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Interpreting Assays with Control Flow on Digital Microfluidic Biochips
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BioCoder is a C++ library developed at Microsoft Research, India, for the unambiguous specification of bio-
chemical assays. This article describes language extensions to BioCoder along with a compiler and runtime
system that translate and execute assays specified using BioCoder on a software simulator. The simulator
mimics the behavior of laboratories-on-a-chip (LoCs) based on a droplet actuation technology called elec-
trowetting on dielectric (EWoD). To date, prior compilers targeting similar EWoD devices are limited to
assays specified as directed acyclic graphs (DAGs) and cannot handle arbitrary control flow or feedback
from the LoC. The framework presented herein addresses these challenges through dynamic interpretation,
thereby enlarging the space of assays that can be compiled onto EWoD devices.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Performance and
Reliability]: Performance Analysis and Design Aids; J.3 [Computer Applications]: Life and Medical
Sciences—Biology and genetics, Health

General Terms: Performance, Design

Additional Key Words and Phrases: Digital microfluidic biochip (DMFB), BioCoder

ACM Reference Format:
Daniel Grissom, Christopher Curtis, and Philip Brisk. 2014. Interpreting assays with control flow on digital
microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 10, 3, Article 24 (April 2014), 30 pages.
DOI: http://dx.doi.org/10.1145/2567669

1. INTRODUCTION

Microfluidics is an interdisciplinary field of science and engineering that controls and
manipulates liquids at the micro- to nano-liter scale. Microfluidics enables the inte-
gration of chemical laboratory functions onto laboratories-on-chip (LoCs) which have
the potential to miniaturize and automate the execution of biochemical assays, which
are currently performed by hand using traditional benchtop chemistry equipment and
methods. An LoC is a passive device; it requires a computing device (e.g., a microcon-
troller, processor, FPGA, ASIC, etc.) to execute a program that sends signals to the
LoC over time in order to actuate fluidic motion. LoCs may be either assay-specific [Xu
et al. 2010] or programmable [Pollack et al. 2002; Amin et al. 2007]; at present, LoC
programming is either done at the machine level (i.e., manually choosing a sequence
of actuation signals to send to the device over time) or is highly restricted, for example,
to assays that can be represented as directed acyclic graphs (DAGs) without control
flow and without the ability to take action based on feedback provided by the device.
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Fig. 1. A control-flow graph for a simple drug-discovery assay that increases (++) or decreases (–) concen-
trations based on the results of previous tests.

Fig. 2. (a) A DMFB consists of a 2D grid of control electrodes [Grissom and Brisk 2012b]; (b) a cross-sectional
view. Applying voltages to the control electrodes in the vicinity of a droplet can hold it in place (CE2), or
initiate droplet movement to the left (CE1) or right (CE3), or split the droplet in two (applying voltages to
CE1 and CE3 at the same time) [Grissom and Brisk 2012b]. (c) Illustration of fundamental DMFB assay
operations being performed on the 2D array: transport, splitting, merging, mixing, and storage.

This article introduces a software interpreter that performs online execution of assays
featuring control flow, allowing them to be scheduled and executed immediately based
on live feedback for the device. To allow the programmer to express control-flow op-
erations, language extensions to a high-level biochemical programming language are
introduced as well. The long-term objective of this research is to open the door for new
microfluidic capabilities and applications.

Figure 1 motivates the need for control-flow and online interpretation with a drug-
discovery application. The assay performs a test (Test 1), detects the result, and then
automatically responds by determining that it has found a valid solution, or continues
exploring the solution space by executing new assays (Test 2 and 3) with varying
concentrations. Figure 1 shows the first few tests, but this procedure could be extended
and repeated hundreds or thousands of times, adjusting various parameters along the
way, until a valid solution is found. Without control flow, this application is intractable
for all but the smallest examples, because the designer must create a single DAG
offline that describes and handles each possible path through the application. Instead,
an online interpreter could leverage control flow to instantly schedule and dispatch
new assays (in Figure 1, the boxes labeled Test 1–3) upon detection of any terminating
dependent assays.

1.1. Digital Microfluidic Biochip Overview

A Digital Microfluidic BioChip (DMFB) is a type of LoC that manipulates discrete
droplets of fluid on a two-dimensional array through an enabling technology called
electrowetting on dielectric (EWoD). A DMFB is a 2D grid of electrodes, as shown in
Figure 2(a) [Pollack et al. 2002]. The term cell refers to the space on top of each electrode.
The DMFB actuates discrete droplets of fluid whose diameter is slightly larger than
the area of each cell, as seen in Figure 2(b). Activating the control electrode beneath
a droplet holds it in place. Activating a control electrode in an adjacent cell induces
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Fig. 3. DMFB compilation involves three primary steps: scheduling assay operations, placing operations at
each time-step onto the 2D array, and routing droplets to their destinations [Grissom and Brisk 2012a].

droplet motion. By appropriately activating electrodes in the vicinity of a droplet in
sequence, a DMFB can perform basic operations, such as droplet transporting, splitting,
merging, mixing, and in-place storage, as shown in Figure 2(c). Additionally, external
devices such as sensors or heaters can be affixed to specific DMFB locations; similarly,
an external imaging system can be focused on a specific cell or group of cells. To use
such an external device, one or more droplets are moved to the specified location and
are stored in place; the device itself is activated appropriately under control of a human
user or a computational device that controls the entire system.

These basic operations have proven sufficient to perform a wide variety of assays,
such as DNA polymerase chain reactions (PCR), in-vitro diagnostics for clinical pathol-
ogy, immunoassays [Chakrabarty 2010], protein crystallization [Xu et al. 2010], and
others. Altogether, assay execution on a DMFB can be viewed as a form of reconfig-
urable computing, as different cells or groups of cells can be reconfigured to perform
different operations throughout the duration of assay execution.

1.2. High-Level Synthesis Background

Historically, assays have been specified as DAGs, without control flow. A typical com-
pilation sequence is shown in Figure 3. The DAG is first scheduled [Ding et al. 2001;
Ricketts et al. 2006; Su and Chakrabarty 2008; Grissom and Brisk 2012b; O’Neal et al.
2012]; dimensions for each operational module are selected [Su and Chakrabarty 2005;
Xu and Chakrabarty 2007]; scheduled operations are then placed onto the 2D grid, en-
suring that no concurrently executing operations overlap to prevent interference [Su
and Chakrabarty 2006b; Yuh et al. 2007; Liao and Hu 2011]; lastly, non-interfering
droplet routes are computed to deliver droplets to the appropriate DMFB locations at
appropriate times [Su et al. 2006; Bohringer 2006; Cho and Pan 2008; Yuh et al. 2008;
Huang and Ho 2009; L’Orsa et al. 2009; Roy et al. 2010, 2012; Singha et al. 2010], in
some cases, all of these problems can be solved in conjunction with one another [Maftei
et al. 2010].

