our synthesis flow always yields a successful solution,

while prior methods result in synthesis failures. Finally, we show several variations of the

virtual topology and present experimental results demonstrating best-design practices.

The online synthesis flow presented in this chapter is compatible with individually

addressable, cross-referencing, and active-matrix addressing DMFBs.

3.2 - RELATED WORK

Here, we highlight some of the previous work in DMFB synthesis for scheduling,

placement and routing.

3.2.1 - SCHEDULING

Su and Chakrabarty present modified list scheduling (MLS) and genetic algorithm

(GA) heuristics, as well as an optimal integer linear programming (ILP) model for

scheduling microfluidic operations onto a DMFB [75]. As expected, the ILP

implementation consumes a large amount of time to compute optimal solutions. Although

the GA finds optimal or near-optimal results in much less time than ILP, its iterative

nature still results in large computation times. MLS produces schedules comparable to

76

GA in much less time. Other scheduling algorithms such as Ricketts’ hybrid genetic

algorithm [65] and Maftei’s tabu search scheduler [56] are iterative improvement

algorithms which spend anywhere from 4 seconds to 1 hour computing schedules. We

chose list scheduling as the base scheduler for our framework, but other fast schedulers

being developed now [33][61] or in the future could be used as well.

3.2.2 - PLACEMENT

At the physical level, all electrodes are equally capable of performing the basic

microfluidic operations (i.e. merging, mixing, splitting, transport, storage); hence, basic

operations can be performed anywhere on a DMFB array. The objective for most placers

is to pack as many concurrent operations/modules into as little area as possible. Several

direct-addressing placement and unified scheduling-placement algorithms [76]

[77][83][87] use simulated annealing, which run in minutes or tens of seconds; in

contrast, our online flow completes in tens of milliseconds.

Griffith et al. [26] place a virtual topology onto the DMFB, which dictates separate

regions for assay operations and droplet routing; however, they only present results for

one assay, and their implementation suffers from deadlocks during droplet routing. Our

approach is similar, but does not suffer from deadlock; in the absolute worst case, our

router will transport one droplet at a time; however, we include a compaction step to

transport multiple droplets concurrently.

3.2.3 - ROUTING

Böhringer [11] modeled droplet routing as an A* search, similar to path planning in

robotics, achieving an optimal-length solution, when routable. Su et al. route droplets

77

sequentially and redo placement when routing fails [78]. BioRoute [88] uses a min-cost

max-flow algorithm to compute several routes at once, followed by negotiation-based

detailed routing. Cho and Pan [16] route droplets one-by-one and sort them based on a

bypassability metric; if a deadlock occurs, droplets are moved to concession zones to

break the deadlock. Huang and Ho [38] construct a system of global routing tracks, which

are aligned in the same direction as the majority of droplets traveling on that tract. They

use an entropy-based equation to determine the order in which droplets are routed, and

finally, compact the routes using dynamic programming. Since the aforementioned

methods were designed for offline routing, few mention runtimes [11][16][78]. BioRoute

[88] and Huang’s algorithm [38] both report runtimes below 1s on a desktop PC. The

router used in our online flow, a modified version of Roy’s maze router [66], achieves

comparable runtimes, while achieving deadlock freedom.

3.2.4 - COMBINED METHODS

Most work on synthesis has focused on the scheduling, placement or routing

problems in isolation. Several papers, however, solve some of these problems together,

using iterative improvement heuristics [52][76][77][83][87], whose runtime is

prohibitive. These approaches address problems that can arise when one stage of

synthesis does not consider the next. For instance, a placer can generate a valid placement

that is unroutable. Our virtual topology ensures routability by leaving room for droplets

to pass between adjacent “modules” where mixing, storage, and other assay operations

are performed.

78

3.3 - VIRTUAL TOPOLOGY

Our online interpreter utilizes a virtual topology, as seen in Figure 3-1, and takes

advantage of its order and structure to yield fast algorithmic runtimes for scheduling,

placement and routing. First, we define a cell as the 2D area covering an electrode. The

virtual topology shows regularly spaced modules (3x3 squares of cells) where basic

droplet operations (i.e. merge, mix, split, store) are performed. If at least one of a

module’s cells is augmented with an external detector or heater, the module can also

perform detect or heat operations, respectively. The white cells indicate the area of the

DMFB array used explicitly for routing droplets between modules and I/O ports (not

pictured); however, any cell can be used for routing if a module is not in use. Dedicated

routing cells ensure there is a valid path between any source-destination pair. A perimeter

of interference region (IR) cells surrounds each module [78], so that interference-free

droplet routes can be computed easily; this topology ensures that there is at least one path

between all DMFB inputs, modules, and outputs. The inputs and outputs (not shown in

Figure 3-1) are on the perimeter of the chip.

Figure 3-1: Virtual topology imposed onto a DMFB.

79

3.3.1 - MODULE TOPOLOGY AND SYNCHRONIZATION

To help prevent droplet deadlock, droplets have well-defined module entrance and

exit locations, as seen in the 3x3 module of Figure 3-2(a). The two entrances are in the

northwest and southwest corners, while the exits are in the northeast and southeast

corners. By providing distinct entrances and exits, we prevent droplet deadlock by

allowing droplets leaving a module to wait safely in their exit cells as long as necessary

to avoid deadlock in the routing cells. Figure 3-2(b) and Figure 3-2(c) show that modules

can be elongated along the X- or Y-axis to accommodate larger 2x4 mixers, often used in

literature [62][75].

 (a) (b) (c)

Figure 3-2: The entrance cells (I1/I2) and exit cells (O1/O2) of (a) a 3x3 module, (b) a 4x3 module

and (c) a 3x4 module.

As seen in Figure 3-3, time-step stages of assay operations are interleaved with

routing stages until the entire schedule has been processed. A time-step is the basic,

minimum-resolution unit of time used to schedule microfluidic operations; time-steps

usually last one or two seconds and are fixed in length for the duration of the assay. The

routing stages are variable in length, depending on the routes that are generated, and can

even be instantaneous if no droplets are being routed between time-steps.

80

Figure 3-3: An assay time-line showing that each fixed time-step (TS) is interleaved with a variable-

length routing phase (R).

Droplets are required to enter/exit a module at one of the two entrances/exits. When

a droplet travels to a new module, it must enter the module during the routing phase at

one of the module-entrance cells and wait until the time-step officially begins. The

droplet is then processed (e.g. split, mixed, stored) during the time-step phase. If a droplet

leaves the module after the current time-step, it must position itself at one of the module-

exit cells before the end of the time-step. In Figure 3-2(a) droplets 1 and 2 (D1/D2) enter

a module to be processed while droplets 3 and 4 (D3/D4) exit to be processed elsewhere.

If D1 and D2 arrive before D3 and/or D4 exit, there will be no conflict since the entrance

and exit cells are sufficiently spaced to avoid droplet interference. When the time-step

begins, D1 and D2 can move freely within the module, as D3 and D4 are at their

respective destinations. This synchronization scheme prevents inter-module deadlocks

because there is always an open spot at the destination module’s entrances for every

incoming droplet at every module.

Figure 3-4 shows how a module can perform each assay operation. For each

operation, the droplet(s) enters at one of the entrance cells and then waits for the time-

step to begin. When the time-step begins, any droplets that were waiting in the exit cells

are now gone, and thus, any remaining droplets in the module are free to move about the

81

entire module to perform an operation. If the droplet(s) leaves the module at the end of

the time-step, it moves to an exit cell before the time-step ends. Once the time-step is

complete, during the subsequent routing stage, the droplet(s) exits the module. If a

droplet is scheduled to begin a new operation in the same module at the next time-step, it

maneuvers itself to an entrance cell before the time-step ends (not shown in Figure 3-4);

this eliminates the need for a droplet to exit and then re-enter the same module.

82

Figure 3-4: Intra-module droplet processing/routing for microfluidic operations.

M
er

g
in

g
/M

ix
in

g

S
p

li
tt

in
g

S
to

ri
n

g

S
p

li
tt

in
g

83

3.4 - FAST ONLINE SYNTHESIS

In this section, we show how the virtual topology presented in ‘Section 3.3 - Virtual

Topology’ can be leveraged to create fast online synthesis methods for scheduling,

placement and routing.

3.4.1 - SCHEDULING

In this section we describe the definitions and constraints that must be observed

during the scheduling phase. For online scheduling, a number of fast schedulers can be

used with our topology that maintain the constraints defined in this section.

An assay is given to the scheduler in the form of a DAG, , where the

vertices () and edges () represent assay operations and operation dependencies,

respectively. If the given DMFB is an array of cells and each module is

 cells, then the total number of modules, , can be calculated as seen in Equation

3.1. We add cells to the module dimensions to encapsulate the IR cells and the routing

cells to the right (for the X dimension) of each module (see Figure 3-1).

 (3.1)

Once the virtual topology is placed, modules with external devices above their cells

are considered to be special modules (e.g. detect module, heat module); all other modules

are considered to be basic modules. The array is initially populated based on the virtual

topology. An array called contains the number of modules of each module-

type (e.g. basic module, detect module, etc.), and satisfies the following condition:

84

 (3.2)

We define to be the number of droplets a module can store and to be the

maximum number of droplets we allow on the DMFB during any time-step. Since each

module has 2 entrance and 2 exit cells, a module can store 2 droplets during a time-step

(i.e.). Consider Figure 3-5(a) in which all but one of the modules is at maximum

capacity. Since the northeast module has room for one droplet, droplets can be shuffled

around so that any single droplet on the array can be isolated in any module, allowing the

assay to continue. However, if all modules are at maximum capacity (Figure 3-5(b)),

then deadlock may arise because it is impossible to process more operations unless some

of the droplets are scheduled to output or mix with each other next time-step. To reduce

the likelihood of scheduling deadlock, we set the maximum number of droplets permitted

on the DMFB during any time-step () as follows:

 (3.3)

In ‘Section 3.5 - Experiments’, we have successfully applied these constraints to

two fast schedulers: list scheduling (LS) [75] and path scheduling (PS) [33]. LS is a

greedy, constructive algorithm in which each operation (node) in an assay (DAG) is

scheduled exactly once. LS is much faster than iterative improvement algorithms, which

randomly compute numerous schedules [56][65][75] or optimal algorithms based on

integer linear programming [75]; however, these approaches generally do produce higher

quality schedules than LS. PS is another scheduler that attempts to schedule DAGs one

path at a time (as opposed to a single node at a time). PS’s runtimes have been found

85

competitive to LS and produces superior schedules for assays with high fan-out. These

schedulers were used because their fast runtimes allow them to be used in the context of

online synthesis.

 (a) (b)

Figure 3-5: Two DMFB scenarios with droplets that are going to be split (Sp) or detected (D) during

the next time-step. In (a), Sp6 can move and occupy the open space in another module, allowing D1

and Sp5 to swap so D1 can be detected in the detect-module. In (b), there is no way to isolate a single

droplet and since no droplets will be mixed next time-step, the assay cannot continue.

3.4.2 - PLACEMENT

DMFB placement is NP-complete [76]; the virtual topology limits the reconfigurable

capabilities of the DMFB by pre-placing the location of modules. In our framework,

operations are bound to pre-placed modules in accordance with the schedule that has

been computed a-priori. The scheduler assigns operations to module-types (e.g., basic or

specialized), but does not select a specific module for each operation; this is the job of the

binder. In the following sub-sections, we present two binding algorithms: a left-edge

based greedy algorithm and a more-intelligent, path-based algorithm.

86

3.4.2.1 - LEFT-EDGE BINDING ALGORITHM

Our binder is based on the left-edge algorithm, which has been used in the past for

register allocation and track assignment in channel routing [44]. The left-edge algorithm

has an time complexity, where is the number of assay operations.

Figure 3-6 shows how the left-edge algorithm binds operations to modules for the

DMFB shown in Figure 3-1. Figure 3-7 provides pseudocode for our binding algorithm

and can be followed (up to Line 20) in the example. A fixed-module bin is created (Line

2) for each module in the virtual topology; for this example. Then, each

operation is placed into an operation-bin based on the module-type it was assigned

during scheduling (Lines 9-11). Next, the operations in each bin are sorted in ascending

order based on their start time (Lines 13).

Figure 3-6: Illustration of the left-edge binding solution (reproduced from CHAPTER 2 for

convenience).

87

Figure 3-7: Pseudocode for our left-edge-based binding algorithm. NOTE: Only module binding is

shown; input and output binding is left out for brevity.

Lines 17-20 perform the actual binding process. The first module, ModBin1, finds

the operation bin matching its module-type (OpBin1). The binding method then examines

each operation in OpBin1, in order of start time, to ensure it will not conflict with any

other operation already assigned to OpBin1 (i.e. that the start time of the operation in

question is later than the end time of the last operation assigned to ModBin1). If an

1 Given a scheduled sequencing graph:

2 Given a list of fixed module schedules:

3

4 Operations by module-type:

5 Storage operations: =

6 Storage-holder operations: =

7

8 // Put operations in bins by module-type

9 for ()

10 if ()

11 Add to ;
12

13 Sort and all lists in , ascending by start time;

14 Sort , first by fixed-module location, then ascending by start time;

15

16 // Left-edge bind the modules

17 for ()

18 for ()
19 if ()

20 Add to end of , remove from ;
21

22 // Bind storage into storage-holders

23 for ()

24 ;

25 for ()

26 if ()

27 ;

28 ;

29 else if ()

30 if ()

31 ;
32 ;

33 else

34 Split at to form , add to front of ;

35 Return to outer for loop;

36

37 if ()

38 Remove from and return to outer for loop;

39 end for

40 end for

88

operation is placed in ModBin1, it is removed from OpBin1; otherwise, it remains in

OpBin1 to be bound to another module. This process is repeated for the remaining three

bins; when the last module (ModBin4) has examined its corresponding operation bin

(OpBin3), all operations will have been bound to a module.

Lines 23-40 describe how storage operations are bound. Note that storage operations

are not placed into the operation bins in Lines 9-11, and thus, were not bound to specific

modules; however, the storage-holder nodes were bound in Lines 17-20. As mentioned in

‘Section 3.4.1 - Scheduling’, a storage-holder node was created in the scheduling phase

for each set of droplets being stored each time-step (i.e. 1-time-step storage-

holder nodes are created at time-step , where is the number of droplets being stored

at). Storage-holder nodes are created so that storage nodes can be broken into a number

of smaller, contiguous storage nodes to prevent rare modules (e.g. detect modules) from

being tied up as storage.

Each storage node is examined and assigned to one or more storage-holder nodes

(Lines 23-40) since storage-holders are always one time-step. If storage node has not

yet been bound (Line 26), a suitable storage-holder is one that shares the same starting

time as and is not yet storing its maximum capacity of droplets (). If this criteria is

met by a storage-holder node , then (Line 27) marks

as bound, assigns it to the same module is bound to and updates the number of

droplets is storing. A variable named is then updated to keep track of how

much of has been bound (for storage nodes larger than one time-step).

89

Once s has been initially bound (i.e. the first time-step of), the algorithm attempts

to bind the rest of the storage node to the same module location (Lines 30-32). It is

possible to do this by iterating to (Line 25) and examining the next storage-holder in the

storage-holders list since the storage-holders were sorted by their module-location and

start-time, as seen in Line 14. If the next shares the same module as , has the same

start-time as our running end () and is not at maximum capacity, we bind to

to update storage count and update . If the condition in Line 30 cannot be

met, is split at because it cannot be stored in the same module any longer. The

new module is inserted into the storage list to be bound later. If equals end

time (Line 37), then has been completely bound and the algorithm can return to Line 23

to bind the next storage node.

3.4.2.2 - PATH-BASED BINDING ALGORITHM

In this section, we present a more-intelligent, path-based binding algorithm which is

inspired by Tseng’s binding procedure for flow-based microfluidic biochips in which

continuous operations are bound to the same component to reduce the amount of valve

switching and overall assay completion time [79]. Tseng's algorithm was used for flow-

based microfluidic devices, which are fundamentally different than DMFBs, and thus, is

not directly applicable to DMFBs; however, the key principle that binding contiguously

scheduled operations to the same component will reduce fluid transfers (droplet routes in

the case of DMFBs) can be applied to both classes of microfluidic devices. This principle

of spatial locality for contiguous operations was applied to path binder as described in the

following sections to reduce droplet routing times.

90

When compared to the left-edge binder, the path-based binder is faster and performs

binding in such a way that reduces route lengths. The left-edge binder does not take into

account module-types or the locations of parent/child modules, but instead, binds each

operation to the first available module it finds with a matching module-type. Path binder

takes parent/child module locations into consideration (reducing routing distances) and

although it does use left-edge binding, performs pre-processing to reduce the graph,

which eases algorithmic runtimes.

Figure 3-8(a) shows a simple sequencing graph with 7 nodes (for clarity, we will

call these basic nodes for the remainder of this section). The edges denote operation

precedence (e.g. N5 can only begin after N1 and N2 have completed); since each

successive basic node has a different module location than its parent, the edges in Figure

3-8(a) also denote droplets needing to be routed. Figure 3-8(b) shows that certain routes

can be eliminated if the binder selects the same module location for successive basic

nodes (a key idea for path binder), allowing the router to produce shorter droplet routes

because it will have less droplets to route. Furthermore, Figure 3-8(c) shows that if

successive nodes have the same module-type and location, they can be combined into

path nodes, which contain a contiguous sub-set of basic nodes from the original

sequencing graph (e.g. PN1 contains the sub-path N1, N5 and N7); when compared to the

simple left-edge binder, the use of path nodes reduces the overall number of nodes in the

sequencing graph, reducing the size of the problem and allowing for shorter algorithmic

runtimes.

91

 (a)

 (b) (c)

Figure 3-8: (a) Randomly-bound sequencing graph for a simple assay requiring 6 droplet routes; (b)

sequencing graph with intelligent module selection requiring only 3 droplet routes allows for (c) the

sequencing graph to be compressed.

Figure 3-9 presents high-level pseudocode for path binder. The binder is given a

scheduled sequencing graph (Line 2); at this point, each basic node/vertex, , has a start

time-step, stop time-step and module-type (e.g. mix module, detect module, etc.), but has

not been bound to a particular module location. Lines 3-5 obtain lists of important

operation types (inputs, outputs and storage nodes); Lines 7-10 initialize path-based

variables.

Lines 12-14 construct the path-compressed graph, . First, the initial path leaders

are found, which are nodes whose parent nodes consist exclusively of input/dispense

nodes (Line 13); nodes with no parents (i.e., dispense nodes) are not included in this list.

In Line 14, the path leaders are passed to the GeneratePathCompressedGraph() function,

which, at a high level, combines as many successive basic nodes as possible into larger

92

path nodes, resulting in a new graph of path nodes. This function does not bind nodes to a

particular module. We provide more details of this function in the following sub-section.

Lines 20-26 carry out all the binding. Line 22 performs a simple left-edge bind on the

non-storage path nodes in as performed in Grissom and Brisk's previous

implementation of left-edge binding (except it is binding path nodes, instead of basic

nodes) [32]. When a path node is bound to a particular module location, each basic node

the path node contains is bound to that same module location. Inputs and outputs are

bound (Lines 22-23) as in the left-edge binder. Finally, Lines 24-26 bind the storage

nodes and complete the path binding algorithm; these functions are detailed in later sub-

sections.

Figure 3-9: Pseudocode for our path-based binder.

1 // Initializations for graph variables

2 Given a scheduled sequencing graph of nodes:

3 Storage operations:

4 Input operations:

5 Output operations:

6

7 // Initializations for path-based variables

8 New sequencing graph of PathNodes:

9 New List of PathNodes:

10 Operations by module-type:

11

12 // Setting up path-based graph

13

14

15

16 // Sort variables into bins and sort by start time

17

18 Sort
19 ;ascending by start time

20 // Do binding of all nodes

21

22

23

24 Storage by module location: ;

25 ;
26 ;

93

3.4.2.2.1 - Generating Path-Compressed Graph

In order to reduce the work load of the binder and eliminate droplet routes for the

subsequent routing stage, the sequencing graph is compressed such that a single path

node contains one or more basic nodes, as demonstrated in Figure 3-8(b-c). Eligible

basic nodes can be compressed into a single path node if they form a path through the

original sequencing graph (no gaps of time between basic nodes); an eligible node is a

basic node that has not already been added to a path node in , has the same resource-

type as its path-parent, and is not an I/O or storage node. Ineligible nodes cannot be

compressed into the current path node because, although they have not been added to ,

they are of a different resource-type than their path-parent or are storage nodes. During

the scheduling phase, non-storage operations are assigned a specific resource-type; since

storage is extremely flexible, it is scheduled based on examining the number of free

resources, but it is not assigned a specific resource-type. Thus, storage nodes are not

path-compressed at this point because they will be broken up at a later stage to fit into

any available resources.