The control program that is generated by the compiler is a linear state machine, as
shown in Figure 4. Each state specifies a subset of electrodes that will be activated;
it typically takes 10ms to transport a droplet to an adjacent cell, and mixing/dilution
times during assay execution are on the order of seconds or tens-of-seconds. The linear
state machine control model is wholly deterministic, which is acceptable for a sched-
uled DAG with no operation variability. To cope with bounded variability, it is possible
to enumerate schedules for all possible combinations of operation times, which is ex-
ponential in the general case [Alistar et al. 2010]. An alternative approach, which can
accommodate assay operations that fail and require partial recomputation, is to pause
assay execution temporarily and recompile the assay on the fly [Zhao et al. 2010; Luo
et al. 2012; Alistar et al. 2012]. Although this overall approach results in the execution
of a nonlinear state machine, it essentially uses dynamic recompilation to replace one
linear state machine with another, as shown in Figure 5.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 3, Article 24, Pub. date: April 2014.



24:4 D. Grissom et al.

Fig. 4. Example of the linear state machine model of DMFB control. The output of each state is the subset
of electrodes in the DMFB that will be activated during each time step (shown in gray). The state machine
is timed, based on the activation frequency, typically 100 Hz [Yuh et al. 2008]. In this example, two droplets
are transported to a common location so that they can be merged, and two droplets are stored in-place.

Fig. 5. In response to an error detected in state k, the assay is paused and recompiled, which includes
the insertion of new states to recompute fluids that have been lost due to erroneous processing, which may
execute concurrently with other ongoing assay operations that were not adversely affected. The output is a
new linear state machine that compensates for and corrects the errors that occurred.

1.3. Contribution

We have developed a compiler and runtime system to translate assays specified using
a high-level language into an executable form appropriate for a DMFB. Assays are
specified using BioCoder [Ananthanarayanan and Thies 2010], a C++ library for bio-
logical protocol specification developed at Microsoft Research, India. We present new
language extensions to BioCoder that facilitate user-specified control-flow operations
(e.g., conditionals, loops, droplet-transfer mechanisms). The interpreter can execute
assays with control flow and can use feedback from the DMFB to make control-flow
decisions, and does not rely on complex resynthesis methods that dynamically recom-
pile the assay when control flow becomes unpredictable [Zhao et al. 2010; Alistar et al.
2010, 2012; Luo et al. 2012]. This represents a significant improvement over existing
DMFB compilation techniques, as it enables the execution of a much wider range of
assays compared to what has been supported previously.

2. VIRTUAL ARCHITECTURE

The system outlined in this article interprets assays dynamically, rather than com-
piling them statically and then (possibly) recompiling dynamically. Similar to prior
work by Griffith et al. [2006], the approach taken here imposes a virtual architecture
(Figure 6) on the DMFB that restricts the functions that different cells can perform; the
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Fig. 6. (a) A tile is the fundamental building block of the virtual architecture; (b) the virtual architecture is
imposed onto a DMFB by tiling the fundamental building blocks to create a 2D array of tiles.

interpreter exploits the restrictive structure to achieve fast algorithmic runtimes. Input
and output reservoirs are placed on the perimeter of the DMFB, as seen in Figure 6(b).
The city blocks are referred to as (work) chambers, because all non-I/O assay opera-
tions occur there. Each chamber can perform one operation (e.g., merging, mixing, or
splitting) or can store up to four droplets. External devices such as heaters or optical
detectors can be affixed to the DMFB above or below a chamber. All streets are one-
way; eight one-way streets meet together at rotaries, which offer an abstraction like a
network router. Droplets travel clockwise through these rotary.

Without loss of generality, a droplet traveling north that enters a rotary could con-
tinue straight or turn left (west) or right (east); our routing algorithms do not allow
droplets to reverse directions, so a droplet would not enter a rotary traveling north and
then exit traveling south. Each chamber and the four adjacent streets surrounding it
are called a tile, as shown in Figure 6(a). If the chamber is 5 × 5, then a tile requires
a 10 × 10 array of cells. Tiles are then repeated in two dimensions to form the virtual
architecture. For example, Figure 6(b) shows a virtual architecture that is a 2 × 2 array
of tiles.

2.1. Synthesis Simplifications

The virtual architecture simplifies the problems of placement and routing, which facil-
itates low-overhead dynamic interpretation and responsiveness to control flow.

Placement. Rather than placing operations at any location on the DMFB, the inter-
preter dynamically binds operations to chambers, as shown in Figure 7. In principle,
any available work chamber can be chosen; when multiple chambers are available, the
best choice is generally the one that is closest to the sources of the droplet(s) that are
the operation’s inputs; this minimizes droplet transportation latency.

Routing. The traditional approach to droplet routing is chaotic and disorderly, in
part, driven by the fact that the placement of assay operations is likewise. The virtual
architecture, in contrast, imposes an orderly network of city streets that all droplets
must follow. This limits the number of legal routes between each source-destination
pair, which simplifies the process by which routes are computed. The approach taken
here is to adapt deadlock-free 2D mesh network routing algorithms [Dally and Towles

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 3, Article 24, Pub. date: April 2014.



24:6 D. Grissom et al.

Fig. 7. The operations of a scheduled DAG are bound to the chambers indicated during the specified time
steps.

2004] to be compatible with DMFB technology. Thus, droplet routing follows a simple
protocol, rather than solving a challenging constrained-optimization problem.

2.2. Deadlock-Free 2D-Mesh Routing

The virtual architecture organizes the DMFB as a 2D-mesh network of work chambers,
where the rotaries play a role akin to network routers. One contribution of this article
is to adapt deadlock-free 2D-mesh routing algorithms [Dally and Towles 2004] to
DMFBs using this virtual architecture. Deadlock-free routing is important in an online
system where assays are scheduled and executed on the fly, because it is imperative to
guarantee that droplets can reach their destination.

To motivate the design for our virtual architecture, we highlight the similarities and
differences between our virtual architecture and a 2D-mesh network in the following
sections. Later, Section 4.2.3 shows how 2D-mesh routing algorithms are leveraged to
achieve deadlock-free routing in our system. Griffith et al. [2006], it should be noted,
also achieved deadlock freedom in their virtual architecture but did so by limiting the
injection rate of droplets into the system.

2.2.1. Analogue to 2D-Mesh Topology. As shown in Figure 6(a), a tile contains a chamber
surrounded by one-way streets on each side. The chamber has an entry and exit on each
side, and each corner of the tile contains an intersection in which droplets can choose
to stay in the current tile or travel to a neighbor (Figure 8(a)). The four streets and
intersections surrounding the chamber form a counterclockwise traffic circle called the
chamber rotary. In Figure 8(c), exchange rotaries, which allow droplets to move from
one tile to its neighbors, are formed between tiles.

The virtual topology presented here shares many similarities with 2D-mesh
networks.
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Fig. 8. (a) A chamber rotary (the cycle formed by four streets surrounding a chamber and their intersections)
is similar to (b) a 2D-mesh network router; (c) an exchange rotary (the clockwise inner loop) and a long
counterclockwise cycle (outer loop) of a tiled virtual architecture form equivalent connections to a (d) 2D-
mesh network.

—Chambers and I/O to Processors. In a computer network, processors send packets to
one another. Likewise, a DMFB can route droplets from one chamber to another, or
between chambers and I/O reservoirs.

—Chamber Rotaries to Routers. Figure 8(a) depicts a chamber rotary which is essen-
tially a traffic circle. The four intersections marking its corners are the entry points
of the tile. The four streets (which are unidirectional) are similar to the buffers in a
network router, shown in Figure 8(b).

—Exchange Rotaries to Wires. Figure 8(c) depicts an exchange rotary. The cells extend-
ing from the chamber rotary (the inputs and outputs in Figure 8(a)) are similar to
wires in a 2D-mesh (Figure 8(d)). The exchange rotary connects four adjacent tiles
which form an inner cycle, similar to cycles formed among adjacent routers in a
2D-mesh (e.g., Proc(0, 1) in Figure 8(d)).

—Streets to Buffers. Streets hold droplets, similar to input buffers of routers (see
Figures 8(a–b)).

2.2.2. Differences from 2D-Mesh Topology. Integrated circuits use wires to propagate sig-
nals which are stored in buffers (flip-flops); in general, there is a clear separation
between logic, storage, and interconnect. In contrast, DMFBs use cells for droplet
transportation and storage. Also, the 2D-mesh router (Figure 8(d)) employs a crossbar
(Figure 8(b)), which allows up to four signals to pass through concurrently. Exchange
rotaries within DMFBs cannot employ crossbars, as droplets passing through the cross-
bar would inadvertently mix with one another.

2.3. Interpretation

The ability to perform deadlock-free droplet routing enables abstraction layers that
share some principle similarities with the TCP/IP stack used in computer networks.
This, in turn, facilitates an intermediate bytecode format (motivated by virtual ma-
chines, such as the JVM), which simplifies the design of the interpreter. Without loss
of generality, suppose that we want to dynamically issue the command “Mix droplets x
and y.” Under the recompilation paradigm described previously, the placement must be
updated to make room for the new mixing operation (which, literally, could be anywhere
on the chip, especially if other ongoing operations need to be moved), and then routes
to deliver the two droplets must be computed algorithmically on the fly. In contrast,
our interpreter could select any available work chamber, knowing that the droplet
transportation protocol will deliver the two droplets (unless the device suffers from a
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physical failure). Similarly, this capability facilitates the interpretation of assays that
feature control-flow operations, as runtime decisions (i.e., which chamber executes each
assay operation) can be made dynamically with minimal overhead.

3. BIOCODER LANGUAGE AND EXTENSIONS

BioCoder [Ananthanarayanan and Thies 2010] is a C++ library developed at Mi-
crosoft Research, India, for specifying biological protocols in an unambiguous fashion.
BioCoder’s compiler converts the assay specification into an English language descrip-
tion that is similar to a recipe in a cookbook. BioCoder’s purpose was to eliminate am-
biguities that often occur when biological protocols are disseminated in peer-reviewed
literature. The authors of the paper that introduced BioCoder suggested that it could
be used as an input language to program an LoC; however, their initial work did not
attempt to do so.

3.1. On the Lack of Universality in LoC Compilation

BioCoder was designed to specify a wide variety of assays, including many that are
not compatible with the DMFBs that we target here. For example, BioCoder supports
solid chemical data types and centrifugation; DMFBs cannot manipulate solids and
do not generally have integrated centrifuges; therefore, they cannot perform these
operations. Unlike computer hardware and software, biochemistry has no theoretical
notion akin to Turing completeness that can bound the capabilities of LoCs [Amin
et al. 2007]. Similarly, there is no “universal” set of components akin to “universal” logic
gates (e.g., NAND, or AND-OR-INV) that can provably implement any combinational
logic function.

On the one hand, any language or library for specifying biological protocols must
evolve as new components are developed for use: new operators (languages) or func-
tions (libraries) to specify the usage of these components must be added; otherwise, the
language or library itself will become stale over time. On the other hand, a compiler
targeting a specific LoC technology is likely to support only a subset of the language;
for example, any attempt to compile an assay that includes a centrifugation opera-
tion targeting a DMFB must fail, due to the lack of a centrifuge. This generally does
not occur in software compilation. For example, many microcontrollers do not contain
hardware multipliers, dividers, or floating-point units but can still support these oper-
ations in software; compilation only fails when the device has insufficient memory. As
biochemistry has no notion of a universal operator, compilation fails when the assay
specification does not match the physical resources of the target device.

3.2. Object-Oriented Organization

As mentioned earlier, BioCoder is a C++ library containing a variety of structs, global
variables, and static functions. BioCoder’s compiler creates an internal data structure
that represents an assay as a DAG. The DAG is traversed to convert the assay into
English language output. Assay information is not saved, and the data structure is
deallocated during the traversal. We discovered that this library format was incompat-
ible with the instantiation and maintenance of multiple assays at the same time.

One of our goals was to introduce control flow into biochemical specifications in
order to support assays where decisions are taken based on feedback from the LoC.
This requires a control-flow graph (CFG) where each basic block is represented as
a BioCoder assay (i.e., a DAG). Naturally, any CFG containing control flow requires
multiple assays.

BioCoder was converted to several C++ classes that enabled the construction of
protocols comprised of multiple assays that no longer mangled one another when con-
structed. To specify an assay, the user instantiates an instance of the BioCoder class;
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Fig. 9. (a) Overview of the BioCoder system and output [Ananthanarayanan and Thies 2010, Figure 1];
(b) system overview showing the BioCoder environment, the runtime environment, and the interface between
them.

Table I. Prototypes for Six BioCoder Functions that are Supported by EWoD-Based LoCs

Microfluidic Operations BioCoder Function
Dispense void measure fluid (Fluid f, Volume v, Container c)
Output void drain (Container c, string outputSinkName)
Mix/Merge void vortex (Container c, Time t)
Split void measure fluid (Container c1, Volume v, Container c2)
Heat void store for (Container c, float temp, Time t)
Detect string measure fluorescence (Container c, Time t)

assay operations are specified as method calls. The compiler converts the program
into a graph-based intermediate representation using a new class that we introduced
called AssayProtocol, which effectively represents the CFG. AssayProtocol, enables the
protocol to be saved, copied, and executed multiple times (if desired).