Figure 3-10 presents pseudocode for the path compression algorithm (Figure 3-9,

Line 14). The resultant graph, , is composed of a number of path nodes which each

contain one or more basic nodes that can be bound to the same module location. Lines 4-

34 show that each path leader is iterated through until there are no more path leaders, at

which point the entire assay will be compressed. Each path leader (a path node) will

initially contain exactly one basic node, which is examined in Lines 5-6. Since storage is

the most flexible operation and is designed to fit wherever other operations are not

94

located, they are added to a new path node and added to the graph with no compression

(Lines 6-8).

Lines 9-33 attempt to traverse a path and compress eligible basic nodes into a single

path node; Lines 11-32 show that a path can be traversed while there are unvisited basic

nodes (i.e., basic nodes not yet added to a path node in) in the most-recently-added

node’s () children. If has multiple children (e.g. split operation), then only the first

eligible child (randomly selected) is added to the current path node, ; a new path node is

created for each remaining eligible and ineligible child and inserted into and the path

leaders list (Lines 14-19). Similarly, if only has one unvisited child, the child is either

added to the current path node, (if eligible), or used to create a new path node (if

ineligible), as seen in Lines 20-25. This loop (Lines 11-32) continues until there are no

more eligible children on the path.

95

Figure 3-10: Pseudocode for the GeneratePathCompressedGraph() function.

3.4.2.2.2 - Selecting Storage Module Location

Figure 3-11 presents pseudocode to show how module locations are selected for

storage nodes. Given a list of storage operations, Lines 3-12 loop through and choose a

module location for each storage operation, . In Line 6, GetLongestFreeModLocs()

examines all of the module locations and returns a list of one or more module locations

with the longest uninterrupted availability, starting at ’s starting time (). The

main idea is to keep a droplet stored in a single location as long as possible since this

1 Given a list of path leaders:

2 Sequencing graph containing path leader PathNodes:

3

4 for ()

5 ;

6 if ()

7 Create new PathNode, , containing Node ;

8 Add to , insert into

9 else // Traverse path

10 ;

11 while ()

12 ; // n’s eligible Children

13 ; // n’s ineligible Children

14 if () // Split

15 if ()

16 Add to , add to ;

17 for ()

18 Create new PathNode, , containing Node ;

19 Add to , insert into

20 else if ()

21 if ()

22 Add to , add to ;

23 else

24 Create new PathNode, , containing Node ;

25 Add to , insert into

26 end if

27 if ()

28 ;

29 ;

30 else

31 ;

32 end while

33 end if
34 end for

35 return

96

minimizes the number of times a droplet needs to be routed. Next, in Line 7, if there is

more than one potential module location to choose from, GetClosestModLoc() selects

the module location with the minimum distance to the storage node’s already-bound

parent or child, reducing any necessary routing lengths. Distance is computed as the

Manhattan Distance between the top-left corners of the potential module location and the

parent’s/child’s module location. Finally, if the selected module location was not free

long enough to cover the entire length of , it is split and the second half is added to

 to be bound later (Lines 8-10).

Figure 3-11: Pseudocode for the SelectModuleLocations() function.

3.4.2.2.3 - Binding Storage To Holders

Binding of storage nodes into storage holders is performed differently than in the

left-edge binder. In the left edge binder, the minimal number of storage holders is created

each time-step and each bound to a free module location (first free location in the list is

selected if there is more than one available location); storage nodes (droplets) are then

bound to a storage holder’s location with no concern to the droplet’s location. Path binder

differs in that it first binds each storage node to a particular module location, and then

creates storage-holders to accommodate these storage nodes. Thus, if resources permit, it

1 Given a list of storage operations:

2

3 while ()

4 ;
5 New List of ModuleLocations: ;

6 ;

7 ;

8 if ()

9 ;

10 Add to ;

11 end if

12 end while

97

is possible to have more than one module location being used to store less than

droplets. This uses more space (which would otherwise be unused) in exchange for

spatial locality, which results in shorter droplet routes in the next stage.

Figure 3-12 presents pseudocode for the BindStorage-ToHolders(_) function

(Figure 3-9, Line 26). Instead of adding further pseudocode,

Figure 3-12 contains links (a-k) to pictorial transformations (Figure 3-13) to more-

clearly explain the binding algorithm. Storage nodes are passed in and are already sorted

by module location (Line 1); holders are created by examining the storage nodes in one

location at a time (Line 4).

The algorithm attempts to bind each storage node, , to any of the already-existing

holders, (Lines 9-44), already created for that location (initially there are none). It does

this by examining each holder’s position relative to the storage node currently being

examined. For example, case (a) shows the case where there are no holders for that

module location; thus, Figure 3-13 illustrates that a new holder, , is created to contain .

Lines 12-43 detail how storage is handled when there are holder nodes in existence. In

these cases, may overlap portions of one or more holders, and thus, the algorithm binds

portions of , from to , until the entire storage node is bound (possibly

being split in the process) to some number of storage holders.

Figure 3-12 shows that we hold a running-start variable () to denote that any

portion of a storage node before has already been bound. Figure 3-13 shows how

much of the storage node is bound in each case by examining the before/after positions of

the running-start (RS).

98

Examining Figure 3-12 and Figure 3-13, (b-c) handle the cases when a storage

node’s unbound portion begins before a holder; (d-f) handle the cases when a storage

node’s unbound portion begins at the same time as a holder; (g-i) handle the cases when a

storage node’s unbound portion begins in the middle of a holder. Finally, (j-k) handle the

cases when the storage node’s unbound portion starts after the last holder. If none of

these cases apply, is compared against the next holder until a case does apply.

In Figure 3-13, storage and holder nodes named with suffixes (Pre, Beg, End and

Post) show that new nodes were created during the binding process. In these cases, the

original nodes in question (or) may have been shortened in length. A node’s suffix

(e.g.) describes its position in relation to the original node with the name

of the prefix (). For example, as seen in Figure 3-13(b) (Figure 3-13(j)),

after binding, a new node called is created and exists entirely before

(after) ’s original position before binding; likewise, a node called is one

that spans a time-range, after binding, that was originally spanned by the beginning (end)

of the pre-bound .

99

Figure 3-12: Pseudocode for the BindStorageToHolders() function (Figure 3-9, Line 26) with

references (a-k) to pictorial transformations in.

1 Given lists of storage nodes, sorted by module location: storageByModLoc[]
2 List of holder nodes, sorted by module location: holdersByModLoc[] = Ø
3
4 for each (ModuleLocation ml)
5 List holders = holdersByModLoc.at(ml)
6 List stores = storageByModLoc.at(ml)
7 sortByStartThenEnd(stores)
8
9 for each (s in stores)
10 if (no holders in holders)
11 (a)
12 else // holders already exist
13 int rStart = s.start // Running start for s
14 while (rStart < s.end)
15 Node h = holders.getNext();
16 if (rStart < h.start) // Starts before h
17 if (s.end ≤ h.start) // s & h do not overlap
18 (b)
19 else // s & h overlap
20 (c)
21 else if (rStart == h.start) // Starts at same time as h
22 if (s.end < h.end) // s ends in middle of h
23 (d)
24 else // s ends at h
25 (e)
26 else // s ends after h
27 (f)
28 else if (h.start < rStart < h.end) // Starts in middle of h
29 if (s.end > h.end) // s extends past h
30 (g)
31 else if (s.end == h.end) // s ends with h
32 (h)
33 else if (s.end < h.end) // s encompassed by h
34 (i)
35 else if (rStart ≥ h.end AND holders.hasNext() == false)
36 // rStart starts as or after h ends AND no more holders
37 if (rStart > s.start) // Part of s already bound
38 (j)
39 else
40 (k)
41 end rStart if
42 end while
43 end holders if
44 end stores for
45 end ModuleLocation for

100

Figure 3-13: (a-k) Transformations that take place at the corresponding times in the pseudocode (see

Figure 3-12). RS denotes the rStart (running start) variable. An alignment of a storage (gray box)

and holder (white box) node indicate that the storage node is bound to the overlapping holder node

(after binding).

101

3.4.3 - ROUTING

To complete the synthesis flow, we use a simplified version of an existing droplet

router by Roy [66]. We created a number of routing methods that restricted routes to the

cells in between modules, but found that Roy’s maze-routing approach produced shorter

routes in only a few more milliseconds of computation time compared to the alternatives.

As in Roy’s router, we use Soukup’s fast maze router [70] to produce sequential routes

for droplets and then compact the routes together, adding stalls in the middle of the routes

to avoid droplet interference.

The routing algorithm that we have implemented here, by Pranab Roy et al., does not

support rip-up and re-route. We chose this algorithm because it offers a good tradeoff

between runtime and route quality. Roy’s algorithm works in two phases: (1) Compute

routes for all droplets using a variation of Soukup’s VLSI routing algorithm (initially

assuming that droplets are routed one-by-one) and (2) Use a greedy algorithm to

“compact” the droplets so that they can be routed concurrently without interfering. The

routes are “compacted” in time, not space, and the pathways chosen in Step (1) are never

changed.

In principle, Step (2) could be improved by adding the capability to rip-up and re-

route certain droplet pathways, but that would require a longer runtime. Since our focus is

online synthesis, where a premium is placed on runtime, we determine Roy’s algorithm

to be a reasonable solution. In the online context, the extra time spent performing these

computations would be greater than the savings in execution time that is obtained from

shorter routes.

102

The router receives a scheduled and placed DAG, from the placer. Throughout the

routing process, all droplets in motion must maintain static and dynamic spacing

constraints to prevent interference, as shown in Figure 1-8. Droplet routes are computed

one routing sub-problem at a time. As seen in Figure 3-3, a routing sub-problem (or

phase) is the problem of routing a number of droplets from their source (input or module)

to their destination (module or output); routing sub-problems occur between the end of

one time-step and the beginning of the subsequent time-step.

During a routing sub-problem, blockages are created and must be avoided. For a

particular routing sub-problem , any persisting module, , that is performing operations

(i.e.,) is considered a blockage (including its interference

region). In addition, for each droplet , the source and target (including their

interference regions, a 3x3 blockage) for any droplet also being routed during the same

sub-problem are considered as blockages for . Because of the virtual topology, the

sources/targets for all will never interfere with , and thus, deadlock-freedom is

guaranteed.

For a specific sub-problem, individual routes are first computed for each droplet

using Soukup’s fast maze routing algorithm [70]. Soukup’s maze router works by routing

around blockages; it routes straight to its destination until it hits a blockage (e.g., existing

module or droplet), at which point it attempts to route around it.

We do modify Roy’s router, however, taking advantage of the virtual topology to

avoid deadlock (i.e. when droplets form a dependency cycle and cannot move forward

until one of the droplets in the dependency cycle concedes).

103

Route compaction is the process of taking a number of sequential routes and causing

the droplets to move in parallel at the same time; however, the original routes are not

created with concern to other droplet routes and caution must be taken when compacting

to prevent routes from intersecting in time and space. When compacting routes, droplets

must avoid interference by obeying the static and dynamic constraints described in

‘Section 1.3.3 - Droplet Routing’.

It is possible that deadlock may occur during compaction if two (or more) droplets

are waiting for each other to move. In this case, stalling cannot resolve the deadlock (e.g.

consider the case where two droplets are attempting to enter the same cell but cannot

because it would cause a head-on collision).

Roy’s router attempts to recover from deadlock by moving one of the droplets

backward [66]. We simplify the process by taking advantage of our virtual topology.

With our module synchronization, described in ‘Section 3.3.1 - Module Topology and

Synchronization’, droplets have designated sources (module exits) and destinations

(module entries) that do not interfere with any other sources and destinations in a given

time-step (i.e. a droplet source will never interfere with another droplet’s destination).

Thus, a droplet can stay at its source as long as necessary, until all other droplets are

safely off its path, and then commence its route. By employing this method, we are

guaranteed to avoid deadlock.

With this in mind, the router keeps track of the number of stalls added to any route .

If the number of stalls added to route reaches some threshold, , all of the

stalls added to any route thus far in the sub-problem are removed. Then, the entire sub-

104

problem is compacted again, except this time, stalls are added to the beginning of the

routes instead of the middle. In this case, droplets do not leave the safety of their source

cell until they are guaranteed an unobstructed path in space and time to their destination.

Consider Figure 3-14 in which droplets 1 and 2 are being routed from their sources

(S1 and S2) to their target cells (T1 and T2). As seen in Figure 3-14(a), if the routes start

at the same time, deadlock will occur at cycle 3 as droplet 1, at cell (4, 4), and droplet 2,

at cell (7, 4), cannot move forward without merging. No amount of mid-route stalls will

resolve this deadlock since they are heading straight toward each other; it is not a matter

of allowing one droplet to pass. Figure 3-14(b) shows that if droplet 2 is allowed to stay

in its source until droplet 1 is safely off its route, droplet 1 can reach its target. Since the

cells around S2 are considered as blockages to droplet 1, droplet 2 is safe to wait at S2 as

long as necessary because droplet 1 will never attempt to pass through that area, even if

its destination is to the east of S2.

Figure 3-14: Droplets 1 and 2 are traveling from source 1 and 2 (S1/S2) to target 1 and 2 (T1/T2),

respectively. The red and blue (blue also underlined for clarity) numbers are time-stamps for

droplets 1 and 2, respectively); (a) shows that deadlock can occur when routes 1 and 2 are compacted

and stalls are added mid-route; (b) shows that both routes are safely completed if droplet 2 stalls at

its source location until droplet 1 is safely out of the way.

Adding stalls to the beginning of a path will always work and will never result in

deadlock, as can occur when inserting stalls mid-route; however, we discovered

105

empirically that inserting stalls mid-route tends to yield shorter routes, and rarely results

in deadlock. Thus, we employ the mid-route-stall compaction method first and revert to

the pre-route-stall compaction method only when a deadlock occurs.

3.5 - EXPERIMENTS

In this section, we present experimental results evaluating the left-edge binder, path-

binder, topology spacing and comparisons to traditional, fast, chaotic placers.

3.5.1 - BENCHMARKS

We used three benchmark families: PCR, in-vitro diagnostics, and a protein assay

(see Table 3-1), whose base DAGs are detailed in the Appendix; we also used the

provided module libraries to obtain operation timings. We used a 4×2 mixing times (3s)

for all PCR mixing operations. In-vitro diagnostics is a family of assays that mixes and

detects up to 4 samples with 4 reagents (e.g., up to 16 mix-and-detect operations). We use

the 5 in-vitro assays, along with mixing/detection times, as listed in Table 1 of ref. [73].

We also use the protein-split benchmark, described in ref. [33], which represents the

traditional protein assay with varying levels of splitting from 1 to 7 (the traditional

protein has 3 levels, with 2
3

= 8 output droplets); all operation timings are the same as the

protein assay. These assays are used as large problem instances to push the synthesis

flow’s capabilities. For the protein assay, we used 4×2 dilution times (5s) and 4×2 mixing

times (3s) for all dilute and mixing operations, respectively; all 2-input, 2-output dilute

operations in the protein assay were implemented using a mix operation, followed by a

split operation, which took 5s in total.

106

Assay Benchmarks

Benchmark
Number of Operations

Dispense Time
Inputs Outputs Detects Mix/Split

PCR 8 1 0 7 2
InVitro1 8 4 4 4 2
InVitro2 12 6 6 6 2
InVitro3 18 9 9 9 2
InVitro4 24 12 12 12 2
InVitro5 32 16 16 16 2
ProteinSplit1 12 2 2 12 2
ProteinSplit2 24 4 4 26 2
ProteinSplit3 48 8 8 54 2
ProteinSplit4 96 16 16 110 2
ProteinSplit5 192 32 32 222 2
ProteinSplit6 384 64 64 446 2
ProteinSplit7 768 128 128 894 2

Table 3-1: Table of benchmarks showing the number of different operation types and dispense times.

Mixing Module Library
Mix Module Dimensions

(without interference region)
Mix Module Dimensions

(with interference region)
Mixing Time

2×2 4×4 10s
4×1 3×6 5s
3×2 5×4 6s
4×2 6×4 3s

Table 3-2: Module library for mix operations for PCR and ProteinSplit assays, repeated from ref.

[74] (no longer available online).

We assume a droplet actuation frequency of 100 Hz [88] and all droplet input times

are assumed to be 2s in length. The ProteinSplit assays in Experiments 1 and 2 were all

scheduled using path scheduler [33]. All assays in Experiment 3 were scheduled with list

scheduler [75]. Furthermore, although the virtual topology uses 4×2 mix and dilution

times, it still uses 4×3 modules for module synchronization purposes; the 4×2 module

was the largest/fastest module (see Table 3-2) that would fit inside our standard 4×3

module. The free placer in Experiment 3 uses 4×2 mixing times in a 4×2 module since it

does not need the extra space for module synchronization.

107

3.5.2 - IMPLEMENTATION DETAILS

All code was implemented in C++ using the University of California, Riverside's

(UCR's) DMFB Synthesis Framework [27]. We evaluated performance on a 64-bit

Windows 7 desktop PC, with 4GB of RAM and an Intel Core i7™ CPU operating at

2.8GHz. This platform represents a typical use case for a controlled laboratory setting.

3.5.3 - EXPERIMENT 1: LEFT-EDGE BINDING VS. PATH BINDING

We first compared the left-edge binder with the path binder, both described in

‘Section 3.4.2 - Placement’, on a 15W×19H DMFB with the basic topology described

in Figure 3-1 with 4×3 modules such that 6 modules could safely be placed onto the

DMFB. The objective was to experimentally verify that the use of path binder leads to

shorter routes and algorithmic times, despite the seemingly-added complexity of path

binder and its pre-processing computations. We evaluate the two algorithms on the

ProteinSplit family of assays, as they provide increasingly-larger problem instances as

the number of split-levels is increased from 1-7 (14 nodes to 1022 nodes).

Table 3-3 shows the results for left-edge and path binding. For ProteinSplit1-5, the

problem instances are too small to really see a difference in computation time. However,

as the assays grow larger (ProteinSplit6-7) path binder’s improvements are clearly seen

since it produces a valid binding 10× faster than the left-edge binder.

Table 3-3 also shows the total length of the droplet routes generated by the router

stage (described in ‘Section 3.4.3 - Routing’) when given the bindings for each

benchmark. The results show that the routing lengths are shorter for all but the smallest

benchmark (ProteinSplit1), saving up to 3.8s on the largest assay. It should also be noted

108

that, although not seen in Table 3-3, the computation time for routing is decreased due to

the spatial enhancements of path binder; from ProteinSplit1-7, the router saves from 2ms

to 6.4s, respectively, further adding to the time savings when using path binder. For the

remainder of this work, we use path binder as our binder of choice.

Left-Edge Binding vs. Path Binding

Benchmark

Left-Edge Binding Path Binding

Comp. Time (ms) RL (s) Comp. Time (ms) RL (s)

ProteinSplit1 0 1.10 0 1.22
ProteinSplit2 0 3.42 0 3.18
ProteinSplit3 0 7.57 0 6.83
ProteinSplit4 1 17.02 0 14.23
ProteinSplit5 3 36.99 1 29.68
ProteinSplit6 21 73.49 2 57.43
ProteinSplit7 99 147.39 9 108.76

Table 3-3: Results showing the route lengths (RL) and computation times for left-edge and path

binding performed on seven ProteinSplit (PS) benchmarks on a 15W×19H DMFB.

3.5.4 - EXPERIMENT 2:TOPOLOGY EXPLORATION

Here, we explore several topological configurations and the effects on routing.

Figure 3-15 shows three different configurations with horizontal routing channels

(HRCs) interspersed at varying regularities between vertical groups of modules. An HRC

is a group of contiguous horizontal cells that extends from side to side and will never be

occupied by a module or its interference region. Figure 3-15(a) shows the tightest

configuration, which is the case where there are no HRCs. Figure 3-15(b) and (c)

illustrate the cases where there is a single HRC between every two modules and every

module, respectively. The design seen in Figure 3-15(c) allows for maximum routability

and provides the fewest blockages (at the cost of using more space). Figure 3-15(a) is the

tightest design (with the most blockages for routing); Figure 3-15 (b) presents a

compromise between the two.