All original BioCoder functionality was left intact, so it remains possible to convert
the assay to an English-language description or graphical representation if desired.
Figure 9(a) depicts the old and new capabilities of our system.

Table I lists six BioCoder functions that are compatible with the capabilities of
EWoD-based LoCs. In our new implementation, these functions are methods of the
BioCoder class. The data types Fluid, Volume, Time, and Container used in Table I
are part of the original BioCoder specification. In traditional benchtop chemistry, the
meaning of container is literal—for example, it could be a test tube, beaker, or flask
that contains fluid; in the case of our LoC, a Container is effectively used as a proxy for
a droplet which represents embodiment, rather than containment, of fluid.
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Fig. 10. (a) BioCoder code for a sample assay and (b) the representative DAG structure. This assay does not
require control flow.

3.3. Example

Figure 10 illustrates a simple protocol built using BioCoder. Containers represent
droplets that carry fluids from one step to the next, while instances of the Fluid class act
as input reservoirs. The protocol dispenses and mixes 10μl of a sample and reagent for
1s, heats the mixture for 1s at 50◦C, and detects the fluorescence for 1s before splitting
and outputting the two resultant droplets to the “output” and “waste” reservoirs. Each
edge in the assay protocol graph represents a droplet flowing from one operation to the
next, that is, the fluidic analogue of a data dependency.

3.4. BioCoder Extensions for Feedback and Control Flow

To support feedback and control-flow constructs, several new classes have been created:
BioSystem, BioConditionalGroup, BioCondition, and BioExpression. A BioSystem con-
tains a list of BioCoder protocols and BioConditionalGroups which dictate the order in
which the BioCoder assays are executed at runtime. As seen in Figure 11, a BioCon-
ditionalGroup can be thought of as an IF/ELSE-IF/ELSE statement, where each IF,
ELSE-IF and ELSE in the BioConditionalGroup is a BioCondition. Each BioCondition
contains a BioExpression which can be evaluated to true or false at runtime and is
used to determine which assay protocols to execute next.

Table II shows the five general types of BioExpressions. BioExpressions with opera-
tion types of AND, OR, and NOT are composed of one or more BioExpressions, which
may be nested. BioExpressions are evaluated recursively at runtime to determine the
result (true or false). The one- and two-sensor comparisons support decision-making
based on feedback from sensors on the device. The functionality of the comparison
depends on the data type returned by the sensors.
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Fig. 11. A BioConditionalGroup contains BioConditions (BC1-BC3). A BioCondition is evaluated by its
BioExpressions (BE1-BE4).

Table II. BioExpressions Create Simple or Complex, Nested Expressions for Branching Functions

Expr. Type C++ Style Operator Eval. Type BioCoder Construction
Unconditional true, false Direct BioExpression (BioCoder *parent, bool

unconditional)
One-Sensor
Comparison

>, <, ≤, ≥, == Direct BioExpression (string sensor1, OpType ot,
double constant)

Two-Sensor
Comparison

>, <, ≤, ≥, == Direct BioExpression (string sensor1, OpType ot,
string sensor2)

AND/OR &&/|| Nested BioExpression (OpType andOr)
NOT ! Nested BioExpression (BioCoder *notExp)

Table III. Microfluidic Operations and BioCoder Functions that Enable
Droplet Transfers between Protocols

New Microfluidic Operation New BioCoder Function
Transfer In string reuse fluid (Container con)
Transfer Out string save fluid (Container con)

A BioConditionalGroup can have as many ELSE-IF statements as desired and is not
ready to be processed until each of its BioConditions’ dependent protocols have exe-
cuted. Each BioExpression determines which BioCoder protocols its parent BioCondi-
tion is dependent upon. This value is passed in explicitly in the case of an unconditional
expression. In the one- and two-sensor compare expressions, the dependent BioCoder
protocols are determined implicitly as the BioCoder protocols which contain sensor1
and sensor2 (for a two-sensor compare). The measure fluoresence() function (and other
detection functions) return unique strings that act as tags for that specific reading and
is the input for the one- and two-sensor compare expressions.

The control-flow mechanism treats each protocol as a DAG and uses control flow to
determine which protocols to execute (in sequence) at runtime. In this respect, it is
also necessary to transfer droplets from one protocol to the next, depending on which
conditions are met. Table III lists new operations and functions that we added to
BioCoder to enable the transfer of droplets from one protocol to another.

3.5. Example

Figure 12 shows an example BioCoder protocol that uses conditionals. This example
illustrates the instantiation of a BioConditionalGroup, BioExpression, and BioCondi-
tion in sequence, followed by setting up the targets of the condition that form CFG
edges (the addNewCondition method) and the mechanism to transfer droplets from
one basic block to another (the addTransferDroplet method). Admittedly, this syntax
is somewhat unwieldy compared to a more straightforward if-then-else statement.
The fundamental challenge here is that BioCoder represents each assay as a DAG,
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Fig. 12. (a) BioCoder code illustrating the use of conditionals; (b) the resultant CFG.

and extending that representation to a model that includes control flow would break
BioCoder’s ability to output an English language description of each DAG—at present,
BioCoder’s cookbook-style output is linear and does not naturally support conditionals.
This requirement forced us to create a syntax that is far from ideal. However, this syn-
tax can easily be hidden by a simple graphical user interface (GUI) wrapper program
that presents high-level if-else options while calling the underlying BioCoder functions.
Nevertheless, we hope to switch to a more convenient syntax in the future and extend
BioCoder’s English language output capabilities to account for it.

4. SYSTEM OVERVIEW AND RUNTIME ENVIRONMENT

Figure 9(b) shows an overview of the BioCoder environment, including the interface
between the compiler and the runtime system. A chemist (programmer) specifies the
“BioSystem” of assay protocols and dependencies (control-flow and droplet-transfer).
The compiler transfers its protocols and BioConditionalGroups into microfluidic
DAGs and conditional groups (CGs), which are passed as a direct input to the runtime
system.

The pre-runtime system constructs a CFG from the DAGs and CGs given as input
from BioCoder. The runtime system then selects which basic block to execute based on
the conditions that are evaluated at runtime. DAG operations are scheduled, bound to
the “work chamber” areas of the LoC at runtime, and executed dynamically; details
are described in the following sections.

The runtime system is a program that runs on a PC that sends signals to the LoC
to actuate fluid motion; in our implementation, the LoC is simulated in software. The
runtime system receives the AssayProtocol data structure produced by the BioCoder
compiler and processes it to induce assay execution. This section describes the key
algorithms that are used to determine how and where to apply the different assay
operations shown in Figure 2(c).
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4.1. Intermediate Bytecode Format and Interpreter

Conceptually, the set of signals sent to a DMFB during each cycle can be treated like a
machine language. If the DMFB is comprised of N cells, then N binary signals are sent
to the device (e.g., a ‘1’ activates an electrode, and a ‘0’ leaves it off). This is a relatively
low level of abstraction; however, this level is the target of the static compilation and
recompilation approaches shown in Figure 3. The virtual architecture raises the level
of abstraction at which the DMFB can be controlled. Recall that a device’s control
program executes on a PC or microcontroller that sends signals to the DMFB in order
to activate the electrodes that induce droplet motion. Under static compilation, the
device’s control program is a realization of the linear state machine model (Figures 4
and 5).

The interpreter is a software application that accepts a partially compiled BioCoder
assay, essentially its CFG representation, and decomposes each operation into a short
sequence of bytecode instructions that are executed dynamically. The bytecode format
does not include timing information; the interpreter is responsible for keeping track of
time, and its foremost responsibility is to issue and execute bytecode instructions at
the correct time.

4.1.1. Bytecode Instruction Format. The virtual architecture enables the device control
program to evolve from a state machine into a fully functional virtual machine with
its own intermediate bytecode language that is simple yet operates at a much higher
level of abstraction. Bytecode instructions are categorized as operational (O-type) and
transport (T-type).

Each O-type instruction has the form (opcode, chamber-id), where the opcode specifies
the operation to perform, and the chamber-id specifies which chamber to perform the
operation. All chambers support four basic opcodes: {start-mix, stop-mix, split, store}
(merging is viewed as a precursor to mixing). If a chamber has an external device
affixed to the outside of the chip, such as a heater or detector, then it may support
additional opcodes, such as {heater-on, heater-off, detector-on, detector-off}. There are
some fairly straightforward restrictions, such as limitations on the number of droplets
that a work chamber can store (four), and other than multi-droplet storage, each work
chamber can only perform one operation at a time.

Each T-Type instruction has the form (src, dst) or (droplet-id, src, dst), which trans-
ports a droplet from the source (src) to a destination (dst). If the source contains a
single droplet, then the identifier of the droplet is implicit and is not needed; if it con-
tains multiple droplets, then the droplet-id field is required for disambiguation. This
generally occurs in two situations: (1) a work chamber stores multiple droplets, only
one of which will be transported; or (2) a work chamber performs a split operation,
thereby creating multiple distinct droplets; the default behavior is then to store the
two droplets that have been created. If a T-type instruction transports a droplet to a
chamber, it is stored implicitly until an O-type instruction initiates an operation.

4.1.2. I/O Operations. An important issue with respect to the design of the virtual
machine is whether I/O operations should be O-type or T-type instructions. DMFB I/O
mechanisms presently lack standardization, and there exist several different ways to
move droplets onto a chip [Ren et al. 2004]. One approach is to generate a droplet from
a pressurized off-chip source, such as a pipette or needle; once on the chip, the droplet
should be transported to an appropriate location for storage or other processing, unless
it is deposited precisely onto the location where it will be used or stored. In this case,
the amount of time required to input the droplet is nonnegligible compared to the time
required to transport a droplet.
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An alternative approach is to store fluids in on-chip reservoirs; the amount of fluid
stored in a reservoir is significantly larger than the size of a droplet. In this case,
individual droplets for processing can be “split” from the reservoir and then transported
to their appropriate locations. In this case, the input process is essentially a variation
of droplet transport.

The first input approach naturally lends itself to an O-type operation, especially since
it is timed. This approach is sufficient as long as there are known a-priori locations on
the DMFB where droplets will be deposited; our convention is to place such locations
on the perimeter of the chip. Thus, each location can have a unique identifier and can
easily be specified as a source, even though it is not a work module and cannot perform
other operations, such as mixing and splitting. Once a droplet has been inputed to the
device, it can be transported to its location for processing using a T-type instruction.
In contrast, the second approach naturally lends itself to a T-type operation, since the
droplet is split and transported away from the reservoir over a relatively short sequence
of time steps (see [Ren et al. 2004, Figure 9] for details).

The interpreter implements both options in order to best support different types of
input mechanisms. Output and disposal operations are represented as T-type instruc-
tions, as no meaningful processing is applied to a droplet in order to remove it from the
chip.

4.1.3. Droplet Identification. Some additional internal bookkeeping is necessary to track
the names and identification numbers of droplets. The discussion of this bookkeeping
has been omitted, thus far, in order to simplify the discussion. In practice, droplet
names are only needed to disambiguate the situation where multiple droplets reside
in a chamber; this may occur as a result of a split operation or if the chamber stores
more than one droplet. In this case, a T-type operation of the form (src, dst) would
be ambiguous, as it is unclear which droplet should be transported. Similarly, mixing
operations merge two previously distinct droplets into one, thus an appropriate naming
convention is required.

The interpreter adopts the following conventions regarding droplet numbering. Let
n denote the next available identification number for a new droplet. Initially, n = 0.

—Dispensing. Each droplet that is injected into the DMFB is assigned identification
number n; n is then incremented.

—Mixing. When droplets having identification numbers i and j are mixed, i < j, the
resulting droplet receives identification number i; identification number j is no longer
available for future droplets and cannot be reclaimed.

—Splitting. When a droplet having identification number i is split, the resulting
droplets are assigned identification numbers i and n; n is then incremented.

—Disposal. When a droplet having identification number i is transported off-chip (e.g.,
to an output or waste reservoir), its identification number is no longer available for
future droplets and cannot be reclaimed.

4.1.4. Keeping Track of Time. The bytecode format does not include timing information.
The virtual machine, which interprets BioCoder assays, is responsible for keeping
track of time between starting and stopping assay operations. It is important to un-
derstand that the bytecode format is never compiled directly to a human-readable text
file (except internally for development and debugging purposes); instead, the virtual
machine issues and executes commands in an on-the-fly fashion, using a work queue of
operations that have been stamped with information regarding their execution time.

For example, to mix two droplets in work chamber W for 20 seconds, the virtual
machine would immediately issue the bytecode instruction (start-mix, W) and, at the
same time, add a command (stop-mix, W) to the work queue, with time t + 20 seconds,
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where t is the present time. The work queue is implemented as a priority queue,
where the highest priority entry is the next bytecode instruction (among all those in
the queue) that needs to execute. This way, as time progresses, the interpreter only
needs to compare the current time with the time at which the highest priority bytecode
operation in the queue; once that operation executes, the priority queue is once again
adjusted so the highest-priority operation sits in the queue. This ensures the correct
execution of timing-driven operations.