109

Figure 3-15: Three different topologies showing modules stacked vertically (2W×4H) with (a) no

horizontal routing channels (HRC, the white cells between modules) between modules, (b) 1 HRC

between every 2 modules and (c) 1 HRC between every module.

In Table 3-4 and Table 3-5, we show how the topologies affect schedule length and

routing times. Table 3-4 presents results for the ProteinSplit assays when the DMFB size

is fixed. This shows that certain topologies, which make less room for routing, can fit

more modules in some instances. For example, as seen in Table 3-4, the tight topology

with no HRCs (similar to that seen in Figure 3-15(a)) could fit 10 modules on a

15W×23H DMFB, while the topology with one HRC between each module (similar to

that seen in Figure 3-15(c)) could only fit 6 modules. The results are clearly seen in that,

as the number of modules increases, the schedule lengths are reduced.

Table 3-5 gives results for the ProteinSplit assays when the number of resources are

fixed (8 modules), in order to show the results on routing. In this case, the DMFB

topologies and sizes are exactly those seen in Figure 3-15. The purpose of the HRCs is to

create shortcuts for droplets that must otherwise travel all the way to the north/south

110

border and around the entire stack of modules to get to its destination (the extreme cases)

if all modules are busy. As seen in Table 3-5, the most compact topology (with no

HRCs) produces the shortest overall routes for every benchmark. Thus, these results

show that the elimination of occasional worst-case routing situations does not offset the

constantly shorter distances droplets travel between modules in the most compact

topology with no HRCs. Furthermore, as stated in ‘Section 3.3 - Virtual Topology’,

droplets can cut through inactive modules (essentially creating a temporary HRC) to

reduce routing times. Hence, Table 3-4 and Table 3-5 show that the topology with no

HRCs (Figure 3-15(a)) uses the least space (which can lead to greater utilization and

shorter schedules) and yields the shortest routing lengths.

Schedule Length for Fixed-Size DMFB (15W×23H)

HRC Spacing # Mods
Schedule Length (s) for ProteinSplit (PS) Benchmark

PS1 PS2 PS3 PS4 PS5 PS6 PS7

None 10 55 70 95 155 270 505 987
Every 2 Mods 8 55 70 108 175 317 609 1,213

Every Mod 6 55 70 119 218 418 864 1,796

Table 3-4: Results showing the number of modules that can fit and the resultant schedule lengths of

three topologies with different horizontal routing channel (HRC) spacing; each topology is placed

onto a 15W×23H DMFB.

Total Route Length for Fixed-Module-Count (8 Modules)

Benchmark
Schedule
Length (s)

Route Length (s) for HRC Spacings

None Every 2 Modules Every Modules

ProteinSplit1 55 1 1 1
ProteinSplit2 70 3 3 3
ProteinSplit3 108 7 8 9
ProteinSplit4 175 15 16 17
ProteinSplit5 317 29 30 33
ProteinSplit6 609 61 62 69
ProteinSplit7 1213 123 124 136

 15W×19H (285) 15W×21H (315) 15W×25H (375)

 DMFB Dimensions (# Electrodes)

Table 3-5: Results showing the sizes of the DMFBs and resultant route lengths for three topologies

with different horizontal routing channel (HRC) spacing; each DMFB is sized to fit 8 modules with

the given topology.

111

3.5.5 - EXPERIMENT 3: COMPARISON TO FAST FREE PLACER

In this section, we highlight the key benefits of the virtual topology and binder by

comparing Path Binding to a fast free placement algorithm known as KAMER (Keep All

Maximal Empty Rectangles) placement [10][56]. The KAMER placer works by quickly

computing all the maximal empty rectangles (MERs) (i.e. the empty rectangles which

cannot be contained within another empty rectangle) and then placing a module within

one of the MERs. We chose KAMER placement as a fair comparison because it is very

fast and used in other online synthesis works [7].

We compare the KAMER Placer (KP) to Path Binding (PB) with the virtual topology

seen in Figure 3-15(a) (no HRCs), both on an identical 15W×19H DMFB, such that 8

mixers could be accommodated. Both synthesis flows used list scheduling [75] and Roy's

maze router [66], described in ‘Section 3.4.1 - Scheduling’ and ‘Section 3.4.3 -

Routing’, respectively. The schedules, computed as input to the KAMER Placer and Path

Binder, were identical.

We experimented with two and three storage droplets (PB_2/KP_2 and PB_3/KP_3)

per module for the two methods/flows. For PB_2, storage is handled as described in

Figure 3-4 (storage enters via I1/I2 and leaves via O1/O2). For PB_3, when three

droplets were allowed to be stored per module, we allowed the router to break the module

I/O synchronization rules by allowing the third droplet to enter via O1; the two droplets

that entered via I1 and I2 remained there and also exited via I1 and I2. All modules used

by PB were 4×3 cells; KP was able to use smaller 4×2 modules since it does not need to

enforce droplet synchronization rules. For storage, KP_2/KP_3 places two/three single-

112

cell (1×1) modules (which is the common storage-module size for free placement [75])

instead of storing two/three droplets in a larger 4×2 mixing module.

Table 3-6 shows the results for 10 runs of PCR, InVitro1-5 and ProteinSplit1-6 for

PB and KP for two and three storage droplets per module; PB_2 is the solution presented

in this chapter. The first section shows that, in 10 runs, PB_2 has no failures until

ProteinSplit6, when list scheduling fails because there are not enough resources for it to

schedule such a large assay. PB_3 fails completely on routing on ProteinSplit4-6. The

third section shows the schedule length and total assay time (which includes routing); this

section shows that PB_2 and PB_3's schedules did not differ until ProteinSplit4-6. Thus,

the scheduler did not need 3 droplets per module until ProteinSplit4, showing that routing

failed for PB_3 as soon as the system attempted to actually bind three droplets to a single

module.

KP_2 shows that, even with only two storage droplets per mix module being

scheduled, placement and routing errors occur often; KP_3 shows similar results. Thus,

although allowing for three droplets per module produces better schedules, it is clear

from the results that doing so yields more congestion, making it difficult to produce valid

routing solutions for both binding and free placement. This suggests that it is unwise to

attempt scheduling more than two droplets per (4×2/4×3) mix module.

113

Path Binding (PB) with Virtual Topology VS. Kamer Placer (KP)

Assay
Scheduling/Placement/Routing

Failures in 10 Runs

Place/Route
Comp. Time (ms)

(First Success)

Schedule (top)
Assay Length (bottom)

(First Success, in seconds)

PB_2 PB_3 KP_2 KP_3 PB_2 PB_3 KP_2 KP_3 PB_2 PB_3 KP_2 KP_3

PCR - - - - 0 / 0 0 / 0 0 / 0 0 / 0
12

12.44
12

12.44
12

12.74
12

12.79

InVitro1 - - - - 0 / 0 0 / 0 0 / 0 0 / 0
15

15.64
15

15.64
15

16.49
15

16.48

InVitro2 - - - - 0 / 1 0 / 1 0 / 1 0 / 1
19

20.28
19

20.28
19

20.79
19

20.93

InVitro3 - - - - 0 / 1 0 / 1 0 / 2 0 / 2
19

20.49
19

20.49
19

21.76
19

21.9

InVitro4 - - 1 RF 1 RF 0 / 2 0 / 2 0 / 2 0 / 2
23

25.01
23

25.01
23

26.35
23

26.31

InVitro5 - - 1 RF 1 RF 0 / 3 0 / 3 0 / 4 0 / 4
29

31.48
29

31.48
29

33.54
29

32.84

ProteinSplit1 - - - - 0 / 1 0 / 1 0 / 2 0 / 2
53

53.73
53

53.73
53

54.78
53

54.76

ProteinSplit2 - - - - 0 / 4 0 / 3 0 / 4 0 / 5
63

64.83
63

64.85
63

67.95
63

67.89

ProteinSplit3 - -
3 PF,
6 RF

4 PF,
5 RF

0 / 8 0 / 8 1 / 11 1 / 10
84

88.85
84

88.81
84

94.12
84

94.33

ProteinSplit4 - 10 RF 10PF 10 PF 1 / 27 - - -
215

223.21
175

-
215

-
175

-

ProteinSplit5 - 10 RF 10 PF 10 PF 2 / 76 - - -
486

513.08
363

-
486

-
363

-

ProteinSplit6 10 SF 10 RF 10 SF 10 PF - - - -
-
-

725
-

-
-

725
-

Table 3-6: Results showing Path Binding (PB) vs. KAMER Placement (KP) with 2 and 3 storage

droplets per mixing module on a 15W×19L DMFB. The first section shows the number of

scheduling/placement/routing failures (SF/PF/RF) in 10 runs ('-' means no failures). The second

section shows the computation time of placement and routing for the first successful run ('-' means

all 10 runs were failures and no timing was measured) of each flow. The third section shows the

schedule length and the total length of the assay (which includes the routing time).

The middle section of Table 3-6 shows the synthesis times for placement and routing

of the first successful run of the 10 runs, if any existed. The results show that both placers

are extremely fast (milliseconds), with PB being slightly faster or equal to KP in all

comparable instances, making it suitable for online synthesis. Finally, as seen in the third

section of Table 3-6, when comparing PB_2 vs. KP_2 and PB_3 vs. KP_3 (since both

pairs have the same schedule), PB produces overall shorter routing times than KP since it

114

reduces the number of droplets that need to be routed by binding contiguous operations to

the same module (location) when possible.

Overall, Table 3-6 supports our decision to limit storage to two droplets per module

and shows that, even though more droplets could be placed in our modules, they cannot

be reliably routed. The results also demonstrate that, although KP uses less space for

modules, the chaotic and super-compact placements make it difficult-to-impossible for

routing. We should note that we also tried a version of KP which left additional space

around modules to improve routability; however, this configuration of KP performed

worse than the version presented in Table 3-6, often failing on placement because there

was not enough room to randomly place the modules freely with the extra space.

3.6 - CONCLUSION

The online synthesis flow introduced in this chapter can run in real-time on a typical

laboratory desktop system, as typified by the Intel i7
TM

 processor used in our

experiments. Empirically, this work has shown that a virtual topology coupled with a

binding algorithm can greatly simplify the placement problem, ease the router’s job and

lead to better droplet routes. We present a basic left-edge binder and a more-intelligent

path-based binder which bind assay operations to module locations. The first simply

computes a valid binding solution, while the latter takes spatial and temporal locality into

account to produce better solutions.

The topology is designed to facilitate basic microfluidic operations and ensure that

any droplet’s source-destination pair can be quickly computed without fail on the first try.

These features are vital in an online environment where re-computing synthesis stages

115

will be felt by the user as he or she waits. We demonstrate that a compact topology

produces better results both in scheduling and routing than sparse topologies designed to

allow more room for routing. We also show tiling modules vertically, with a width-to-

height ratio slightly below zero yields the best routing results.

116

CHAPTER 4 PIN-CONSTRAINED TOPOLOGY

4.1 - INTRODUCTION

As digital microfluidic biochips (DMFBs) have matured over the last decade, efforts

have been made both to produce general-purpose devices (i.e., non assay-specific) and to

reduce their cost. However, these two goals are typically solved as if they are mutually

exclusive and there have been no DMFB solutions that maintain flexibility and

programmability while reducing cost. Work done to generalize DMFBs typically depends

on the flexibility of individually controlled electrodes; these devices are considered

among the most costly because of the wiring complexity of independent electrodes (see

‘Section 1.3.4 - Pin-Mapping’ and ‘Section 1.3.5 - Wire Routing’). In contrast, pin-

constrained DMFBs are thought to reduce the wiring complexity by reducing the number

of external I/O pins, but diminish the flexibility of droplet coordination, limiting their use

to assay-specific chips [14][39][40][41][42][46][47][51][59][84][86][89][91][92].

CHAPTER 2 and CHAPTER 3 both present different virtual topologies to aid in

online interpretation and provide an underlying abstraction for programmability. These

virtual topologies depend on independently addressable electrodes, and thus, are only

compatible with more-expensive individually addressable and still-developing active-

matrix DMFBs. Hence, to this point in the dissertation, we have demonstrated how

virtual topologies can be leveraged toward the general-purpose goal, but not toward

reducing the cost of DMFBs.

117

In the simplest sense and in the context of DMFBs, a topology is an arrangement and

partitioning of electrodes into designated functions (e.g., droplet transport, mixing, etc.).

As discussed in previous chapters, a virtual topology is an abstract arrangement of

electrodes represented in the computing device’s memory; that is, the physical properties

of the device remain the same and each electrode can still perform each function, despite

the fact that a software construct is preventing it from doing so. In contrast, a physical

topology contains electrodes that are physically wired to perform certain functions. Thus,

the arrangement and partition is no longer a software abstraction, but a physical reality in

the DMFB.

In this chapter, we present the first physical topology specifically designed to

execute generic sequences of basic microfluidic operations. Like a virtual topology, our

physical topology designates unique electrodes and regions for operations and droplet

transportation channels; however, the physical topology does not employ an expensive

individually addressable design, but rather, an intelligently-mapped pin-constrained

design which enforces a permanent, physical location for each module and transportation

channel.

We introduce our physical topology design as the field-programmable, pin-

constrained digital microfluidic biochip (FPPC-DMFB). This design, like the virtual

topologies presented in CHAPTER 2 and CHAPTER 3, is designed to execute a generic

sequence of basic microfluidic operations, thus achieving the goal of remaining general-

purpose. However, the pin-constrained nature of our FPPC-DMFB also dictates that it is

118

inexpensive to fabricate. As a result, this chapter presents the first programmable, low-

cost DMFB.

4.1.1 - CONTRIBUTION

The contribution of this chapter is a set of pin assignment and wire routing schemes

that enable the creation of a low-cost, general-purpose pin-constrained DMFB that can

perform a generic sequence of the microfluidic operations, shown in Figure 1-3, at pre-

determined locations; this architecture is referred to as the field-programmable pin-

constrained (FPPC-) DMFB, since it can be programmed after, rather than before, it is

manufactured. We also introduce a high-level synthesis flow targeting the FPPC-DMFB,

which establishes automatic compilation, and a detailed cost model for laying out the

PCB. Although the FPPC-DMFB uses a few more pins than state-of-the-art assay-

specific pin constrained designs, we show it to be competitive with the most recent

general-purpose chips in terms of assay execution time. Our results also show that the

PCB costs for an optimized FPPC-DMFB can be significantly cheaper than the PCB

costs for a variety of application-specific pin-constrained DMFBs that have been

previously reported in the literature. These results offer new insights into the relationship

between pin count, PCB layer count, and cost.

4.2 - RELATED WORK

Early work on pin assignment focused exclusively on minimizing pin count, and did

not consider the impact of pin reduction on wire routing. Under array partitioning [84],

different groups of control pins are assigned to each partition; pre-synthesis partitioning

119

reduced droplet interface significantly, while post-synthesis partitioning completely

eliminated all droplet interferences. Broadcast electrode addressing [89] examines the

electrode activation sequence produced by a synthesis tool and identifies compatible

electrodes that can share a control input. Luo and Chakrabarty [51] introduced a general-

purpose pin assignment scheme that provably facilitates interference-free and deadlock-

free concurrent transport of up to two droplets. Quite a few papers have also been

published that optimize pin assignment in conjunction with other synthesis tasks,

especially routing [14][42][46][47][59][91].

Escape routing for PCBs routes known pins in a large array (e.g., a DMFB) to the

array perimeter [55][85]. For pin-constrained DMFBs, the escape routing problem is

extended to accommodate multi-terminal nets for control inputs that drive multiple

electrodes. To date, one paper has been published that focuses explicitly on the DMFB

escape routing problem [12], and one other optimizes the PCB layout for multiple

DMFBs that execute the same protocol concurrently in a lock-step fashion [68]. Quite a

few papers have also been published that optimize pin assignment in conjunction with

wire routing [39][40][41][86], but all of these papers focus on the design and

optimization of application-specific, rather than general-purpose pin-constrained chips.

The FPPC-DMFB introduced in this chapter is general-purpose, as opposed to being

assay-specific. In many respects, it can be viewed as a pin-constrained implementation of

a virtual topology [26][30][31]. A virtual topology segregates the surface area of a direct-

addressing DMFB into modules which perform assay operations (mixing, splitting,

storage, detection, etc.) and a network of streets that transport droplets between modules

120

and I/O reservoirs. In a direct addressing context, one criticism of virtual topologies is

that they limit the flexibility and reconfigurability of the device; however, prior work has

shown that virtual topologies enable fast online synthesis algorithms, which can

effectively respond to sensory feedback provided by the device in real-time [30][31]. Pin-

constrained DMFBs also suffer from limited flexibility and reconfigurability; thus, the

imposition of a virtual architecture in order to achieve general-purpose, as opposed to

assay-specific, device operation is a favorable innovation [29].

Chang et al. [13] introduced a pin-constrained DMFB layout that shares many

principle similarities with the FPPC-DMFB proposed here. Their device does not account

for some of the finer details of module/device synchronization and I/O addressed in this

chapter (e.g., the ability to independently load/unload droplets into modules). It is also

unclear if the layout and wiring solution is scalable to larger devices. In contrast, this

chapter presents a design variation of the FPPC-DMFB which can be routed in one PCB

layer, and can scale to arbitrary numbers of operational and storage modules.

4.3 - PIN-CONSTRAINED ASSIGNMENT

The FPPC-DMFB employs a pin assignment scheme that enables all of the basic

assay operations (Figure 1-3) to execute in a conflict-free manner. Figure 4-1 shows a

10×16 example of an FPPC-DMFB. Similar to prior work on virtual topologies

[26][30][31], the FPPC-DMFB reserves specific regions for assay operations and others

for routing. The topology contains a vertical column of mixing modules on the left

(blue/orange electrodes, 10-20) and a vertical column of modules on the right (orange

121

electrodes, 31-36) that perform splitting, storage, and detection (which requires an

external detector affixed above the module); we call these modules SSD modules.

Figure 4-1: Pin diagram for a 10×16 FPPC-DMFB which can accommodate 4 mixing modules and 6

split/store/detect (SSD) modules. Routing and mixing pins are shared; the interference region is

empty space and does not contain any electrodes. Holding and I/O electrodes are independently

wired to single control pins for flexibility and programmability.

White electrodes labeled 1-9 define the droplet routing regions, which ensure full

connectivity between all modules. I/O reservoirs can be placed anywhere along the top or

bottom of the chip. The green electrodes labeled 21-30 indicate pins that allow droplets to

enter/exit each module. An interference region (gray) surrounds each module to isolate

droplets within it from droplets in the routing region or adjacent modules. These regions

are not functional and do not contain electrodes.

The layout is designed for operation concurrency and scalability. Since routing times

are much shorter than operation times [75], we devote more pins to modules (as opposed

122

to the routing region) to allow more operations to be executed simultaneously at any

time-step. The architecture can also be lengthened or shortened in the vertical dimension

to produce a DMFB with any desired number of modules.

4.3.1 - DMFB OPERATIONS AND SYNCHRONIZATION

The following subsections show how the FPPC-DMFB implements the basic fluidic

instruction set shown in Figure 1-3.

4.3.1.1 - DROPLET TRANSPORT

Figure 4-2 shows that at least 3 pins are required to successfully transport a droplet

along a straight path; this is called a 3-phase transport bus [72]. In Figure 4-1, Pins 1-3

and Pins 7-9 control two horizontal busses; Pins 4-6 drive a vertical transport bus at the

center of the array. The FPPC-DMFB facilitates droplet transfer between horizontal and

vertical transport busses, and routable paths exist between all modules and I/O reservoirs

on the chip’s perimeter. Chips of arbitrary height can be instantiated without remapping

transport electrodes or altering the wire-routing pattern (see ‘Section 4.4.4 - Co-

optimizing Pin Assignment and Wire Routing’). The mix and SSD module hold

electrodes (Figure 4-1, Pins 17-20 and Pins 31-36, respectively) remain active during

routing to ensure that droplets within the modules do not drift.

Droplets are routed one at a time because the 3-phase transport busses do not provide

a sufficient number of unique pins to hold droplets in the routing area while other

droplets enter/exit a module. Additional cells could be added to the bus to increase

routing parallelism (e.g., Figure 4-17); however, given that routing times (milliseconds)

are much smaller than operations (seconds), they are typically considered negligible and

123

are often ignored [75]. With this in mind, we use a 3-phase bus because it simplifies the

general purpose-nature and reduces the overall cost of the device.

Figure 4-2: At least 3 repeatable pins are needed to move a droplet along a straight path without

causing the droplet to split. Electrodes with bold borders indicate electrodes being activated next

cycle.