T-type instructions are variable-latency operations, because the time required to
transport a droplet from its source to its destination depends on the amount of con-
gestion in the DMFB. The interpreter maintains a separate list of in-transit droplets.
When a droplet completes its route, the corresponding T-type operation is removed
from this list. Section 4.3.3 describes the algorithms used to perform online droplet
routing.

For debugging purposes, the system can produce a time-stamped trace of bytecode
instructions. Each instruction is time stamped with its start and finish times. Certain
O-type operations, such as splitting and merging, occur within a single time quantum,
so their execution time is treated as zero. Mixing and transport operations, in contrast,
require multiple time quanta, so their finish times are always later than their start
times.

4.2. Interpreting a DAG on the Virtual Architecture

Three steps are required to compile a DAG onto the virtual architecture: scheduling,
operation binding, and droplet routing. We describe each of these steps in detail.

4.2.1. Scheduling. We use a straightforward list scheduling algorithm for droplet-based
LoCs targeting the virtual architecture; this is a simplified version of the modified list
scheduling algorithm that does not involve the rescheduling step [Su and Chakrabarty
2008]. The overall goal of the problem formulation is to find a legal schedule having
minimum latency. Scheduling is NP-complete, and list scheduling is a naı̈ve but efficient
heuristic.

Each DAG in the CFG is scheduled separately; the interpreter manages control-flow
transitions at runtime. DAG operations are scheduled in discrete time steps. At each
time step, the algorithm considers all sources (i.e., DAG vertices having no prede-
cessors) for scheduling. It selects as many of these operations as possible, within the
resource limits of the LoC and virtual architecture. The scheduled operations are then
removed from the DAG and the process repeats until all operations have been sched-
uled. Storage operations are inserted when gaps between dependent operations occur
in the schedule. In our virtual LoC, each chamber can store up to four droplets; however,
it cannot perform any mixing operations if it stores a droplet. The schedule computed
by this algorithm is somewhat inexact, as it does not account for droplet routing times;
however, this is not usually problematic, as droplet routing times are several orders of
magnitude faster than assay operations (e.g., milliseconds to move a droplet from one
cell to its neighbor, compared to seconds to perform an assay operation).

Suppose that the virtual topology provides C reaction chambers, I input reservoirs,
O output reservoirs, and W waste reservoirs. These resources limit the number of
different compatible operations that can occur concurrently. During each time step t,
mt mixing operations, st storage operations, it input operations, ot output operations,
and wt waste operations as long as the following equations are satisfied:

mt +
⌈st

4

⌉
≤ C, it ≤ I, ot ≤ O, and wt ≤ W. (1)

Assay operations that require external components, such as sensors or heaters, must
be scheduled onto chambers that provide those elements. Without loss of generality,
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Fig. 13. Left-edge binding solution [Grissom and Brisk 2012a].

the number of heating operations scheduled concurrently cannot exceed the number of
chambers on-chip to which heaters are affixed, etc.

Similarly, there may be some constraints imposed on the fluidic input process. For
example, if the LoC has two input reservoirs supplying fluid A, then it is impossible to
schedule two input operations for fluid type A concurrently.

In some cases, resource constraints cannot be satisfied based on an assay’s demand
for operational and storage resources; when this occurs, the only option is to switch to
a larger LoC device that provides more chambers.

4.2.2. Binding. After scheduling, each DAG operation is annotated with the time-step
and resource type to which it is bound: the three operational resource types are general
chambers, heating chambers, and detecting chambers, and the three I/O resource types
are input, output, and waste reservoirs.

The binder selects appropriate resources for each operation that has been scheduled.
In general, it is a good strategy to bind operations to resources nearby to the resources
that supply the inputs. For example, if we want to mix fluid inputs A and B, it may be
a good idea to choose a reaction chamber that is relatively close in proximity to their
two input reservoirs. At the same time, since droplet routing does not significantly
affect overall assay performance, it is not of particularly great importance to compute
a high-quality binding solution.

Our binding algorithm is greedy and efficient and is adapted from the Left Edge
Algorithm used for dogleg routing in VLSI [Hashimoto and Stevens 1971] and register
allocation in high-level synthesis [Kurdahi and Parker 1987]; Figure 13 shows an
example. Operations are first separated into bins based on the chamber type they
were assigned during the scheduling phase. The bins are then sorted by their starting
time-step. Finally, each resource (e.g., chamber or I/O) selects a bin that matches its
resource type and attempts to bind operations to itself, ensuring that no operations
overlap, until it reaches the end of the bin. Since a legal schedule satisfying resource
constraints has been established, operations will be bound to a compatible resource at
the end of the algorithm.

4.2.3. Droplet Transportation Protocol (DTP). DTP chooses a path in the virtual architec-
ture for each droplet and then routes the droplets along their respective paths while
satisfying all droplet interference constraints [Su and Chakrabarty 2006b]. The inter-
ference region of a droplet consists of the cells directly adjacent to a droplet, shown in
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Fig. 14. (a) The interference region (‘I’) of a droplet at the beginning of a cycle [Grissom and Brisk 2012a];
(b) the interference region of a droplet in motion [Grissom and Brisk 2012a]; (c) legal turns (black) and
prohibited turns (dashed outline) in XY routing.

Figure 14(a). If any other droplet enters the interference region, then the two droplets
will merge; if the two droplets are not intended to mix, then cross-contamination will
inadvertently occur. During droplet motion, the interference region expands to include
the union of the interference regions of the source and destination cells, as shown in
Figure 14(b).

Deadlock prevention is the foremost responsibility of DTP. In this respect, the ro-
taries in the virtual architecture take on a role similar in principle to network routers;
however, there are several important differences that we mention here. First, most
network routers contain an internal crossbar that connects input ports to output ports;
packets or flits are selected from one (or more) input buffers and are transmitted to
the corresponding output buffers. This type of router architecture is not feasible in
DMFB technology, as the droplets in transit across a crossbar would necessarily col-
lide with and contaminate one another. A second difference, which generalizes from
the first, is that digital logic has an implicit separation of logic, storage, and routing
resources; with respect to routing networks, this means that buffers, crossbars, and
wires are distinct. In contrast, the DMFB has a single resource (a cell) that performs
both storage and transport in the context of the rotary; this has significant implications
for protocol design which are discussed in detail in the subsequent paragraphs. Last,
certain mechanisms, such as virtual channels [Dally and Seitz 1987], which can ensure
deadlock freedom in computer networks, cannot be applied to droplets due to the lack
of a crossbar in a rotary; thus, more restrictive mechanisms are needed to prevent
deadlock from occurring.