Consider Figure 4-3 which shows our field-programmable, pin-constrained design

with two different numbers of modules and module sizes. Notice that, despite the central

vertical bus ending with Pin 5 or Pin 6, a clean transition can be made between buses

because all of the pins adjacent to the intersection are guaranteed to be unique. Thus, the

same algorithms can be used to map assays to field-programmable, pin-constrained arrays

of various sizes, given that they keep the same general form. This is important because it

would allow an end-user to design an assay and then go purchase the cheapest compatible

pin-constrained DMFB; here, compatibility means that there are sufficient resources

available (meaning mixing and SSD modules) and that the SSD modules have

appropriate detectors for the desired assay.

124

Figure 4-3: The number or size of modules can be changed and the 3-phase bus can be repeated,

regardless of array size, without causing pin-conflict at the vertical-horizontal bus intersections (bold

borders).

 (a) (b)

Figure 4-4: Moving two droplets concurrently is (a) feasible when moving in a straight path, but (b)

not always possible when moving around a bend because droplet interference can occur.

As seen in Figure 4-4(a), it is always possible to move multiple droplets along a

straight path on the 3-phase bus because there is sufficient space between repeating pin

numbers; however, Figure 4-4(b) shows that droplet interference can occur when moving

around a corner. In cycle two, if the next two pins are activated (Pin 3 and Pin 5), the

droplets will most likely merge. It would be possible to hold Pin 2 in cycle 3 such that the

top droplet would stall and avoid the droplet interference in cycle 3; however, consider

125

that droplets will only be making this transition when traveling to or from an I/O

reservoir.

Most of the opportunities to parallelize routing occur when routing between

modules. In light of this, consider Figure 4-5, which shows multiple droplets in the

central vertical routing bus. For the lower droplet to enter the lower mixing module, the

DMFB must activate Pin 20, while simultaneously deactivating Pin 4. This is possible,

but notice that the top droplet requires Pin 5 to be activated to continue downward on its

path. Activating this pin will cause two adjacent electrodes to be activated near the lower

droplet, which will result in a split. Moving the top droplet up, down or keeping it

stationary will require Pins 6, 5, or 4 to be activated in cycle 2, respectively, which will

each cause the bottom droplet to split. If Pins 4-6 are not activated, then the top droplet

will drift and the assay will not execute correctly.

Rather than deal with these complications, we choose to route droplets one-at-a-time

instead, as the impact on total assay execution time is a small percentage of the overall

time.

Figure 4-5: Multiple droplets moving through the vertical bus will result in an unintentional split

when one tries to enter a module.

126

4.3.1.2 - DROPLET DISPENSING AND OUTPUTTING

I/O reservoirs are placed above and below the top and bottom horizontal transport

buses. Each I/O reservoir has an individually controlled electrode, requiring an additional

control pin, which allows a droplet to enter/exit the chip via one of the horizontal

transport busses. These details have been omitted from Figure 4-1 to conserve space.

4.3.1.3 - MERGING/MIXING

Figure 4-6(a) illustrates a droplet (D2) entering and exiting a mixing module (M2)

without conflicting with droplets in other modules (D1, D3). At the top, D2 has reached

the routing electrode adjacent to the mixing module (M2) it will enter; D1 is stored in

mixing module M1 and D3 is stored in SSD module SSD1. All SSD module electrodes

are activated (Pins 24-26) to hold all stored droplets in place during mixing module I/O.

Activating Pin 20 (M2’s I/O cell) moves droplet D2 to a position adjacent to M2.

Activating Pin 16 draws D2 into M2, while transporting D1 to an adjacent cell within

M1. Next, all mixer hold cells (Pins 17 and 18) move D1 and D2 to identical positions

within M1 and M2, respectively. Figure 4-6(a) also shows that the electrode sequence is

simply reversed to facilitate a droplet leaving a mixing module.

127

Figure 4-6: Pin-activation sequence showing how a single droplet (D2) can enter/exit (a) mix modules

and (b) split/store/detect modules. Sequences are designed to allow a droplet to enter/exit any module

without adversely affecting droplets (D1, D3) in other modules.

Before mixing, two droplets must first merge (i.e., collide into each other). Figure

4-7 shows how a droplet (D4) merges with an existing droplet (D2) in M2 to become D5.

Once merged, the new droplet (D5, with twice the volume) is synced with D1 back to the

mixers’ hold locations (Cycle 4, Figure 4-7). Mixing can then begin, presuming that D1

is merged.

M1 and M2 perform concurrent, synchronized mixing operations by activating Pins

10-16, in sequence, starting with Pin 15 and continuing counterclockwise (i.e., Pin 15,

14, 10, 11, 12, 13, 16), followed by Pin 17 and 18 together. This permits both droplets to

complete one clockwise cycle in the mixing modules. Mixing can be paused whenever a

droplet needs to enter/exit another mixing module.

128

Figure 4-7: The electrode/pin activation sequence (from Cycle 1 to 4) that merges D4 with D2 (in

M2) to become D5 (twice the volume) and re-sync with any other droplets in mix modules (i.e., D1 in

M1).

4.3.1.4 - STORAGE, DETECTION, AND SPLITTING

SSD modules perform storage and detection (if equipped with an external detector).

Both operations require a droplet to enter an SSD module and remain in place. Figure

4-6(b) illustrates the process by which a droplet enters/exits an SSD module (SSD3)

without affecting droplets in other modules. All SSD hold electrodes are activated, except

for SSD3’s, which allows droplet D2 to enter. SSD3's I/O electrode is then activated,

followed by its hold electrode, to complete the entrance. This sequence is reversed to let a

droplet exit an SSD module.

Figure 4-8(a)-(c) illustrate droplet splitting. In cycle 1, the initial position of droplet

D2, which will be split, is on a vertical transport bus next to an SSD module’s I/O cell.

The cell on the transport bus is activated throughout the split. In cycle 2, the I/O cell is

then activated, which stretches D2 to cover both cells. Next, in cycle 3 the SSD module’s

hold cell is activated and the I/O cell is deactivated; this splits D2 into two separate

droplets: D2, on the hold cell, and D4, in the transport bus. If storage is required for D4,

then it must be routed to an available SSD module, as shown in Figure 4-8(d).

129

Figure 4-8: Pin-activation sequence for splitting a droplet (D2) and storing in split/store/detect (SSD)

modules. Sequences are designed to allow a droplet to split and store without adversely affecting

droplets (D1, D3) in other modules.

4.4 - FPPC-DMFB SYNTHESIS

This section describes the synthesis flow (Figure 1-5) that maps an assay to the

field-programmable pin-constrained DMFB.

4.4.1 - SCHEDULING

We have implemented variants of list scheduling [32][75] and path scheduling [33]

to target the FPPC-DMFB; in principle, other DMFB scheduling algorithms could be

modified as well. The most important difference is that prior schedulers treat the DMFB

as being reconfigurable, where all operations other than I/O and detection can be

performed anywhere; when targeting the FPPC-DMFB, the number of mixing and SSD

modules determine the resource limit.

For example, in Figure 4-8(d) split operations may require two SSD modules if both

droplets that are produced must be stored for any period of time. In Figure 4-9, the split

node is converted into an instantaneous split followed by two storage operations.

130

Figure 4-9: Split operations are converted to a split and two stores for synthesis.

The scheduler reserves one SSD module to address routing deadlocks, as explained

later in ‘Section 4.4.3 - Droplet Routing’. Thus, in Figure 4-1, only 5 of the 6 SSD

modules are available for storage and detection. Since only SSD modules perform storage

and each module stores at most one droplet, there is no need to transport droplets between

SSD modules during storage; thus, a stored droplet remains in a one SSD module for the

entirety of its storage lifetime.

In contrast, modules in direct-addressing DMFBs can perform all assay operations,

including storage of multiple droplets. Schedulers targeting direct-addressing DMFBs

may route stored droplets from one module to another in order to free up modules to

perform other operations [32][33][61]; this increases operational concurrency, yielding

shorter schedules, but increases the number of droplets that need to be routed.

4.4.2 - PLACEMENT/BINDING

Like Grissom and Brisk [30][32], we reduce placement to a binding problem, which

is solved using the left-edge algorithm [44]. Synthesis software targeting the FPPC-

DMFB does not bind a split operation to a module, as the split yields two immediate

storage operations (Figure 4-9). Instead, the software binds the children to the SSD

modules directly.

131

4.4.3 - DROPLET ROUTING

4.4.3.1 - ROUTE COMPUTATION

A routing sub-problem refers to the set of droplets that must be routed just before

each time-step begins [78][88]. Droplets are routed one-at-a-time. Three types of routes

must be computed: input reservoir to module, module to output reservoir, and module to

module. To route a droplet from an input reservoir to module, the router computes a

deterministic path over the horizontal and vertical busses, and applies the appropriate

module input sequence (as discussed in ‘Section 4.3.1 - DMFB Operations and

Synchronization’) when the droplet arrives; a similar approach is taken to route droplets

from modules to output reservoirs, starting with an appropriate module output sequence.

Module-to-module routing uses the vertical column in the center of the chip, applying

appropriate input/output sequences at the start/end of the route.

4.4.3.2 - DROPLET DEPENDENCIES AND DEADLOCK

Routing deadlock occurs when one or more droplets wait for resources to become

available that will never become free; for example, Figure 4-10(a) shows a cyclic

dependency involving two droplets. To break the cycle, one droplet (D3) is routed to an

empty SSD module (SSD2), as shown in Figure 4-10(b). In Figure 4-10(c), the

dependency is broken; however, droplet D3 must wait for D1 to complete its route. The

scheduler always keeps one SSD module unallocated as a routing buffer in order to

rectify any cyclic dependencies that may result from binding. The next sub-section

describes the algorithm for eliminating droplet dependencies in detail.

132

Figure 4-10: Cyclic routing dependencies can be broken by first routing a droplet in the cycle to the

routing buffer module (one of the SSD modules). Arrows indicate that the droplet at the tail end is

about to travel to the module at the head end. NOTE: Legend same as Figure 4-6.

4.4.3.2.1 - Routing Algorithm

This section elaborates on the routing process discussed in Figure 4-10 and presents

pseudocode for our detailed routing algorithm in Figure 4-11. The router receives a

scheduled and placed DAG , where vertices represent operations and edges

represent droplets that must be transferred between operations. Each vertex has a

 , which indicates the module or I/O reservoir where the corresponding operation

will take place.

Each vertex in is scheduled to begin at a certain time-step, as computed by the

scheduler. A time-step typically lasts one or two seconds and represents the time when

operations are processed by their respective modules or I/O reservoirs. When a new time-

step begins, then a new operation may start. This requires droplets to be routed to the

module that will execute the operation. Thus, we start at time-step 0 (Line 2) and repeat

the routing process for each time-step until the last scheduled operation begins (Lines 3-

23); each iteration handles one routing sub-problem (time-step).

133

1 Given sequence graph

2 int ;

3 Repeat {

4 graph ; // Dependencies

5 for ()

6 for ()

7 ;

8 end for

9

10 list ; // Connected Components

11 list ; // Strongly Connected Components

12 ;

13 ;

14 ;

15 ; //

16

17 for ()

18 for ()

19 for()

20 ;

21

22 ++;

23 } until ()

Figure 4-11: Psuedocode for route computation

First, a graph of dependencies () is created based on the location of each node that

is relevant to the current time-step (Lines 4-8). An edge (Dx, Dy) in the dependency graph

means that droplet Dx will be routed to droplet Dy’s current location, so Dy must be routed

first. As seen in Line 7, dependencies are added to the graph based on the location field

because droplets are being routed from the parents’ location to the newly-executing

node’s location.

The next step is to decompose d into its connected components (Line 12), which can

be computed using a simple recursive multi-directional, depth-first search [37].

Connected components are processed on-by-one. To simplify further discussion, we will

assume that d is composed of a single connected component.

Routing is simple if d is acyclic. Since the algorithm routes droplets one-at-a-time,

edge (Dx, Dy) indicates that Dy must be routed before Dx; otherwise, Dx would merge

134

inadvertently with Dy upon completing its route. A legal routing solution for the sub-

problem can be achieved by routing the droplets one-by-one in reverse topological order

[43]. Lines 10-20 in Figure 4-11 solve the more complicated cyclic case, which is

described next; in the simple acyclic case, Lines 11, 13, and 14 are unnecessary.

If d is cyclic, routing becomes more complicated, as a cycle means that no droplet

can complete its route without inadvertently merging with a droplet waiting at its

destination. This problem is solved by temporarily allocating DMFB resources for

storage.

The first step is to compute strongly connected components (SCCs) (Line 13) from

the connected components using Gabow’s path-based, depth-first search [24]. One minor

modification is that we only need to identify the SCCs that contain more than one node,

as single-node SCCs do not have cyclic droplet dependencies.

Once the SCCs that represent cycles are identified, the cycles must be resolved (Line

14). As demonstrated in Figure 4-10, the router randomly selects a droplet Dy from the

SCC and routes it to an empty SSD module for temporary storage, which breaks the

dependency cycle. The dependency graph d is then modified to account for the relocated

droplet’s new location: each edge of the form (Dx, Dy) is removed from d as Dx is now

free to move to its destination, since Dy has moved out of the way.

The scheduler always leaves at least one SSD module free so that there is room to

break one cycle in the SCC. If the SCC contains multiple intersecting cycles, then any

other free SSD or mixing module could be used for temporary storage. This process

135

repeats until d becomes acyclic. Once d becomes acyclic, a legal routing solution can be

found, as previously discussed.

One optimization that can reduce the extra storage requirement (not shown in Figure

4-11) is to break SCCs one-by-one. Droplets corresponding to vertices with no

predecessors in d are routed immediately, and the corresponding vertex is removed from

d. Then, an SCC is chosen that satisfies the following property: for every vertex Dx

belonging to the SCC and each outgoing edge (Dx, Dy), Dy also belongs to the SCC.

Breaking all of the cycles in this particular SCC will ensure that at least one vertex in the

updated graph d will have no successors.

The advantage of the second approach is that it reduces the need for temporary

storage resources. As an example, suppose that d has two SCCs, scc1 and scc2, and that

each requires one additional storage resource to resolve. Under the first approach, two

storage resources must be allocated in order to convert d to an acyclic graph before the

droplets can be routed. Under the second scheme, all of the droplets in scc1 will be routed

before all of the droplets in scc2, or vice-versa. Therefore, both SCCs can use the same

storage resource, so just one available module suffices. In general, if d contains k SCCs,

and scci requires mi storage modules, then the first scheme requires M1 = m1 + m2 + … mk

modules for storage, whereas, the second requires M2 = max{m1, m2, …, mk} modules.

All droplet dependency cycles encountered in the benchmarks run later in Table 4-5

were successfully resolved. The largest assay, ProteinSplit4, contains 238 nodes and

represents one of the largest and most complex microfluidic benchmark assays. Thus,

although a more complex droplet dependency problem could still occur in theory, it

136

seems unnecessary, from a practical standpoint, to devote a large number of resources to

resolving droplet dependency cycles.

4.4.4 - CO-OPTIMIZING PIN ASSIGNMENT AND WIRE ROUTING

We introduce a wire routing scheme tailored specifically to the pin mapping scheme

that defines the FPPC-DMFB. As motivation, consider a previous-published pin

assignment for a pin-constrained 15x15 assay-specific DMFB designed for the PCR

assay [89]. Figure 4-12(a) shows a 14-pin layout; Figure 4-12(b) highlights the wire

routing solution for Pin 1. In Figure 4-12(b), Pin 1 drives 9 electrodes, many of which

are on the perimeter of the chip. The wire routing solution for this one pin effectively

blocks the ability to route additional wires into the chip on the same PCB layer. Figure

4-12(c) shows a complete wire routing solution for all 14 pins; a total of four PCB layers

are required.

 (a) (b) (c)

Figure 4-12: (a) The pin-mapping for a pin-constrained DMFB for a PCR assay [89]; (b) A wire-

routing solution for Pin 1; (c) A complete 4-layer, wire-routing solution (each layer is represented by

a different color). NOTE: Gray cells do not contain electrodes.

The orthogonal capacity of a wire routing network is the number of wires that can be

routed in between the center of orthogonally adjacent electrodes. Similar to previous

137

works, we assume an orthogonal capacity of 3 wires throughout this section [39][86]; this

allows for a diagonal capacity of 6 (i.e., at most 6 wires can be routed between diagonally

adjacent electrodes). For details on how to correctly model horizontal and diagonal

capacities in escape routing, please refer to ref. [85]. All routing results for architectures

other than the FPPC-DMFB presented in this chapter were obtained using an internally

implemented multi-terminal variant of an escape routing algorithm based on negotiated

congestion [55].

Figure 4-13 presents pin mapping and wire routing solutions for two FPPC-DMFB

variants. Figure 4-13(a) presents the original pin mapping architecture [29], and Figure

4-13(b) shows the wire-routing solution obtained by the negotiated-congestion escape

router [55]. This particular variant has three vertical busses (as opposed to the one central

vertical bus shown in Figure 4-1. Four PCB layers are required for routing, as shown in

Figure 4-13(b).

Figure 4-13(c-d) depicts two of these four wire-routing layers. Wires that connect to

electrodes on the 3-phase busses must span the entire array, blocking other wires from

escaping to the perimeter on the same PCB layer. To eliminate this problem, we removed

the two side busses and use separate groups of three control pins (1-3, 4-6, 7-9) to control

the three remaining busses, as shown in Figure 4-1 and Figure 4-13(e). This yielded a

single-PCB layer wire routing solution, shown in Figure 4-13(f); we computed this

solution manually, but have implemented an algorithm to generate our solution given

different DMFB sizes as part of the automatic compilation flow.

138

 (a) (b) Original Pin-Mapping (c) (d)

(e) Enhanced Pin-Mapping (f)

Figure 4-13: The original FPPC-DMFB [29] detailing the (a) pin-mapping and (b) 4-layer wire-

routing solution; (c) layer 2 from Figure 4-13(b), showing that Pin 2 and Pin 3 from the horizontal

busses and Pin 4 from the vertical busses prevent other pins from escaping; (d) layer 3 from Figure

4-13(b), showing Pin 1 from the horizontal bus and Pin 5 from the vertical bus prevent other pins

from escaping. (e-f) The pin-mapping (same as Figure 4-1) and wire-routing solution for the

enhanced FPPC-DMFB introduced in this chapter.

Removing the left and right vertical busses may reduce the number of potential I/O

locations; if extra I/O is required, the horizontal busses at the top and/or bottom of the

chip can be extended; alternatively, mixing or SSD modules in the center of the chip

could be replaced with an I/O reservoir that is attached to the central vertical bus.

Providing independent control of the two horizontal 3-phase busses requires three extra

control pins, but reduces the PCB layers from 2 to 1.

139

Another subtle detail is that an extra horizontal row is added between the top vertical

bus and the topmost mixing and SSD modules; this extra space is needed to provide

access for control wires that drive electrodes in the center of the chip to escape, as shown

in Figure 4-13(f).

The original design assumed that Pins 7-13 (see Figure 4-13(a)) could be shared by

an arbitrary number of mixing modules, regardless of the height of the chip; however,

because of the independently controlled module hold and I/O pins (Pins 14-21 in Figure

4-13(a)), there is not enough room to extend the shared pins indefinitely without

introducing additional PCB layers to facilitate wire routing to these shared electrodes.

The solution is to limit the number of shared electrodes to groups of four continuous

mixing modules, which happens to be the number shown in Figure 4-13. For chips with

more than four mixing modules, as shown in Figure 4-14, the same basic layout and

wiring pattern shown in Figure 4-13(e) and Figure 4-13(f) must be repeated. Figure

4-14(a) shows two groups of four mixing modules, while Figure 4-14(b) shows how the

scheme can generalize to an arbitrary number of mixing modules that is not just an

integer multiple of four.

140

(a) (b)

Figure 4-14: The wire-routing model for the FPPC-DMFB generalizes to an unlimited number of

modules; each group of up to four mixing modules shares seven common pins as seen in FPPC-

DMFBs with (a) eight mixing modules and (b) 5 mixing modules.

4.5 - EXPERIMENTAL METHODOLOGY

4.5.1 - WIRE ROUTING COST ANALYSIS

Our experimental methodology and results focus on obtaining a precise cost (in

terms of US dollars) of the PCB for different DMFB architectures, including direct-

addressing, a variety of assay-specific pin-constrained architectures, and several variants

of the FPPC-DMFB presented in this chapter. Prior work has reported pin-count and the

number of PCB layers as a rough proxy for cost, but have not reported the actual cost

(price) of the PCB itself. For example, this makes it difficult to determine whether or not

it is profitable to increase the pin count if doing so reduces the number of PCB layers.