DTP adapts dimension-ordered routing (e.g., XY or YX routing in 2D) for the DMFB
virtual architecture. Conceptually, XY routing moves each droplet from its source po-
sition (x1, y1) to its destination position (x2, y2), by first traveling along the x-axis
to (x2, y1) and then traveling along the y-axis to complete the route. XY routing is
deterministic and non-adaptive, but worked well enough for our purposes.

XY and YX work by preventing two turns in each cycle, as seen in Figure 14(c).
Another class of routing algorithms that can be used with the virtual architecture,
based on the turn model, prevents deadlock by carefully selecting and prohibiting a
single turn from each cycle. Negative-first (NF), north-last (NL), and west-first (WF)
routing algorithms all prohibit one turn in each cycle to eliminate deadlock [Glass and
Ni 1994]. Odd-even (OE) routing is another adaptive algorithm that prevents deadlock
by prohibiting some types of turns in certain tile columns [Chiu 2000]. For brevity and
scope, we omit further discussion of network routing algorithms and assume XY is used
for the remainder of this work.

XY routing requires several modifications to account for rotaries, the I/O reservoirs
on the perimeter of the DMFB, and the process by which droplets enter and exit a
chamber. The four streets and intersections surrounding a chamber form a counter-
clockwise traffic circle called a chamber rotary, shown in Figure 8(a). The term exchange
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Fig. 15. (a) Clipping an exchange rotary (‘ER’); (b) passing through an ER while traveling straight;
(c) passing through an ER while turning right; (d) deadlocked ER; (e) non-deadlocked ER.

rotary is introduced to refer to the original rotaries which allow droplets to move from a
tile to one of its neighbors. Figure 8(c) shows that droplets travel clockwise through an
exchange rotary and counterclockwise through one or more chamber rotaries. Groups
of droplets traveling along XY paths can form cycles in chamber and exchange rotaries,
and therefore preventing the formation of these cycles prevents deadlock.

Four specific rules are required.

—Chamber Entries and Exits. Droplets may not make prohibited turns (Figure 14(c))
when leaving source and entering destination chambers. To ensure routability in
light of prohibited turns, entries and exits are placed on all four sides of the chamber.

—Droplet I/O. To prevent forbidden turns, input, output, and waste reservoirs are
placed on the DMFB perimeter, and the allowable turns that a droplet may make at
an entry point are limited.

—Exchange Rotaries. In Figure 15(a), a droplet clips an exchange rotary if it touches
one intersection before leaving. In Figures 15(b) and 15(c), a droplet passes through
an exchange rotary if it touches at least two intersections. As droplets move clockwise
within an exchange rotary, a clip implies a left turn, and passing through implies that
the droplet continues traveling straight or turns right. Figure 15(d) depicts exchange
rotary deadlock when four droplets attempt to pass through; no droplet can progress
without maintaining spacing constraints (Figures 14(a–b)). In Figure 15(e), deadlock
is eliminated if at least one droplet clips the exchange rotary. To prevent deadlock
in an exchange rotary, at most three droplets that wish to pass through may enter
concurrently.

—Chamber Rotaries. Figure 16(a) illustrates chamber rotary deadlock. Droplet 16 cre-
ates a dependency chain which causes deadlock; however, if it does not enter the
chamber rotary, then a bubble is created which ensures that the sequence of droplets
can proceed, starting with Droplet 1. To prevent deadlock in a chamber rotary, no
droplet may enter an exchange rotary unless the system can guarantee that there
is space for it to exit into the next street; if the street is full, then the droplet must
wait for space to become available prior to entering the exchange rotary. Droplets
attempting to enter a street from an adjacent chamber or input reservoir must also
wait until that street has room; in Figure 16(b), Droplets 1, 2, 3, 5, and 6 must wait
for this reason.

4.3. CFG Execution

Given the ability to execute a DAG, generalizing the runtime system to execute a
CFG is straightforward. Before executing a CFG, the DAG corresponding to each basic
block is scheduled to determine whether the LoC can meet its resource demand. If all
DAGs can be scheduled, then the CFG can execute. Much like a software program,
CFG execution proceeds one basic block at a time. Each DAG can be partially compiled
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Fig. 16. (a) Deadlock in a chamber rotary; (b) chamber rotary with street capacity rules being enforced to
prevent deadlock.

in isolation; however, the transfer of droplets from one DAG to another in response
to a conditional evaluation occurs dynamically. Referring to the right of Figure 9(b),
the entry and exit nodes of the CFG are known. Starting with the entry node, the
system dynamically schedules, binds, and executes each DAG. When the DAG finishes
its execution, its conditions are checked, and the next DAG to execute is chosen. This
process repeats until the CFG exit node completes its execution.

5. SIMULATION RESULTS

We developed a software simulator for EWoD-based LoCs in C++, and our compiler and
runtime system currently interface with it. At each time step, the runtime system sends
signals to the simulator, indicating which electrodes to activate based on the assay
operations that are currently executing and the droplets that are currently undergoing
transport. The simulator estimates the execution time of an assay based on operation
latencies provided by researchers at Duke University [Su and Chakrabarty 2006a].

We chose a low-end embedded processor to evaluate these benchmarks, because
DMFBs have the potential to be used in battery-powered point-of-care diagnostic de-
vices [Fair et al. 2007] that can be deployed in remote rural areas, possibly in third-
world countries; in such a context, it would be a significant burden to transport a
modern desktop or laptop PC to control the DMFB and then power it up. Initially, we
considered a low-end microcontroller implementation, but our code base was too large
to fit into the limited memory of the device. Instead, we compared the interpreter with
the static compiler using an Inforce SYS9402-01 development board, which features
a 1GHz Intel AtomTM E638 processor with 512MB RAM, running TimeSys 11 Linux;
memory constraints were not a concern using this more powerful platform.

5.1. Experiment #1: Fault-Tolerant Splitting

A common assumption made when compiling assays onto EWoD-based DMFBs is that
every split operation is perfect, that is, the two split droplets have equal volumes;
however, this may not be the case. Some assays require an exact volume and demand a
certain amount of precision when working to obtain a specific concentration. As droplet
volumes decrease, an uneven split may significantly bias assay results. After the split,
the volume of one of the two resulting droplets is measured. If the volume obtained
from the measurement is sufficiently close to half of the pre-split volume, then the split
is deemed to be successful; otherwise, it fails, and the two split droplets are remerged
and the split operation repeats [Alistar et al. 2012]. This process, which is naturally
probabilistic, can be expressed using a loop using the extensions to BioCoder.
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Fig. 17. Output from system showing (a) the initial two-level protein DAG executed by the online resynthesis
model and (b) the control-flow graph executed by our interpreter.