141

With real-time cost estimates, we can present a more accurate picture of these tradeoffs,

using the experimental methodology outlined here.

4.5.1.1 - COST COMPUTATION

We use Advanced Circuits’ online instant quote feature to estimate the cost of each

PCB [1]. The primary metrics that need to be set by Advanced Circuits’ cost calculator

are the PCB length and width and the number of wire-routing layers. Vias are used to

connect multiple layers, and thus it is necessary to specify the via size, along with the

wire trace spacing and size, which dictates the thickness of wire traces and the minimum

spacing between tracing. All other metrics are left at their default values. It is important

to note that wire-length does not directly affect the cost, as long as the PCB is routable

without increasing its area by adding extra space.

We assume that all DMFBs are driven by a low-cost Atmega 1284 microcontroller

with 32 general purpose I/Os (GPIOs) that can be used to address the DMFB array [2]. If

a DMFB has 32 or less pins that need to be driven, then the microcontroller can be used

without any further circuitry. However, if a DMFB has more than 32 pins, shift registers

must be used to drive the additional pins. Shift registers can be daisy chained to feed an

arbitrary number of additional inputs such that only 4 microcontroller signals can control

the shift register chain: the serial data input (SER), shift register clock input (SCK),

storage register clock input (RCK) and the reset input (SCLR). Thus, if there are more

than 32 pins, all but 28 will need to be shifted in through the 8-bit shift registers. We

assume the Fairchild 74VHC595MTC 8-bit shift register [3], which can be purchased

142

from Mouser for roughly $0.14 per unit in quantities of 2,500 [5]. Equation 4.1 shows

the number of shift registers necessary to properly drive the DMFB.

 (4.1)

The Atmega 1284 microcontroller operates at 20MHz [2], while the droplet

actuation frequency (i.e., the time it takes to transport a droplet between two adjacent

electrodes) of a typical DMFB is only 100Hz [88]. Thus, with a conservative estimate of

5 cycles per shift operation, the Atmega 1284 could load 400 pin values into the shift

registers in just 1% of the droplet actuation cycle, maintaining the integrity of the signal

needed for proper droplet transportation.

As shown in Equation 4.2, we compute the wire routing cost to be the sum of the

price of the PCB estimate from Advanced Circuits and the shift registers necessary to

connect all pins. We do not include the price of the microcontroller since this cost is

essentially a constant, irrespective of the choice of DMFB. We also do not consider the

cost of circuitry to amplify the voltage produced by the microcontroller to levels

appropriate to drive the DMFB; the voltages required vary based on underlying

technology parameters. Typical actuation voltages are in the 50-70V range [60][63]; low

voltage devices that operate at ~15V have also been reported [19][58].

 (4.2)

The wire-routing cost is primarily a function of the number of PCB layers, its area,

and wire trace width, as shown in Equation 4.3. Assuming an orthogonal capacity of 3,

the FPPC-DMFB designs described in this work can always generate a solution in a

143

single layer, as shown in Figure 4-13(f) and Figure 4-14. In all other cases, we use the

negotiated congestion escape router [55] to determine the number of layers required to

achieve a legal route. In general, using larger feature sizes (e.g., wire trace size, via size)

reduce the PCB cost estimation [1].

 (4.3)

Equation 4.4 computes the orthogonal capacity according to the metrics in Table

4-1 and diagram in Figure 4-15. For example, as seen later in Table 4-3, with an

electrode pitch of 2mm (i.e., 2mm between the center of orthogonally adjacent

electrodes), a wire trace width and spacing of 0.007in, via width of 0.014in and via

contact width of 0.024in, we compute the orthogonal capacity to be .

 (4.4)

Once the number of layers is computed, we next compute the width and height of the

PCB. Figure 4-16 shows the basic layout for estimating the dimensions of the PCB

(). As shown in Equation 4.5 and Figure 4-16, the PCB height is

simply the array’s height plus one inch; Equation 4.6 shows that, in addition to the

array’s width and a 1 inch buffer, the PCB’s width accounts for the extra space needed

for shift registers. The amount of extra space added to the PCB width depends on the

number of shift registers needed by the DMFB and is computed by Equation 4.7. In

short, shift registers are stacked vertically until there is no more room, at which point

additional columns of shift registers are added.

144

 (4.5)

 (4.6)

 (4.7)

PCB Fabrication Parameters

Feature Symbol

Electrode Pitch

Via (Hole) Width

Via (Hole) Contact Width

Wire Trace Width

Min. Space Between Wire Trace

Shift Register Width [3]

Shift Register Height [3]

Spacing Between Shift Registers

Table 4-1: PCB Fabrication Parameters.

Figure 4-15: A top-down and cross-sectional view of a PCB showing dimensions for the electrode

pitch (ELEC), via hole (V), via contact (VC), wire trace (T) and minimum wire trace spacing (VS) in

a DMFB.

145

Figure 4-16: The component layout for PCB size estimation. The electrode array is surrounded by a

0.5 inch perimeter of empty space. The PCB width is extended to add as many shift registers as

necessary.

4.6 - EXPERIMENTAL RESULTS

We implemented the FPPC-DMFB and associated synthesis algorithms in a publicly

available open-source software framework, written in C++ [27]. All experiments were

performed using a 2.8GHz Intel Core i7 CPU and 4GB RAM running a 64-bit version of

Windows 7.

4.6.1 - BENCHMARKS

We extracted pin-constrained designs for PCR, in-vitro diagnostic, protein synthesis

and multi-functional DMFBs (two versions of each, eight total) from previous DAC

papers [51][89]; these benchmarks are labeled ZHAO_XXX [89] and LUO_XXX [51],

where “XXX” is the name of one of the three assays used in their experiments (PCR,

INVITRO, PROTEIN) or a multi-functional chip that is co-designed to perform all three

of those assays (MULTI). Since the electrode layouts are identical for both of these works

(only the pin-assignment is different), we created directly addressable versions of the four

different assays, entitled XXX_DA.

146

The FPPC-DMFB design presented in this chapter attempts to reduce the number of

control pins required to achieve general-purpose, rather than assay-specific, operation.

Thus, we denote this benchmark as FPPC_4_MODULE for the 4-mixer version seen in

Figure 4-13(e) and FPPC_8_MODULE for the 8-mixer version seen in Figure 4-14(a).

We also introduce a routing-optimized FPPC-DMFB which replaces the 3-phase

horizontal and vertical routing busses with independently-addressable busses, as shown

in Figure 4-17(a). This architecture increases the number of control pins, but facilitates

concurrent droplet routing, which can improve performance.

 (a) (b)

Figure 4-17: An FPPC-DMFB variant that replaces 3-phase busses with direct addressing busses,

allowing for concurrent droplet transport: (a) pin assignment and (b) wire routing solutions.

In terms of routability, this design is scalable to an arbitrary number of mixing

modules, as shown in Figure 4-17(b), using one PCB layer. This pin-assignment is

147

named FPPC_4_DA_BUS and FPPC_8_DA_BUS for the 4- and 8-mixer versions,

respectively.

We also consider several direct-addressing DMFBs, including two versions of the

FPPC with 4 and 8 mixing modules (FPPC_4_DA and FPPC_8_DA), which use the

layouts in Figure 4-13(e) and Figure 4-14(a), respectively, but allocate a unique control

input to drive each electrode. Lastly, we include results for three direct-addressing

DMFBs having dimensions: of 15x15 (15x15_DA), 10x10 (10x16_DA), and 10x30

(10x30_DA).

Wire routing solutions for all FPPC-DMFBs, except for the directly addressable

ones, were computed as described in ‘Section 4.4.4 - Co-optimizing Pin Assignment

and Wire Routing’ (FPPC); all other DMFB wire routes were computed using a multi-

terminal implementation of an escape router based on negotiated congestion [55]. If a

pin’s wire net cannot be routed on a top-level layer, it is routed on a lower layer in its

entirety such that vias are used to connect the wire net to its corresponding electrodes and

to the external driving pin.

4.6.2 - PCB LAYERS & ORTHOGONAL CAPACITY

Next, we examine the relationship between orthogonal capacity, the number of

control pins and the number of PCB layers. The right side of Table 4-2 shows the

resultant number of PCB layers it takes to route each DMFB as the orthogonal capacity

varies from 2 to 10. The dark squares highlight the lowest orthogonal capacity that

achieves the smallest number of PCB layers for each benchmark. These results show that

16/21 ≈ 76% and 19/21 ≈ 90% of the benchmarks reach their smallest number of layers

148

when the orthogonal capacity is 3 or 4. For several of the assay-specific pin-constrained

designs (ZHAO_XXX and LUO_XXX), the minimum number of PCB layers ranges from 3

to 6.

DMFB Benchmark Description and Number of Layers Per Orthogonal Capacity
DMFB Characteristics Number of Layers

Per Orthogonal Capacity
Name

Wire Routing
Algorithm

Array Dimensions
Elecs. # Pins

X Y 2 3 4 5 6 7 8 9 10

ZHAO_PCR [55] 15 15 62 14 4 4 4 4 4 5 4 4 4
ZHAO_INVITRO [55] 15 15 59 25 4 4 3 4 4 4 4 4 4
ZHAO_PROTEIN [55] 15 15 54 27 4 3 4 4 4 4 4 4 4
ZHAO_MULTI [55] 15 15 81 32 5 5 6 6 6 5 4 5 5
LUO_PCR [55] 15 15 62 22 5 5 5 5 5 5 5 5 5
LUO_INVITRO [55] 15 15 59 21 5 5 5 5 5 5 5 5 5
LUO_PROTEIN [55] 15 15 54 21 4 4 4 4 4 5 4 4 4
LUO_MULTI [55] 15 15 81 27 6 6 6 6 6 6 6 6 7
PCR_DA [55] 15 15 62 62 1 1 1 1 1 1 1 1 1
INVITRO_DA [55] 15 15 59 59 1 1 1 1 1 1 1 1 1
PROTEIN_DA [55] 15 15 54 54 1 1 1 1 1 1 1 1 1
MULTI_DA [55] 15 15 81 81 1 1 1 1 1 1 1 1 1
FPPC_4_MODULE FPPC 10 16 82 36 2 1 1 1 1 1 1 1 1
FPPC_8_MODULE FPPC 10 30 146 65 2 1 1 1 1 1 1 1 1
FPPC_4_DA_BUS FPPC 10 16 82 61 2 1 1 1 1 1 1 1 1
FPPC_8_DA_BUS FPPC 10 30 146 104 2 1 1 1 1 1 1 1 1
FPPC_4_DA [55] 10 16 82 82 1 1 1 1 1 1 1 1 1
FPPC_8_DA [55] 10 30 146 146 1 1 1 1 1 1 1 1 1
15x15_DA [55] 15 15 225 225 3 2 2 2 1 1 1 1 1
10x16_DA [55] 10 16 160 160 2 2 1 1 1 1 1 1 1
10x30_DA [55] 10 30 300 300 2 2 1 1 1 1 1 1 1

Table 4-2: The left side gives a description of the 21 DMFB wire-routing benchmarks showing the

wire-routing algorithm used (WR Alg.), array dimensions (Array Dims.), number of electrodes (#

Elecs.) and number of control pins (# Pins). The right side shows the number of PCB layers yielded

for each DMFB as a function of orthogonal capacity, which varies from 2 to 10; dark squares

highlight the lowest orthogonal capacity which achieves the minimum number of PCB layers for each

chip.

As an example, consider ZHAO_PCR, which is shown in Figure 4-12. This

particular pin mapping requires long wires along the perimeter of the chip, which prevent

other wires from escaping on the same PCB layer; thus, additional layers are necessary.

In this case, reducing the wire size to increase more internal bandwidth (orthogonal

capacity) does not have a significant effect on the number of PCB layers. On the other

hand, converting these pin-constrained designs to direct-addressing DMFBs (XXX_DA)

149

yields single-layer routing solutions for all orthogonal capacities, although the number of

additional control pins increases from 2x to 4.4x.

The FPPC-DMFBs shown in Table 4-2 can be routed in 1 or 2 PCB layers, even

with the smallest orthogonal capacities; furthermore, FPPC_4_MODULE uses a

competitive number of pins, compared to ZHAO_XXX and LUO_XXX, indicating that the

FPPC-DMFB offers the simultaneous advantages of being general-purpose and low cost

when compared to these previously-published assay-specific designs. Further details are

discussed in ‘Section 4.6.4 - PCB Cost Results’.

4.6.3 - WIRE ROUTING COST ANALYSIS

This section analyzes the impact of different PCB design parameters on the overall

design. We vary the electrode pitch (1 mm, 2 mm, 2.54 mm), and determine an

appropriate set of parameters for each electrode size in order to minimize cost. The

following subsection translates these results into cost estimates for PCBs designed for the

DMFBs in Table 4-2.

4.6.3.1 - METRIC SELECTION

As mentioned in ‘Section 4.5.1.1 - Cost Computation’, the wire-trace

width/spacing (), smallest via size (), PCB dimensions

(,) and number of layers are the predominant factors that impact

PCB costs [1]. Table 4-2 shows that the number of layers depends on the orthogonal

capacity, which in turn is a function of the aforementioned trace and via metrics, as per

Equation 4.4.

150

Table 4-3 presents various parameter combinations that yield a range of orthogonal

capacities for 1 mm, 2 mm and 2.54 mm electrodes. Advanced Circuits’ PCB cost

estimator provides the following wire trace sizes (all in inches): 0.0025, 0.003, 0.004,

0.005, 0.006, 0.007, 0.008, 0.010 and 0.012. To achieve each orthogonal capacity, we

chose the lowest trace size and highest minimum via size and via contact size such that

 and ; these requirements were

relaxed for the smaller 1 mm electrodes (such that)

because there was not enough space to utilize such conservative size estimates.

For each electrode pitch, we select a particular set of parameters and report the

resultant orthogonal capacity. For 1 mm, estimations were not available from the

estimation calculator for orthogonal capacities of 4 and 5; it was not possible to select

parameters small enough to achieve an orthogonal capacity of 6. For 1 mm electrodes, we

conservatively selected an orthogonal capacity of 2: even as the number of layers

increases to 4, the cost is still less than a single-layer PCB with orthogonal capacity of 3.

Although our main goal is to achieve a single-layer wire-routing solution, which requires

an orthogonal capacity of 3, Figure 4-18 shows a generic two-layer solution for

FPPC_4_MODULE with an orthogonal capacity of 2 (e.g., every third wire needs to be

moved to a second PCB layer); as explained in the following paragraphs, single and dual

layer solutions are equally priced.

151

Price Estimations for Varying Numbers of Layers and Parameters of a 2”×2” PCB

Electrode Pitch Advanced Circuit Metrics

o
C

ap
 2" × 2" Price (@ 2,500 QTY)

with Varying Number of Layers
mm in

Trace
Size/
Space

Via
Size

Via
Contact

Size 1 2 3 4 5

1 0.0394

0.005 0.010 0.013 2 $1.20 $1.20 $1.73 $1.81 $2.09
0.004 0.008 0.011 3 $1.88 $1.88 $2.43 $2.52 $2.81
0.003 0.009 0.012 4 N/A N/A N/A N/A N/A
0.002 0.008 0.011 5 N/A N/A N/A N/A N/A

2 0.0787

0.008 0.028 0.038 2 $0.99 $0.99 $1.41 $1.46 $1.79
0.007 0.014 0.028 3 $0.99 $0.99 $1.41 $1.47 $1.79
0.006 0.012 0.024 4 $0.99 $0.99 $1.46 $1.53 $1.80
0.005 0.013 0.023 5 $1.10 $1.10 $1.63 $1.71 $1.99
0.004 0.008 0.026 6 $1.88 $1.88 $2.43 $2.52 $2.81

2.54 0.1000

0.012 0.030 0.040 2 $0.99 $0.99 $1.41 $1.41 $1.79
0.010 0.020 0.030 3 $0.99 $0.99 $1.41 $1.41 $1.79
0.008 0.018 0.028 4 $0.99 $0.99 $1.41 $1.46 $1.79
0.006 0.024 0.034 5 $0.99 $0.99 $1.46 $1.53 $1.80
0.006 0.012 0.022 6 $0.99 $0.99 $1.46 $1.53 $1.80
0.005 0.010 0.020 7 $1.20 $1.20 $1.73 $1.81 $2.09
0.004 0.022 0.032 8 $1.38 $1.38 $1.93 $2.02 $2.31

Table 4-3: The left side shows various metrics used for the Advanced Circuit PCB cost estimator [1]

and resultant orthogonal capacity (oCap). The right side provides corresponding price estimates

from the Advanced Circuit PCB cost estimator for a 2”×2” PCB with varying numbers of layers;

dark rows represent the selected metrics for each electrode pitch.

 (a) (b)

Figure 4-18: Two-layer wire-routing solution for FPPC_4_MODULE with an orthogonal capacity of

2; (a) Layer 1; (b) Layer 2.

152

For 2 mm and 2.54 mm electrode pitches, we select the metric set corresponding to

orthogonal capacities of 4 and 6, respectively. These are the highest capacities before the

price increases significantly for each electrode size and reductions in layer count do not

typically occur at higher orthogonal capacities, as shown in Table 4-2.

Table 4-3 reveals that, in general, as the feature sizes decrease, particularly the wire

trace size, the fabrication costs increase, and that 1- and 2-layer solutions are identical for

all cases; this is because PCBs can be printed on two sides. Table 4-3 reflects this

observation, as prices tend to jump more significantly as each odd numbered layer is

added, meaning that a new, physical dual-sided PCB layer must be added.

4.6.4 - PCB COST RESULTS

Table 4-4 presents detailed cost results for each DMFB architecture listed in Table

4-2 assuming 1 mm electrode sizes and an orthogonal capacity of 2, as discussed in the

preceding subsection. Table 4-4 reports the number of pins and the subsequent number of

required shift registers (SR), along with the PCB dimensions, which include extra space

allocated for shift registers. The PCB dimensions are fed directly into the online cost

estimator. The reported cost of the PCB is estimated under the assumption of a 4-week

deliver time (slowest) at a quantity of 2500 [1]; the shift registers cost $0.139 apiece at a

quantity of 2500 [5]. As described in Equation 4.2, the total cost is that of the PCB plus

shift registers.

153

Cost Estimates for 21 DMFBs with 1 mm Electrode Pitch and Orthogonal Capacity of 2

DMFB Details Cost ($)

DMFB Name # Pins # SR
Adjusted PCB Dim

Layers Board SR Total
X (in) Y (in)

FPPC_4_MODULE 36 1 1.7638 1.6299 2 $1.01 $0.14 $1.15
ZHAO_PCR 14 0 1.5906 1.5906 4 $1.33 $0.00 $1.33
ZHAO_INVITRO 25 0 1.5906 1.5906 4 $1.33 $0.00 $1.33
ZHAO_PROTEIN 27 0 1.5906 1.5906 4 $1.33 $0.00 $1.33
LUO_PROTEIN 21 0 1.5906 1.5906 4 $1.33 $0.00 $1.33
ZHAO_MULTI 32 0 1.5906 1.5906 5 $1.55 $0.00 $1.55
LUO_PCR 22 0 1.5906 1.5906 5 $1.55 $0.00 $1.55
LUO_INVITRO 21 0 1.5906 1.5906 5 $1.55 $0.00 $1.55
LUO_MULTI 27 0 1.5906 1.5906 6 $1.58 $0.00 $1.58
PROTEIN_DA 54 4 1.9606 1.5906 1 $1.08 $0.56 $1.64
INVITRO_DA 59 4 1.9606 1.5906 1 $1.08 $0.56 $1.64
FPPC_4_DA_BUS 61 5 1.7638 1.6299 2 $1.01 $0.70 $1.71
PCR_DA 62 5 1.9606 1.5906 1 $1.08 $0.70 $1.78
FPPC_8_MODULE 65 5 1.7638 2.1811 2 $1.16 $0.70 $1.86
MULTI_DA 81 7 2.3307 1.5906 1 $1.12 $0.97 $2.09
FPPC_4_DA 82 7 2.1339 1.6299 1 $1.19 $0.97 $2.16
FPPC_8_DA_BUS 104 10 2.1339 2.1811 2 $1.37 $1.39 $2.76
FPPC_8_DA 146 15 2.5039 2.1811 1 $1.57 $2.09 $3.66
10x16_DA 160 17 2.8740 1.6299 2 $1.37 $2.36 $3.73
15x15_DA 225 25 3.4409 1.5906 3 $2.52 $3.48 $6.00
10x30_DA 300 34 3.6142 2.1811 2 $2.94 $4.73 $7.67

Table 4-4: Wire routing costs for the 21 benchmarks, sorted in order of increasing total cost, showing

the adjusted PCB dimensions (after adding room for shift registers (SR)), number of layers and

resultant breakdown of costs (PCB and shift registers).

In Table 4-4 the DMFB chips are sorted in increasing order of cost, and the results

show that FPPC_4_MODULE is the cheapest design by at least $0.18 per board,

compared to assay-specific chips ZHAO_XXX and LUO_XXX. The FPPC_4_DA_BUS

design, which can transport multiple droplets concurrently because the 3-phase busses are

replaced by direct-addressing busses, is $0.56 more expensive than its pin-optimized

counterpart. In the following section (‘Section 4.6.5 - Performance’), we show that our

FPPC-DMFB design with serial routing is competitive with recent pin-constrained

designs, and in many cases, outperforms state-of-the-art direct addressing; thus, given

that droplet transport times are orders of magnitudes faster than operation times [75][88]

154

and that the FPPC-DMFB design with serial routing is competitive (or better) to prior

designs in terms of performance, we believe that FPPC_4_MODULE is the best overall

solution when considering price and performance.

Table 4-4 also shows that the PCB cost for many directly addressable DMFBs are

less expensive than pin-constrained counterparts. For example, even though PCR_DA is

0.4 in longer than LUO_PCR, the PCB is $0.47 cheaper because it requires fewer layers;

however, the directly addressable version requires 5 shift registers, increasing the cost of

the design to be $0.23 more expensive than LUO_PCR.

This overall trend of shift-register costs is shown in the bottom half of Table 4-4;

starting with PROTEIN_DA and looking downward, the number of pins, shift registers

and total cost are non-decreasing. Thus, it is important to minimize the pin-count;

however, it must be balanced with a reduction in the number of PCB layers, as seen

with our FPPC-DMFB, to achieve a comparably low-cost wire-routing solution.

Figure 4-19 presents the final cost estimates for each of the 21 DMFBs with 1 mm, 2

mm and 2.54 mm electrodes, using the parameters reported in Table 4-3, and the shift

register costs described previously. All estimates assumed for a 4-week delivery time and

shipment quantity of 1000 because price estimates of 2500 could not be obtained online

for all benchmarks. The benchmarks are sorted, from left to right, in order of increasing

average cost. Although there is some variation when comparing the cost between

different electrode sizes (e.g., from MULTI_DA to LUO_INVITRO, the 1 mm and 2 mm

costs decrease, while the 2.54 mm cost increases), the overall trend of increasing price

follows the average for each electrode pitch. Other than the obvious fact that bigger

155

electrodes take up more space, and thus require a larger and more expensive PCB, this

indicates that electrode pitch is not a major factor for wire-routing cost since PCB

manufacturing parameters can be adjusted to compensate for orthogonal capacity to keep

the number of layers as low as possible.

Figure 4-19: Total wire-routing fabrication costs per DMFB board, including PCB manufacturing

and shift register costs, for 21 DMFB designs utilizing 1 mm, 2 mm and 2.54 mm electrodes. The

benchmarks are sorted, from left to right, in order of increasing average cost.

For several of the benchmarks, the 1 mm boards are more expensive than their 2 mm

counterparts. Recall that shift registers are stacked vertically and that additional width is

added in the X-dimension to accommodate new columns, as necessary. Since the 2 mm

instances provide a greater PCB height () than the 1 mm instances, the 2 mm

boards sometimes require less additional space () to accommodate the extra

shift registers, which indirectly offsets the initial area cost of using larger electrodes. This

occurs, for example, for FPPC_4_DA and FPPC_8_DA. The extra cost for 15x15_DA is

due to an additional layer (3 vs. 2 layers) for the smaller 1 mm case, which is due to its

lower orthogonal capacity.

156

4.6.5 - PERFORMANCE

This section analyzes the performance of our FPPC-DMFB design when compared

to state-of-the art direct addressing (with topologies) and pin-constrained DMFBs.

4.6.5.1 - COMPARISON TO GENERAL DMFB

We first compare our implementation to the most recent programmable direct-

addressing DMFB design [31]. We run a set of 10 assays based on the PCR, in-vitro

diagnostics [73] and protein-split benchmarks [33] (see the Appendix for more details).

List scheduling [32][75] is used for PCR and in-vitro assays, while path scheduling [33]

is used to schedule the protein-split assays. Table 4-5 shows the number of seconds spent

both routing and executing assay operations; the total time is the sum of the two. Results

are also given for the number of usable electrodes (i.e., those tied to a control pin),

number of external control pins, and cost; 1mm electrodes are assumed used and the

same metrics used in Table 4-4 are used here again to compute the cost. For each design,

we start with the smallest DMFB that can fit at least 4 mixing modules and increase the

size to add more resources only if the scheduler cannot yield a schedule for the current

size; as seen in Table 4-5, for ProteinSplit3-4, the array dimensions had to be increased

to execute the assay for one or both of the DMFBs.

157

Direct-Addressing DMFB (DA) vs. Field-Programmable Pin-Constrained DMFB (FP)

Benchmarks
Array Dim.

Electrodes
Used

Pins
Routing
Time (s)

Operations
Time (s)

Total
Time (s)

Total Cost ($)

DA FP DA FP DA FP DA FP DA FP DA FP DA FP

PCR 15x11 10x16 165 82 165 36 0.4 1.4 11 11 11.4 12.4 $5.19 $1.41

InVitro1 15x11 10x16 165 82 165 36 0.6 2.2 14 14 14.6 16.2 $5.19 $1.41

InVitro2 15x11 10x16 165 82 165 36 1.0 3.2 20 18 21.0 21.2 $5.19 $1.41

InVitro3 15x11 10x16 165 82 165 36 1.4 4.7 24 19 25.4 23.7 $5.19 $1.41

InVitro4 15x11 10x16 165 82 165 36 2.0 6.1 30 23 32.0 29.1 $5.19 $1.41

InVitro5 15x11 10x16 165 82 165 36 2.4 8.1 44 29 46.4 37.1 $5.19 $1.41

ProteinSplit1 15x11 10x16 165 82 165 36 1.2 2.2 54 54 55.2 56.2 $5.19 $1.41

ProteinSplit2 15x11 10x16 165 82 165 36 2.9 5.0 102 70 104.9 75.0 $5.19 $1.41

ProteinSplit3 15x11 10x18 165 86 165 38 5.1 10.9 207 125 212.1 135.9 $5.19 $1.59

ProteinSplit4 15x15 10x30 225 146 225 65 12.7 28.5 235 151 247.7 179.5 $6.39 $7.42

Avg. Normalized FP Improvement:
(> 1 is improvement)

1.96 4.45 0.39 1.29 1.16 3.36

Table 4-5: Experimental results comparing the direct-addressing DMFB (DA) [31] with our FPPC-

DMFB (FP).

The bottom row of Table 4-5 shows the average improvement of our field-

programmable DMFB compared to the direct-addressing DMFB. We calculated this

metric by computing the improvement of FP over DA (baseline) for each benchmark and

then averaging these values over the entire set of benchmarks. Any value over 1 means

FP is an improvement. Notice that, although FP’s average routing time is 61% slower, its

average operation time is 29% faster. The shorter run times are experienced on larger

assays where storage is required; in these assays, FP takes advantage of the fact that its

storage and mixing modules are separate. Thus, FP does not have to utilize any mixers to

store droplets, leaving mixing resources free to perform more useful work which will

help complete the assay more quickly. On average, FP gains an average 16% speedup in

total execution time while reducing the cost by 3-4×.

158

4.6.5.2 - COMPARISON TO PIN-CONSTRAINED DMFBS

Table 4-6 presents results for the 8 pin-constrained DMFBs (ZHAO_XXX [89] and

LUO_XXX [51]) discussed in ‘4.6.1 - Benchmarks’. Many differences exist between

these designs and the FPPC-DMFB; most notably, they are assay specific while our

design is field-programmable. Also, they use linear array mixing modules, which have

longer latencies than the 4×2 mixers we employ in our FPPC-DMFB implementation.

Thus, the schedules are different, and it is unclear if their reported results include droplet

routing times, as their primary objective was to reduce the cost of their pin-constrained

DMFBs by reducing the pin-count. Table 4-6 is reproduced from Refs. [89].

Pin-Constrained Results
Zhao [89] vs. Luo [51]

Benchmark Array Dim.
Electrodes

Used

Pins Total Time (s)

[89] [51] [89] [51]

PCR 15x15 62 14 22 20 30

InVitro1 15x15 59 25 21 73 90

ProteinSplit3 15x15 54 26 20 150 170

Multi-Function 15x15 81 37 27 150 170

Table 4-6: Results from Zhao's [89] and Luo's [51] pin-constrained designs for chips which can run

PCR, InVitro1, ProteinSplit3 and a multi-functional chip which can run all three.

Table 4-7 reports the performance and pin-count for PCR, InVitro1, and

ProteinSplit3 for FPPC-DMFBs of varying sizes. For PCR and InVitro1, execution times

decrease as the DMFB size (and thus the number of available modules) increase,

saturating at 10×21. For larger DMFBs, performance degrades slightly due to longer

routing times from the taller vertical routing channel/bus.

159

Total Assay Times for Increasing FPPC-DMFB Array Size

Array Dim.
#Module

(Mix/SSD)
Electrodes

Used
Pins

Total Time(s)

PCR InVitro1 ProteinSplit3

10x10 2/3 52 26 18.39 18.72 -

10x13 3/4 66 30 15.50 16.90 -

10x16 4/6 82 36 12.44 16.24 196.83

10x21 5/8 100 49 12.69 16.64 197.37

10x24 6/10 116 55 12.84 16.88 197.77

Table 4-7: The three benchmark assays from Xu [82] and Luo [51] (PCR, InVitro1 and

ProteinSplit3) on various sizes of the FPPC-DMFB.

The ProteinSplit3 assay requires 5 droplets to be stored at several instances during

the assay; thus, the 10×16 array with 6 SSD modules (5 available to the scheduler) is the

smallest compatible device. The total execution time remains steady, regardless of

resources (we also tested on a 12×81 DMFB with abundant resources) at ~197s. In this

case, the total execution time is not limited by resource availability, but by the 7s droplet

dispense times (see the Appendix). It is unclear what droplet dispense times were

assumed in prior work [51][82]; reducing the dispense times to 2s instead of 7s reduces

the assay execution time to approximately 109s for the 10×24 FPPC-DMFB.

Luo and Chakrabarty’s pin assignment scheme [51] theoretically provides some

flexibility, as two droplets are guaranteed to be able to move without interfering with one

another; however, they did not provide details on how synthesis was performed, so it is

difficult to provide a direct comparison. In contrast, the different sizes of our FPPC-

DMFB reported in Table 4-7 are the same generic design, but with a different number of

resources. As seen in Table 4-5, if we pick dimensions of reasonable size (10×18), we

can run all three assays in Table 4-6, as well as others, due to the field-programmable

nature of our design.

160

4.7 - CONCLUSION

This chapter has extended the initial development of FPPC-DMFBs [29] with an

enhanced design to facilitate more efficient wire routing, and has presented the first cost

estimates, in terms of US dollars, for PCB fabrication for DMFBs. A complete synthesis

flow, which addresses architectural issues that are specific to the FPPC-DMFB, has been

presented, along with a detailed description of its general-purpose, as opposed to assay-

specific, capabilities.

We show that, in terms of performance and overall assay length, our general-purpose

FPPC-DMFB design is competitive with prior pin-constrained assay-specific DMFBs,

and in many cases, superior to state-of-the-art direct-addressing designs; we also

demonstrate that the FPPC-DMFB is less expensive than previous pin-constrained

designs, which are optimized for cost and PCB design. Thus, the flexibility provided by

the FPPC-DMFB is unmatched by prior pin-constrained DMFBs, which were optimized

for specific assays, and offers a significant advancement in terms of programmability at a

lower overall per-unit cost.

161

CHAPTER 5 CONCLUSION

In this dissertation, we presented several novel topological designs for digital

microfluidic biochips (DMFBs) and demonstrates the advantages of using both virtual

and physical topologies in the synthesis and design of droplet-based DMFBs. As

discussed in the introduction, a DMFB performs biochemical reactions, called assays, by

manipulating tiny droplets on a 2D array of electrodes. Droplets are maneuvered

orthogonally (i.e., up, down, left, right) across the surface of the electrode array, one

electrode at a time; these movements, performed in the proper sequence, form the basic

building blocks used to describe assays (e.g., mix, merge, split, transport, store, etc.).

Direct-addressing DMFBs offer the highest flexibility since each electrode is

individually addressable, which means droplets can be transported and operations can be

performed almost anywhere within the 2D plane of electrodes. In an attempt to minimize

completion time (along with other secondary metrics), most prior works employed long-

running optimization algorithms to generate a sequence of electrode activations to

perform a particular assay. Thus, given that many of these algorithms could take minutes,

hours or even days to complete, the algorithms were performed at design time and the

resultant electrode activation sequence was packaged into the DMFB as a type of

microfluidic binary. Unfortunately, the binaries produced from this static offline

compilation flow were typically deterministic in nature. Thus, DMFB devices running

these binaries had no way to respond to live feedback from error detection (e.g., an

162

uneven split of a droplet) or uncertainty (e.g., mix until solution turns green), making it

extremely difficult, if not impossible, to know if an assay completed properly.

DMFBs have already started to incorporate sensors, and reliable DMFBs of the

future will be cyber-physical systems in which software constructs must be able to

dynamically respond to live feedback from onboard hardware. Thus, instead of

optimizing algorithms for application-specific DMFBs, we aim to contribute to the

development of DMFBs that are programmable in nature and can respond to live-

feedback. Toward this goal, this work begins by presenting the idea of dynamic

interpretation in CHAPTER 2. As opposed to static offline compilation, dynamic

interpretation manages the DMFBs resources in an online environment (while the assay is

being executed). An interpreter can evaluate live feedback, perform synthesis

computations (e.g., scheduling, placement, routing), and as a result, decide how to

complete an assay in light of runtime errors and uncertainties. A number of language

constructs were introduced that allow for control flow; this allows for error handling,

uncertainty and simple if-else type statements which enable an entirely new class of non-

deterministic assays. A dynamic interpreter must perform synthesis and re-synthesis steps

(in response to live feedback) very quickly because any time spent on computations will

result in a longer completion time for the assay being executed.

In this dissertation, we defend the usage of virtual topologies for DMFB synthesis

and present several novel designs. A virtual topology utilizes the same flexible 2D array

of electrodes, but restricts operations to be performed exclusively overtop fixed groups of

electrodes, called modules; the virtual topology also requires certain electrodes to always

163

be kept free for droplet transportation (i.e., these electrodes can never be used to perform

an operation). Although CHAPTER 2 does present the basic fundamentals of a virtual

topology with an original design, CHAPTER 3 presents an optimized, novel virtual

topology. We present a complete microfluidic synthesis solution, discussing how we

solve typically-overlooked problems such as module synchronization and droplet routing

deadlock. We also demonstrate how a virtual topology prunes the search space for the

major steps of synthesis (i.e., scheduling, placement, routing), allowing for algorithms

which can generate quality solutions for these NP-complete problems in just

milliseconds, enabling dynamic interpretation with minimal computational overhead.

Our results in CHAPTER 3 show that, when compared to the long-running optimal

algorithms of past static compilation flows, our algorithms can leverage the virtual

topology to yield competitive solutions in orders-of-magnitude less time. One of the

common arguments against virtual topologies is that they limit the flexibility of the

DMFBs and that more compact designs could produce better results. Although we never

claim optimality, our results clearly show the strength of our virtual topology design

when compared to more ambitious scheduling and placement algorithms. The results

show that, in fact, other algorithms can generate more compact schedules and

placements; however, these solutions often yield failures during the droplet routing phase

because no clear path was left between each source and destination. In contrast, the

virtual topology guarantees that a valid schedule will always yield a valid placement,

routing and, in turn, a valid overall solution. Our results support these claims and

demonstrate how past methods tend to yield intermediate solutions that cause failures

164

down the road. Thus, we trade optimality in area (which often leads to droplet routing

failures) for fast algorithmic runtimes and overall synthesis reliability.

In CHAPTER 4 we present a physical pin-constrained topology to address the cost

problem of DMFBs. Classical direct-addressing DMFBs claim the greatest flexibility of

any DMFB class because each electrode is wired directly to its own microcontroller

signal and can be activated independently of any other electrode; however, this

architecture requires a high number of wires to be routed below the electrode array

(connecting electrodes to the edge of the DMFB), leading to an increasing number of

PCB layers, and ultimately, a higher fabrication cost. Pin-constrained DMFBs, in

contrast, connect a single microcontroller output to multiple electrodes. Prior to our work,

pin-constrained DMFBs were designed and optimized to execute a single or small set of

assays. This meant that, once the microfluidic device was manufactured, it could only be

used to run the particular assay or experiment it was designed to perform; however, the

primary benefit and driving factor for these pin-constrained devices is that they are

cheaper than standard direct addressing DMFBs.

We introduce the field-programmable, pin-constrained (FPPC-)DMFB, which is the

first general-purpose, pin-constrained DMFB with no assay-specific restrictions. The

FPPC-DMFB utilizes a physical topology to restrict droplet transport and generic

operations to specific regions of the DMFB, allowing for a flexible device that can

operate basic microfluidic instructions. In addition, we present intelligent pin mapping

and wire routing solutions which solve the DMFB cost problem.

165

Our results provide the first detailed cost analysis for DMFB PCB fabrication and

offer new insights on the relationship between PCB layer count, pin count and cost.

Altogether, we show that PCB fabrication costs for our new FPPC-DMFB design is less

expensive than prior pin-constrained DMFBs; furthermore, our design is much more

flexible since it can perform any sequence of generic operations instead of specific

assays. In terms of assay completion time, the results also show that the FPPC-DMFB is

competitive with prior pin-constrained designs, and often outperforms state-of-the-art

direct addressing synthesis algorithms.

As microfluidic devices mature, they continue to offer a viable platform for the

automation and miniaturization of biochemistry and could revolutionize the natural

sciences and medical fields. DMFB devices must be inexpensive, programmable and

dynamic (able to respond to live feedback) before those outside of select research labs

will begin to realize the potential of microfluidic technologies. Toward this end, we show

that both virtual and physical topologies can simplify algorithmic and DMFB hardware

complexity, allowing for general-purpose, inexpensive devices which can efficiently

respond to live feedback. In this dissertation, we contribute to the development and

ubiquitous adoption of digital microfluidic technology.

166

REFERENCES

[1] Advanced Circuits. (2014, Apr. 4). Instant Quote [Online]. Available:

http://www.4pcb.com

[2] Atmel. Atmel ATmega 1284 Microcontroller [Online]. Available:

http://www.atmel.com/devices/atmega1284.aspx

[3] Fairchild Semiconductor. 74VHC595 – 8-Bit Shift Register with Output Latches

[Online]. Available: http://www.fairchildsemi.com

[4] Microfluidics Lab at the University of California, Riverside. Digital Microfluidic

Biochip Simulator [Online]. Available: http://microfluidics.cs.ucr.edu

[5] Mouser Electronics. Fairchild Semiconductor 74VHC595MTC [Online]. Available:

http://www.mouser.com

[6] M. Alistar et al., “Synthesis of biochemical applications on digital microfluidic

biochips with operation variability,” in Proceedings of the Symposium on Design,

Test, Integration, and Packaging of MEMS/MOEMS, 2010, pp. 350-357.

[7] M. Alistar et al., “Online synthesis for error recovery in digital microfluidic biochips

with operation variability,” in Proceedings of the Symposium on Design, Test,

Integration, and Packaging of MEMS/MOEMS, 2012, pp. 25-27.

[8] A. Amin et al., “Aquacore: a programmable architecture for microfluidics,” in

Proceedings of the International Symposium on Computer Architecture, 2007, pp.

254-265.

[9] V. Ananthanarayanan and W. Theis, “Biocoder: a programming language for

standardizing and automating biology protocols,” Journal of Biological Engineering,

vol. 4, no., Article #13, Nov., 2010.

[10] K. Bazargan et al., "Fast template placement for reconfigurable computing," IEEE

Design and Test of Computers, vol. 17, no. 1, pp. 68-83, Jan., 2000.

[11] K. F. Bohringer, “Modeling and controlling parallel tasks in droplet-based

microfluidic systems,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 25, no. 2, pp. 334-344, Feb., 2006.

[12] J-W. Chang et al., “An ILP-based routing algorithm for pin-constrained EWOD

chips with obstacle avoidance,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 11, pp. 1655-1667, Nov., 2013.

167

[13] J-W. Chang et al., “Integrated fluidic-chip co-design methodology for digital

microfluidic biochips,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 32, no. 2, pp. 216-227, Feb., 2013.

[14] S. Chatterjee et al., “Multi-objective optimization algorithm for efficient pin-

constrained droplet routing technique in digital microfluidic biochip,” in

Proceedings of the International Symposium on Quality Electronic Design, 2013, pp.

252-256.

[15] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Transactions on

Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738, Jul., 2000.

[16] M. Cho and D. Z. Pan, “A high-performance droplet routing algorithm for digital

microfluidic biochips,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 27, no. 10, pp. 1714-1724, Oct., 2008.

[17] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor

interconnection networks,” IEEE Transactions Computers, vol. C-36, no. 5, pp. 547-

553, May, 1987.

[18] W. J. Dally and B. P. Towles, “Principles and practices of interconnection

networks,” Morgan Kaufmann, 2004.

[19] M. Dhindsa et al., “Reliable and low-voltage electrowetting on thin parylene films,”

Thin Solid Films, vol. 519, no. 10, pp. 3346-3351, Mar., 2011.

[20] J. Ding et al., “Scheduling of microfluidic operations for reconfigurable two-

dimensional electrowetting arrays,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 20, no. 10, pp. 1463-1468, Dec., 2001.

[21] R. Evans et al., “Optical detection heterogeneously integrated with a coplanar digital

microfluidic lab-on-a-chip platform,” in Proceedings of the IEEE Sensors

Conference, 2007, pp. 423-426.

[22] R. B. Fair et al., “Chemical and biological applications of digital-microfluidic

devices,” IEEE Design and Test of Computers, vol. 24, no. 1, pp. 10-24, Feb., 2007.

[23] S-K. Fan et al., “Manipulation of multiple droplets on an N×M grid by cross-

reference EWOD driving scheme and pressure-contact packaging,” in Proceedings

of the IEEE MEMS Conference, Kyoto, Japan, 2003, 694-697.

[24] H. Gabow, “Path-based depth-first search for strong and biconnected components,”

Information Processing Letters, vol. 74, no. 3-4, pp. 107-114, May, 2000.

168

[25] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” Journal of the ACM

1, vol. 41, no. 5, pp. 874-902, Sep., 1994.

[26] E. J. Griffith et al., “Performance characterization of a reconfigurable planar-array

digital microfluidic systems,” Design Automation Methods and Tools for

Microfluidic-Based Biochips, Springer-Verlag, pp. 329-356.

[27] D. Grissom et al., “A digital microfluidic biochip synthesis framework,” in

Proceedings of the International Conference on VLSI, Santa Cruz, CA, 2012.

[28] D. Grissom et al., “Interpreting assays with control flow on digital microfluidic

biochips,” ACM Journal on Emerging Technologies in Computing Systems, vol. 10,

no. 3, Article #24, Apr., 2014.

[29] D. Grissom and P. Brisk, “A field-programmable pin-constrained digital microfluidic

biochip,” in Proceedings of the Design Automation Conference, Austin, TX, 2013.

[30] D. Grissom and P. Brisk, “A high-performance online assay interpreter for digital

microfluidic biochips,” in Proceedings of the Great Lake Symposium on VLSI, Salt

Lake City, UT, 2012, pp. 103-106.

[31] D. Grissom and P. Brisk, “Fast online synthesis of digital microfluidic biochips,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 33, no. 3, pp. 356-369, Mar., 2014.

[32] D. Grissom and P. Brisk, "Fast online synthesis of generally programmable digital

microfluidic biochips," in Proceedings of the International Conference on

Hardware/Software Codesign and System Synthesis, Tampere, Finland, 2012, pp.

413-422.

[33] D. Grissom and P. Brisk, “Path scheduling on digital microfluidic biochips,” in

Proceedings of the Design Automation Conference, San Francisco, CA, 2012, pp.

26-35.

[34] B. Hadwen et al., “Programmable large area digital microfluidic array with

integrated droplet sensing for bioassays,” Lab-on-a-Chip, vol. 12, no. 18, pp. 3305-

3313, May, 2012.

[35] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel assignment

within large apertures,” in Proceedings of the 8
th

 Workshop on Design Automation,

1971, pp. 155-169.

[36] T. Ho et al., "Digital microfluidic biochips: recent research and emerging

challenges," in Proceedings of the International Conference on Hardware/Software

Codesign and System Synthesis, Taipei, Taiwan, 2011, pp. 335-343.

169

[37] J. Hopcroft and R. Tarjan, “Algorithm 447: efficient algorithms for graph

manipulation,” Communications of the ACM, vol. 16, no. 6, pp. 372-378, Jun., 1973.

[38] T-W. Huang et al., “A fast routability- and performance-driven droplet routing

algorithm for digital microfluidic biochips,” in Proceedings of the International

Conference on Computer-Aided Design, Lake Tahoe, CA, 2009, pp. 445-450.

[39] T-W. Huang et al., “A network-flow based pin-count aware routing algorithm for

broadcast-addressing EWOD chips,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 30, no. 12, pp. 1786-1799, Dec., 2011.

[40] T-W. Huang et al., “Progressive network-flow based power-aware broadcast

addressing for pin-constrained digital microfluidic biochips,” in Proceedings of the

Design Automation Conference, San Diego, CA, 2011, pages 741-746.

[41] T-W. Huang et al., “Reliability-oriented broadcast electrode-addressing for pin-

constrained digital microfluidic biochips,” in Proceedings of the International

Conference on Computer-Aided Design, San Jose, CA, 2012, pages 448-455.

[42] T-W. Huang and T-Y. Ho, “A two-stage integer linear programming-based droplet

routing algorithm for pin-constrained digital microfluidic biochips,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,

no. 2, pp. 215-228, Feb., 2011.

[43] A. Kahn, “Topological sorting of large networks,” Communications of the ACM, vol.

5, no. 11, pp. 558-562, Nov., 1962.

[44] F. J. Kurdahi and A. C. Parker, “REAL: a program for REgister Allocation,” in

Proceedings of the Design Automation Conference, Miami Beach, FL, 1987, pp.

210-215.

[45] C. Liao and S. Hu, “Multiscale variation-aware techniques for high-performance

digital microfluidic lab-on-a-chip component placement,” IEEE Transactions on

NanoBioscience, vol. 10, no. 1, pp. 51-58, Mar., 2011.

[46] C. C-Y. Lin and Y-W. Chang, “Cross-contamination aware design methodology for

pin-constrained digital microfluidic biochips,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 30, no. 6, pp. 817-828, Jun.,

2006.

[47] C. C-Y. Lin and Y-W. Chang, “ILP-based pin-count aware design methodology for

microfluidic biochips,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 29, no. 9, pp. 1315-1327, Sep., 2010.

170

[48] R. L’Orsa et al., “Detailed droplet routing and complexity characterization on a

digital microfluidic biochip,” in Proceedings of the SPIE, Orlando, FL, 2009.

[49] L. Luan et al., “Integrated optical sensor in a digital microfluidic platform,” IEEE

Sensors Journal, 2008, vol. 8, no. 5, pp. 628-635, May, 2008.

[50] L. Luo and S. Akella, “Optimal scheduling of biochemical analyses on digital

microfluidic systems,” in Proceedings of the Conference on Intelligent Robots and

Systems, San Diego, CA, 2007, pp. 3151-3157.

[51] Y. Luo and K. Chakrabarty, “Design of pin-constrained general-purpose digital

microfluidic biochips,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 32, no. 9, pp. 1307-1320, Sep., 2013.

[52] Y. Luo et al., “A cyberphysical synthesis approach for error recovery in digital

microfluidic biochips,” in Proceedings of Design Automation and Test in Europe,

Dresden, Germany, 2012, pp. 1239-1244.

[53] Y. Luo et al., “Design of cyberphysical digital microfluidic biochips under

completion-time uncertainties in fluidic operations,” in Proceedings of the Design

Automation Conference, Austin, TX, 2013.

[54] Y. Luo et al., “Dictionary-based error recovery in cyberphysical digital microfluidic

biochips,” in Proceedings of the International Conference on Computer-Aided

Design, San Jose, CA, 2012, pp. 369-376.

[55] Q. Ma et al., “A negotiated congestion based router for simultaneous escape

routing,” in Proceedings of the International Symposium on Quality Electronic

Design, San Jose, CA, 2010, pp. 606-610.

[56] E. Maftei et al., “Tabu search-based synthesis of digital microfluidic biochips with

dynamically reconfigurable non-rectangular devices,” Design Automation for

Embedded Systems, vol. 14, no. 3, pp. 287-307, Sep., 2010.

[57] J. Melin and S. R. Quake, “Microfluidic Large-Scale Integration: The Evolution of

Design Rules for Biological Automation,” Annual Review of Biophysics and

Biomolecular Structure, vol. 36, pp. 213-231, Jun., 2007.

[58] H. Moon et al., “Low voltage electrowetting on dielectric,” Journal of Applied

Physics, vol. 92, no. 7, pp. 4080-4087, Sep., 2002.

[59] R. Mukherjee, et al., “A heuristic method for co-optimization of pin assignment and

droplet routing in digital microfluidic biochip,” in Proceedings of the International

Conference on VLSI Design, Hyderabad, India, 2012, pages 227-232.

171

[60] J. Noh et al., “Toward active-matrix lab-on-a-chip: programmable electrofluidic

control enabled by arrayed oxide thin film transistors,” Lab-on-a-Chip, vol. 12, no.

2, pp. 353-360, Dec., 2011.

[61] K. O’Neal et al., “Force-directed list scheduling for digital microfluidic biochips,” in

Proceedings of the International Conference on VLSI, Santa Cruz, CA, 2012.

[62] P. Paik et al., "Rapid droplet mixers for digital microfluidic systems," Lab on a Chip,

vol. 3, no. 4, pp. 253-259, Sep., 2003.

[63] M. G. Pollack et al., “Electrowetting-based actuation of droplets for integrated

microfluidics,” Lab on a Chip, vol. 2, pp. 96-101, Mar., 2002.

[64] H. Ren et al., “Automated on-chip droplet dispensing with volume control by

electro-wetting actuation and capacitance metering,” Sensors and Actuators B:

Chemical, vol. 98, no. 2-3, pp. 319-327, 2004.

[65] A. J. Ricketts et al., “Priority scheduling in digital microfluidics-based biochips,” in

Proceedings of Design Automation and Test in Europe, Munich, Germany, 2006, pp.

329-334.

[66] P. Roy et al., “A novel droplet routing algorithm for digital microfluidic biochips,” in

Proceedings of the Great Lakes Symposium on VLSI, Providence, RI, 2010, pp. 441-

446.

[67] P. Roy et al., “Two-level clustering-based techniques for intelligent droplet routing

in digital microfluidic biochips,” Integration, the VLSI Journal, vol. 45, no. 3, pp.

316-330, Jun., 2012.

[68] S. Roy et al., “Congestion-aware layout design for high-throughput digital

microfluidic biochips,” ACM Journal on Emerging Technologies in Computing

Systems, vol. 8, no. 3, pp. 17.1-17.23, Aug., 2012.

[69] K. Singha et al., “Method of droplet routing in digital microfluidic biochip,” in

Proceedings of the IEEE/ASME International Conference on Mechatronics and

Embedded Systems and Applications, Qingdao, China, 2010, pp. 251-256.

[70] J. Soukup, "Fast maze router," in Proceedings of the Design Automation Conference,

Las Vegas, NV, 1978, pp. 100-102.

[71] V. Srinivasan et al., “A digital microfluidic biosensor for multianalyte detection,” in

Proceedings of the International Conference on Micro Electro Mechanical Systems,

2003, pp. 327–330.

172

[72] V. Srinivasan et al. “An integrated digital microfluidic lab-on-a-chip for clinical

diagnostics on human physiological fluids,” Lab on a Chip, no. 4, pp. 310-315, May,

2004.

[73] F. Su and K. Chakrabarty, “Architectural-level synthesis of digital microfluidic-

based biochips,” in Proceedings of the International Conference on Computer Aided

Design, San Jose, CA, 2004, pp. 223-228.

[74] F. Su and K. Chakrabarty, “Benchmarks for digital microfluidic biochip design and

synthesis,” Duke Univ., Dept. of Electrical and Computer Engineering Website.

http://www.ee.duke.edu/~fs/Benchmark.pdf.

[75] F. Su and K. Chakrabarty, “High-level synthesis of digital microfluidic biochips,”

ACM Journal on Emerging Technologies in Computing Systems, vol. 3, no. 4, Article

#16, January, 2008.

[76] F. Su and K. Chakrabarty, “Module placement for fault-tolerant microfluidics-based

biochips,” ACM Transactions on Design Automation of Electronic Systems, vol. 11,

no. 3, pp. 682-710, Jul., 2006.

[77] F. Su and K. Chakrabarty, “Unified high-level synthesis and module placement for

defect-tolerant microfluidic biochips,” in Proceedings of the Design Automation

Conference, Anaheim, CA, 2005, pp. 825-830.

[78] F. Su et al., “Droplet routing in the synthesis of digital microfluidic biochips,” in

Proceedings of Design Automation and Test in Europe, Munich, Germany, 2006, pp.

1-6.

[79] K.-H. Tseng et al., “A network-flow based valve-switching aware binding algorithm

for flow-based microfluidic biochips,” in Proceedings of the Asia South Pacific

Design Automation Conference, Yokohama, Japan, 2013, pp. 213-218.

[80] Z. Xiao and E. F. Y. Young, "Placement and routing for cross-referencing digital

microfluidic biochips," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 30, no. 7, pp. 1000-1010, Jul. 2011.

[81] T. Xu et al., “Defect-tolerant design and optimization of a digital microfluidic

biochip for protein crystallization,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 29, no. 4, pp. 552-565, Apr., 2010.

[82] T. Xu and K. Chakrabarty, “Broadcast electrode-addressing for pin-constrained

multi-functional digital microfluidic biochips,” in Proceedings of Design Automation

Conference, Anaheim, CA, 2008, pp. 173-178.

173

[83] T. Xu and K. Chakrabarty, “Integrated droplet routing in the synthesis of

microfluidic biochips,” in Proceedings of the Design Automation Conference, San

Diego, CA, 2007, pp. 948-953.

[84] T. Xu et al., “Automated design of pin-constrained digital microfluidic biochips

under droplet-interference constraints,” ACM Journal on Emerging Technologies in

Computing Systems, vol. 3, no. 3, Article #14, Nov., 2007.

[85] T. Yan and M. D. F. Wong, “Correctly modeling the diagonal capacity in escape

routing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 31, no. 2, pp. 285-293, Feb., 2012.

[86] S-H. Yeh et al., “Voltage-aware chip-level design for reliability-driven pin-

constrained EWOD chips,” in Proceedings of the International Conference on

Computer-Aided Design, San Jose, CA, 2012, pages 353-360.

[87] P-H. Yuh et al., “Placement of defect-tolerant digital microfluidic biochips using the

T-tree formulation,” ACM Journal on Emerging Technologies in Computing

Systems, vol. 3, no. 3, Article #13, Nov., 2007.

[88] P-H. Yuh et al., “BioRouter: a network-flow-based routing algorithm for the

synthesis of digital microfluidic biochips,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27, no. 11, pp. 1928-1941, Nov.,

2008.

[89] Y. Zhao et al., “Broadcast electrode-addressing and scheduling methods for pin-

constrained digital microfluidic biochips,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 30, no. 7, pp. 986-999, Jul., 2011.

[90] Y. Zhao et al., “Integrated control-path design and error recovery in the synthesis of

digital microfluidic lab-on-chip,” ACM Journal on Emerging Technologies in

Computing Systems, vol. 6, no. 3, Article #11, Aug., 2010.

[91] Y. Zhao et al., “Optimization techniques for the synchronization of concurrent

fluidic operations in pin-constrained digital microfluidic biochips,” IEEE

Transactions on Very Large Scale Integration Systems, vol. 20, no. 6, pp. 1132-1145,

Jun., 2012.

[92] Y. Zhao and K. Chakrabarty, “Simultaneous optimization of droplet routing and

control-pin mapping to electrodes in digital microfluidic biochips,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31,

no. 2, pp. 242-254, Feb., 2012.

174

APPENDIX

This section contains the DAGs for each of the assay benchmarks used in the

experimental and simulation sections for CHAPTER 2, CHAPTER 3, and CHAPTER

4:

175

F
ig

u
re

 A
 -

 1
:

P
C

R
 B

en
ch

m
a

rk
;

D
A

G
 f

o
r

a
 m

ix
in

g
 t

re
e

fo
r

p
o

ly
m

er
a

se
 c

h
a

in
 r

e
a

ct
io

n
 (

P
C

R
)

a
ss

a
y

.
A

ll
 i

n
p

u
t

o
p

e
ra

ti
o

n
s

(b
lu

e)
 a

re
 2

s
a

n
d

 a
ll

m
ix

 o
p

er
a

ti
o

n
s

(o
ra

n
g

e)
 a

re
 3

s
in

 l
en

g
th

 (
a

ss
u

m
in

g
 4

x
2

 m
ix

 m
o

d
u

le
s)

.

176

F
ig

u
re

 A
 -

 2
:

In
V

it
ro

1
 B

en
c
h

m
a

rk
;

D
A

G
 f

o
r

a
n

 i
n

-v
it

ro
 d

ia
g

n
o

st
ic

s
a

ss
a

y
 w

it
h

 2
 s

a
m

p
le

s
a

n
d

 2
 r

e
a

g
en

ts
.

A
ll

 i
n

p
u

t
o

p
er

a
ti

o
n

s
(b

lu
e)

 a
re

 2
s.

A
ll

 d
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
)

a
n

d
 m

ix
 o

p
er

a
ti

o
n

s
(o

ra
n

g
e)

 a
re

 a
s

m
a

rk
ed

 (
a

ss
u

m
in

g
 4

x
2

 m
o

d
u

le
s

fo
r

m
ix

es
).

 O
u

tp
u

t
o

p
er

a
ti

o
n

s
(g

r
ee

n
)

a
re

in
st

a
n

ta
n

eo
u

s.

177

 F
ig

u
re

 A
 -

 3
:

In
V

it
ro

2
 B

en
c
h

m
a

rk
;

D
A

G
 f

o
r

a
n

 i
n

-v
it

ro
 d

ia
g

n
o

st
ic

s
a

ss
a

y
 w

it
h

 2
 s

a
m

p
le

s
a

n
d

 3
 r

e
a

g
en

ts
.

A
ll

 i
n

p
u

t
o

p
er

a
ti

o
n

s
(b

lu
e)

 a
re

 2
s.

A
ll

 d
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
)

a
n

d
 m

ix
 o

p
er

a
ti

o
n

s
(o

ra
n

g
e)

 a
re

 a
s

m
a

rk
ed

 (
a

ss
u

m
in

g
 4

x
2

 m
o

d
u

le
s

fo
r

m
ix

es
).

 O
u

tp
u

t
o

p
er

a
ti

o
n

s
(g

re
en

)
a

re

in
st

a
n

ta
n

eo
u

s.

178

 F
ig

u
re

 A
 -

 4
:

In
V

it
ro

3
 B

en
c
h

m
a

rk
;

D
A

G
 f

o
r

a
n

 i
n

-v
it

ro
 d

ia
g

n
o

st
ic

s
a

ss
a

y
 w

it
h

 3
 s

a
m

p
le

s
a

n
d

 3
 r

e
a

g
en

ts
.

A
ll

 i
n

p
u

t
o

p
er

a
ti

o
n

s
(b

lu
e)

 a
re

 2
s.

A
ll

 d
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
)

a
n

d
 m

ix
 o

p
er

a
ti

o
n

s
(o

ra
n

g
e)

 a
re

 a
s

m
a

rk
ed

 (
a

ss
u

m
in

g
 4

x
2

 m
o

d
u

le
s

fo
r

m
ix

es
).

 O
u

tp
u

t
o

p
er

a
ti

o
n

s
(g

r
ee

n
)

a
re

in
st

a
n

ta
n

eo
u

s.

179

 F
ig

u
re

 A
 -

 5
:

In
V

it
ro

4
 B

en
c
h

m
a

rk
;

D
A

G
 f

o
r

a
n

 i
n

-v
it

ro
 d

ia
g

n
o

st
ic

s
a

ss
a

y
 w

it
h

 3
 s

a
m

p
le

s
a

n
d

 4
 r

e
a

g
en

ts
.

A
ll

 i
n

p
u

t
o

p
er

a
ti

o
n

s
(b

lu
e)

 a
re

 2
s.

A
ll

 d
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
)

a
n

d
 m

ix
 o

p
er

a
ti

o
n

s
(o

ra
n

g
e)

 a
re

 a
s

m
a

rk
ed

 (
a

ss
u

m
in

g
 4

x
2

 m
o

d
u

le
s

fo
r

m
ix

es
).

 O
u

tp
u

t
o

p
er

a
ti

o
n

s
(g

r
ee

n
)

a
re

in
st

a
n

ta
n

eo
u

s.

180

Figure A - 6: InVitro5 Benchmark; DAG for an in-vitro diagnostics assay with 4 samples and 4

reagents. All input operations (blue) are 2s. All detect operations (tan) and mix operations (orange)

are as marked (assuming 4x2 modules for mixes). Output operations (green) are instantaneous.

181

Figure A - 7: ProteinSplit1 Benchmark; DAG for a protein synthesis assay in which the solution is

split 1 time. Dilution operations (5s) are represented by a 2s split (bright blue, SP) operations

followed by a 3s mix; all mixes (orange) are 3s (assuming a 4x2 module for mixes) and all input

operations are 7s. Detect operations (tan, DT) are 30s and outputs (green) are instantaneous. NOTE:

Each of the bottom 5 mixes in each of the 2
1
=2 output paths should have a split child which causes

one droplet to continue down the path and one to be output to waste so the droplet does not grow too

large to be actuated (not shown for simplicity sake).

182

 F
ig

u
re

 A
 -

 8
:

P
ro

te
in

S
p

li
t2

 B
en

ch
m

a
rk

;
D

A
G

 f
o

r
a

 p
ro

te
in

 s
y

n
th

es
is

 a
ss

a
y

 i
n

 w
h

ic
h

 t
h

e
so

lu
ti

o
n

 i
s

sp
li

t
2

 t
im

es
.

D
il

u
ti

o
n

 o
p

er
a

ti
o

n
s

(5
s)

 a
re

re
p

re
se

n
te

d
 b

y
 a

 2
s

sp
li

t
(b

ri
g

h
t

b
lu

e,
 S

P
)

o
p

er
a

ti
o

n
s

fo
ll

o
w

ed
 b

y
 a

 3
s

m
ix

;
a

ll
 m

ix
es

 (
o

ra
n

g
e)

 a
re

 3
s

(a
ss

u
m

in
g

 a
 4

x
2

 m
o

d
u

le
 f

o
r

m
ix

es
)

a
n

d

a
ll

 i
n

p
u

t
o

p
er

a
ti

o
n

s
a

re
 7

s.
 D

et
ec

t
o

p
er

a
ti

o
n

s
(t

a
n

,
D

T
)

a
re

 3
0

s
a

n
d

 o
u

tp
u

ts
 (

g
re

en
)

a
re

 i
n

st
a

n
ta

n
eo

u
s.

 N
O

T
E

:
E

a
ch

 o
f

th
e

b
o

tt
o

m
 5

 m
ix

es

in
 e

a
ch

 o
f

th
e
 2

1
=

2
 o

u
tp

u
t

p
a

th
s

sh
o

u
ld

 h
a

v
e

a
 s

p
li

t
ch

il
d

 w
h

ic
h

 c
a

u
se

s
o

n
e
 d

ro
p

le
t

to
 c

o
n

ti
n

u
e

d
o

w
n

 t
h

e
p

a
th

 a
n

d
 o

n
e

to
 b

e
 o

u
tp

u
t

to
 w

a
st

e

so
 t

h
e

d
ro

p
le

t
d

o
es

 n
o

t
g

ro
w

 t
o

o
 l

a
rg

e
to

 b
e

a
ct

u
a

te
d

 (
n

o
t

sh
o

w
n

 f
o

r
si

m
p

li
ci

ty
 s

a
k

e)
.

183

F
ig

u
re

 A
 -

 9
:

P
ro

te
in

S
p

li
t3

 B
en

ch
m

a
rk

;
D

A
G

 f
o

r
a

 p
ro

te
in

 s
y

n
th

es
is

 a
ss

a
y

 i
n

 w
h

ic
h

 t
h

e
so

lu
ti

o
n

 i
s

sp
li

t
3

 t
im

es
.

D
il

u
ti

o
n

 o
p

er
a

ti
o

n
s

(5
s)

 a
re

re
p

re
se

n
te

d
 b

y
 a

 2
s

sp
li

t
(b

ri
g

h
t

b
lu

e,
 S

P
)

o
p

er
a

ti
o

n
s

fo
ll

o
w

ed
 b

y
 a

 3
s

m
ix

;
a

ll
 m

ix
es

 (
o

ra
n

g
e)

 a
r

e
3

s
(a

ss
u

m
in

g
 a

 4
x

2
 m

o
d

u
le

 f
o

r
m

ix
es

)
a

n
d

a
ll

 i
n

p
u

t
o

p
er

a
ti

o
n

s
a

re
 7

s.
 D

et
ec

t
o

p
er

a
ti

o
n

s
(t

a
n

,
D

T
)

a
re

 3
0

s
a

n
d

 o
u

tp
u

ts
 (

g
re

en
)

a
re

 i
n

st
a

n
ta

n
eo

u
s.

 N
O

T
E

:
E

a
ch

 o
f

th
e

b
o

tt
o

m
 5

 m
ix

es

in
 e

a
ch

 o
f

th
e
 2

1
=

2
 o

u
tp

u
t

p
a

th
s

sh
o

u
ld

 h
a

v
e

a
 s

p
li

t
ch

il
d

 w
h

ic
h

 c
a

u
se

s
o

n
e
 d

ro
p

le
t

to
 c

o
n

ti
n

u
e

d
o

w
n

 t
h

e
p

a
th

 a
n

d
 o

n
e

to
 b

e
 o

u
tp

u
t

to
 w

a
st

e

so
 t

h
e

d
ro

p
le

t
d

o
es

 n
o

t
g

ro
w

 t
o

o
 l

a
rg

e
to

 b
e

a
ct

u
a

te
d

 (
n

o
t

sh
o

w
n

 f
o

r
si

m
p

li
ci

ty
 s

a
k

e)
.

184

F
ig

u
re

 A
 -

 1
0

:
P

ro
te

in
S

p
li

t4
 B

en
ch

m
a

rk
;

D
A

G
 f

o
r

a
 p

ro
te

in
 s

y
n

th
es

is
 a

ss
a

y
 i

n
 w

h
ic

h
 t

h
e

so
lu

ti
o

n
 i

s
sp

li
t

4
 t

im
es

.
D

il
u

ti
o

n
 o

p
er

a
ti

o
n

s
(5

s)

a
re

 r
e
p

re
se

n
te

d
 b

y
 a

 2
s

sp
li

t
(b

ri
g

h
t

b
lu

e,
 S

P
)

o
p

er
a

ti
o

n
s

fo
ll

o
w

ed
 b

y
 a

 3
s

m
ix

;
a

ll
 m

ix
es

 (
o

ra
n

g
e)

 a
re

 3
s

(a
ss

u
m

in
g

 a
 4

x
2
 m

o
d

u
le

 f
o

r
m

ix
es

)

a
n

d
 a

ll
 i

n
p

u
t

o
p

er
a

ti
o

n
s

a
re

 7
s.

 D
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
,

D
T

)
a

re
 3

0
s

a
n

d
 o

u
tp

u
ts

 (
g

re
en

)
a

re
 i

n
st

a
n

ta
n

eo
u

s.
 N

O
T

E
:

E
a

ch
 o

f
th

e
b

o
tt

o
m

 5

m
ix

es
 i

n
 e

a
ch

 o
f

th
e

2
1
=

2
 o

u
tp

u
t

p
a

th
s

sh
o

u
ld

 h
a

v
e

a
 s

p
li

t
ch

il
d

 w
h

ic
h

 c
a

u
se

s
o

n
e

d
ro

p
le

t
to

 c
o

n
ti

n
u

e
d

o
w

n
 t

h
e

p
a

th
 a

n
d

 o
n

e
to

 b
e

o
u

tp
u

t
to

w
a

st
e

so
 t

h
e

d
ro

p
le

t
d

o
es

 n
o

t
g

ro
w

 t
o
o

 l
a

rg
e

to
 b

e
a

ct
u

a
te

d
 (

n
o

t
sh

o
w

n
 f

o
r

si
m

p
li

ci
ty

 s
a

k
e)

.

185

F
ig

u
re

 A
 -

 1
1

:
P

ro
te

in
S

p
li

t5
 B

en
ch

m
a

rk
;

D
A

G
 f

o
r

a
 p

ro
te

in
 s

y
n

th
es

is
 a

ss
a

y
 i

n
 w

h
ic

h
 t

h
e

so
lu

ti
o

n
 i

s
sp

li
t

5
 t

im
e
s.

 D
il

u
ti

o
n

 o
p

er
a

ti
o

n
s

(5
s)

a
re

 r
e
p

re
se

n
te

d
 b

y
 a

 2
s

sp
li

t
(b

ri
g

h
t

b
lu

e,
 S

P
)

o
p

er
a

ti
o

n
s

fo
ll

o
w

ed
 b

y
 a

 3
s

m
ix

;
a

ll
 m

ix
es

 (
o

ra
n

g
e)

 a
re

 3
s

(a
ss

u
m

in
g

 a
 4

x
2
 m

o
d

u
le

 f
o

r
m

ix
es

)

a
n

d
 a

ll
 i

n
p

u
t

o
p

er
a

ti
o

n
s

a
re

 7
s.

 D
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
,

D
T

)
a

re
 3

0
s

a
n

d
 o

u
tp

u
ts

 (
g

re
en

)
a

re
 i

n
st

a
n

ta
n

eo
u

s.
 N

O
T

E
:

E
a

ch
 o

f
th

e
b

o
tt

o
m

 5

m
ix

es
 i

n
 e

a
ch

 o
f

th
e

2
1
=

2
 o

u
tp

u
t

p
a

th
s

sh
o

u
ld

 h
a

v
e

a
 s

p
li

t
ch

il
d

 w
h

ic
h

 c
a

u
se

s
o

n
e

d
ro

p
le

t
to

 c
o

n
ti

n
u

e
d

o
w

n
 t

h
e

p
a

th
 a

n
d

 o
n

e
to

 b
e

o
u

tp
u

t
to

w
a

st
e

so
 t

h
e

d
ro

p
le

t
d

o
es

 n
o

t
g

ro
w

 t
o
o

 l
a

rg
e

to
 b

e
a

ct
u

a
te

d
 (

n
o

t
sh

o
w

n
 f

o
r

si
m

p
li

ci
ty

 s
a

k
e)

.

186

F
ig

u
re

 A
 -

 1
2

:
P

ro
te

in
S

p
li

t6
 B

en
ch

m
a

rk
;

D
A

G
 f

o
r

a
 p

ro
te

in
 s

y
n

th
es

is
 a

ss
a

y
 i

n
 w

h
ic

h
 t

h
e

so
lu

ti
o

n
 i

s
sp

li
t

6
 t

im
es

.
D

il
u

ti
o

n
 o

p
er

a
ti

o
n

s
(5

s)

a
re

 r
e
p

re
se

n
te

d
 b

y
 a

 2
s

sp
li

t
(b

ri
g

h
t

b
lu

e,
 S

P
)

o
p

er
a

ti
o

n
s

fo
ll

o
w

ed
 b

y
 a

 3
s

m
ix

;
a

ll
 m

ix
es

 (
o

ra
n

g
e)

 a
re

 3
s

(a
ss

u
m

in
g

 a
 4

x
2
 m

o
d

u
le

 f
o

r
m

ix
es

)

a
n

d
 a

ll
 i

n
p

u
t

o
p

er
a

ti
o

n
s

a
re

 7
s.

 D
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
,

D
T

)
a

re
 3

0
s

a
n

d
 o

u
tp

u
ts

 (
g

re
en

)
a

re
 i

n
st

a
n

ta
n

eo
u

s.
 N

O
T

E
:

E
a

ch
 o

f
th

e
 b

o
tt

o
m

 5

m
ix

es
 i

n
 e

a
ch

 o
f

th
e

2
1
=

2
 o

u
tp

u
t

p
a

th
s

sh
o

u
ld

 h
a

v
e

a
 s

p
li

t
ch

il
d

 w
h

ic
h

 c
a

u
se

s
o

n
e

d
ro

p
le

t
to

 c
o

n
ti

n
u

e
d

o
w

n
 t

h
e

p
a

th
 a

n
d

 o
n

e
to

 b
e

o
u

tp
u

t
to

w
a

st
e

so
 t

h
e

d
ro

p
le

t
d

o
es

 n
o

t
g

ro
w

 t
o
o

 l
a

rg
e

to
 b

e
a

ct
u

a
te

d
 (

n
o

t
sh

o
w

n
 f

o
r

si
m

p
li

ci
ty

 s
a

k
e)

.

187

F
ig

u
re

 A
 -

 1
3

:
P

ro
te

in
S

p
li

t7
 B

en
ch

m
a

rk
;

D
A

G
 f

o
r

a
 p

ro
te

in
 s

y
n

th
es

is
 a

ss
a

y
 i

n
 w

h
ic

h
 t

h
e

so
lu

ti
o

n
 i

s
sp

li
t

7
 t

im
es

.
D

il
u

ti
o

n
 o

p
er

a
ti

o
n

s
(5

s)

a
re

 r
e
p

re
se

n
te

d
 b

y
 a

 2
s

sp
li

t
(b

ri
g

h
t

b
lu

e,
 S

P
)

o
p

er
a

ti
o

n
s

fo
ll

o
w

ed
 b

y
 a

 3
s

m
ix

;
a

ll
 m

ix
es

 (
o

ra
n

g
e)

 a
re

 3
s

(a
ss

u
m

in
g

 a
 4

x
2
 m

o
d

u
le

 f
o

r
m

ix
es

)

a
n

d
 a

ll
 i

n
p

u
t

o
p

er
a

ti
o

n
s

a
re

 7
s.

 D
et

ec
t

o
p

er
a

ti
o

n
s

(t
a

n
,

D
T

)
a

re
 3

0
s

a
n

d
 o

u
tp

u
ts

 (
g

re
en

)
a

re
 i

n
st

a
n

ta
n

eo
u

s.
 N

O
T

E
:

E
a

ch
 o

f
th

e
 b

o
tt

o
m

 5

m
ix

es
 i

n
 e

a
ch

 o
f

th
e

2
1
=

2
 o

u
tp

u
t

p
a

th
s

sh
o

u
ld

 h
a

v
e

a
 s

p
li

t
ch

il
d

 w
h

ic
h

 c
a

u
se

s
o

n
e

d
ro

p
le

t
to

 c
o

n
ti

n
u

e
d

o
w

n
 t

h
e

p
a

th
 a

n
d

 o
n

e
to

 b
e

o
u

tp
u

t
to

w
a

st
e

so
 t

h
e

d
ro

p
le

t
d

o
es

 n
o

t
g

ro
w

 t
o
o

 l
a

rg
e

to
 b

e
a

ct
u

a
te

d
 (

n
o

t
sh

o
w

n
 f

o
r

si
m

p
li

ci
ty

 s
a

k
e)

.

	Acknowledgments
	Dedication
	ABSTRACT OF THE DISSERTATION
	Table of Contents
	List of Figures
	List of Appendix Figures
	List of Tables
	CHAPTER 1 Introduction
	1.1 - DMFB Droplet Manipulation
	1.2 - DMFB Device Technology Overview
	1.3 - High-Level Assay Synthesis Overview
	1.3.1 - Scheduling
	1.3.2 - Placement
	1.3.3 - Droplet Routing
	1.3.4 - Pin-Mapping
	1.3.5 - Wire Routing

	1.4 - DMFB Design Objectives
	1.4.1 - Dynamic DMFBs
	1.4.1.1 - Barriers to Dynamic DMFBs

	1.4.2 - Programmable DMFBs
	1.4.2.1 - Barriers to Programmable DMFBs

	1.5 - Contributions

	CHAPTER 2 Interpretation
	2.1 - Introduction
	2.1.1 - Interpretation vs. Compilation
	2.1.2 - Contribution

	2.2 - Virtual Topology
	2.2.1 - Synthesis Simplifications
	2.2.2 - Deadlock-Free 2D-Mesh Routing
	2.2.2.1 - Analogue to 2D-Mesh Topology
	2.2.2.2 - Differences from 2D-Mesh Topology

	2.3 - Interpretation
	2.4 - BioCoder Language and Extensions
	2.4.1 - Lack of Universality in LoC Compilation
	2.4.2 - Object-Oriented Organization
	2.4.2.1 - Example

	2.4.3 - Extensions for Feedback and Control Flow
	2.4.3.1 - Example

	2.5 - System overview and runtime environment
	2.5.1 - Intermediate Bytecode Format and Interpreter
	2.5.1.1 - Bytecode Instruction Format
	2.5.1.2 - I/O Operations
	2.5.1.3 - Droplet Identification
	2.5.1.4 - Keeping Track of Time

	2.5.2 - Interpreting a DAG on the Virtual Topology
	2.5.2.1 - Scheduling
	2.5.2.2 - Binding
	2.5.2.3 - Droplet Transportation Protocol (DTP)

	2.5.3 - CFG Execution

	2.6 - Simulation Results
	2.6.1 - Experiment #1: Fault-tolerant Splitting
	2.6.2 - Experiment #2: In-vitro Diagnostics
	2.6.3 - Experiment #3: Baseline Assays

	2.7 - Conclusion

	CHAPTER 3 An Efficient Virtual Topology
	3.1 - Introduction
	3.1.1 - Contribution

	3.2 - Related Work
	3.2.1 - Scheduling
	3.2.2 - Placement
	3.2.3 - Routing
	3.2.4 - Combined Methods

	3.3 - Virtual Topology
	3.3.1 - Module Topology and Synchronization

	3.4 - Fast Online Synthesis
	3.4.1 - Scheduling
	3.4.2 - Placement
	3.4.2.1 - Left-Edge Binding Algorithm
	3.4.2.2 - Path-Based Binding Algorithm
	3.4.2.2.1 - Generating Path-Compressed Graph
	3.4.2.2.2 - Selecting Storage Module Location
	3.4.2.2.3 - Binding Storage To Holders

	3.4.3 - Routing

	3.5 - Experiments
	3.5.1 - Benchmarks
	3.5.2 - Implementation Details
	3.5.3 - Experiment 1: Left-Edge Binding vs. Path Binding
	3.5.4 - Experiment 2:Topology Exploration
	3.5.5 - Experiment 3: Comparison To Fast Free Placer

	3.6 - Conclusion

	CHAPTER 4 Pin-Constrained Topology
	4.1 - Introduction
	4.1.1 - Contribution

	4.2 - Related Work
	4.3 - Pin-Constrained Assignment
	4.3.1 - DMFB Operations and Synchronization
	4.3.1.1 - Droplet Transport
	4.3.1.2 - Droplet Dispensing and Outputting
	4.3.1.3 - Merging/Mixing
	4.3.1.4 - Storage, Detection, and Splitting

	4.4 - FPPC-DMFB SYNTHESIS
	4.4.1 - Scheduling
	4.4.2 - Placement/Binding
	4.4.3 - Droplet Routing
	4.4.3.1 - Route Computation
	4.4.3.2 - Droplet Dependencies and Deadlock
	4.4.3.2.1 - Routing Algorithm

	4.4.4 - Co-optimizing Pin Assignment and Wire Routing

	4.5 - EXPERIMENTAL METHODOLOGY
	4.5.1 - Wire Routing Cost Analysis
	4.5.1.1 - Cost Computation

	4.6 - EXPERIMENTAL RESULTS
	4.6.1 - Benchmarks
	4.6.2 - PCB Layers & Orthogonal Capacity
	4.6.3 - Wire Routing Cost Analysis
	4.6.3.1 - Metric Selection

	4.6.4 - PCB Cost Results
	4.6.5 - Performance
	4.6.5.1 - Comparison to General DMFB
	4.6.5.2 - Comparison To Pin-Constrained DMFBs

	4.7 - CONCLUSION

	CHAPTER 5 Conclusion
	References
	Appendix