Alistar et al. offer two solutions to this problem. The first modifies the DAG to form a
fault tolerant sequencing graph (FTSG), where each split is attempted a fixed number
of times [2010]. This changes the assay scheduling problem formulation, because splits
are now variable-latency operations whose exact latencies cannot be known until run-
time. The second solution applies incremental resynthesis (e.g., Figure 5) in response to
an erroneous split: when a split-error occurs, the resultant droplets are discarded and
a recovery subgraph is called upon to reproduce the droplet to be split again [Alistar
et al. 2012]. This eliminates the primary limitation of their former approach—fixing
the number of times a split may be performed—but the resynthesis process is more
complex as it reexecutes lengthy operations that may not need to be performed again.

To evaluate our interpreter and virtual architecture (INT), we compare against
Alistar et al.’s online resynthesis (ORS) idea in which time-redundant graphs are
resynthesized online when a fault is encountered in order to reproduce the erroneously
split droplets. Their approach suffers from two limitations, which our implementation
addresses here. First, it appears that their placer does not address the challenge of
specialized modules with external devices, for example, detection operations must be
placed on top of cells above or below an integrated sensor. Second, their approach does
not perform routing, so those overheads are taken into account. Therefore, our imple-
mentation considers their general ORS approach to error detection and recovery but
uses a different fast online synthesis flow [Grissom and Brisk 2012a] that accounts for
specialized modules during placement and includes a routing algorithm.

We used a truncated two-level version (for the sake of clarity and demonstration) of
a larger three-level protein dilution assay [Su and Chakrabarty 2006a], as shown in
Figure 17(a). We do not have a dilute operation, and thus, we replaced each 5s dilute
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Table IV. Recovery Synthesis Time (Averaged over 10 Runs) for a 2-Level Protein Assay with Varying
Percentages of Error for Split Operations

Average Recovery Synthesis Time With Fault-Free Baseline

Synthesis
Method

Fault-
Free
Baseline

10% Error 25% Error 50% Error 75% Error 90% Error

EPR
Synth. (ms)

EPR
Synth. (ms)

EPR
Synth. (ms)

EPR
Synth. (ms)

EPR
Synth. (ms)

PE T PE T PE T PE T PE T
INT 89.1 0.5 2.6 1.3 0.8 4.3 3.4 3.5 2.9 10.0 8.0 3.0 23.9 20.6 3.1 62.8
ORS 72.0 0.5 3.8 1.9 0.8 3.8 3.0 3.5 3.4 11.9 8.0 3.8 30.4 20.6 3.6 74.9

Note: Results show the average number of errors per run (EPR), average synthesis time per error (PE), and
average total synthesis (T). Results are given for the online resynthesis (ORS) model and our interpreter
(INT) with control-flow and virtual architecture.

operation with a 3s mix and 2s split operation. For the entire assay, dispense operations
are 7s, mix operations are 3s, split operations are 2s, and output operations are 0s. The
detect operations trailing a split are 5s, while the detect operations preceding an output
are 30s. These timings were kept consistent for INT and ORS, and both assays were
implemented using our enhancements to BioCoder. INT uses a 20 × 20 DMFB, allowing
for four total work chambers with four detectors; ORS uses a 15 × 19 DMFB, allowing
for six total work chambers/modules and has four detectors as well.

Figure 17(a) shows the initial sequencing graph executed by ORS, while Figure 17(b)
shows the control-flow graph executed by INT (for a failure probability of 10%). The
Lev1Split DAG contains the first mix and split seen in Figure 17(a). The program loops
between Lev1Det and Lev1MRS (Merge and Re-Split) until the split is successful. When
the first split succeeds, Lev2Split is scheduled and executed, which performs the 2nd
level of splits (containing the bottom two splits). Since there are two splits, there are
detect and merge-resplit (MRS) loops for the occasions when the left split, right split,
or both splits fail (DAGs ending in “-L”, “-R”, and “-B”, respectively). Finally, when all
splits have been properly performed, Lev3End executes the final dispense, mix, detect,
and output nodes.

We are primarily interested in the synthesis and assay runtimes introduced by split
recovery errors in INT and ORS. We ran INT with error probabilities of 10%, 25%,
50%, 75%, and 90% on each split node. Our simulator does not model the physics of the
droplet split and detection process. Instead, our virtual sensor returns a probability
in the range [0, 1). If the probability is less than the error probability/threshold, we
assume that the split is successful; otherwise, we assume that the split is a failure.
This applies to all splits, even if part of a merge-resplit. We performed ten runs for
each of the five error probabilities (50 total runs) and averaged the results for each
error rate. Next, we examined the control flow of each of the 50 runs and reproduced
the same exact errors in the ORS system to obtain comparative numbers.

Table IV reports the computational time that both INT and ORS spent performing
synthesis and responding to faults for different error probabilities. INT uses the inter-
preter to synthesize the assay in an online fashion, while ORS computes an initial syn-
thesis result up-front and then re-synthesizes the assay each time that a fault occurs.
Table V shows the assay runtime (operation + routing time) for the same error proba-
bilities as seen in Table IV. Each table has a fault-free baseline, meaning these numbers
show synthesis and assay runtimes, respectively, for the two-level protein application
when no errors occur. For ORS, this is essentially the DAG seen in Figure 17(a). For
INT, this represents the execution path seen in Figure 17(b) of Lev1Split → Lev1Det →
Lev2Split → Lev2Det-B → Lev3End, because this is the path that executes when no
errors occur.

As shown in Table IV, ORS takes less time than INT to generate an initial fault-free
schedule, although INT generally spends less total time handling errors online (T).
Table IV also shows that INT spends less time, on average, in response to each error
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Table V. Average Recovery Assay Runtime (Averaged over 10 Runs) Showing the Average Amount of Time
(Schedule and Route Length) Added to the Assay by Errors for a 2-Level Protein Assay with Varying

Percentages of Error for Split Operations

Average Recovery Assay Runtime (Schedule + Route Length) With Fault-Free Baseline

Synthesis Method
Assay Runtime (s)

Fault-Free Baseline 10% Error 25% Error 50% Error 75% Error 90% Error
INT (Control Flow) 134.89 5.17 8.30 33.03 74.38 181.82
ORS (Re-synthesis) 118.36 10.11 14.65 61.94 170.30 406.48

Note: Results are shown for the online resynthesis (ORS) model and our interpreter (INT) with control-flow
and virtual architecture.

(PE). One thing to note is that the per-error time (PE) is greater than the total time
(T) for both 10% and 25% error rates; this occurs because the average number of errors
per run (EPR) is less than 1 for both of these error rates. Thus, an error does not occur
in every single run and causes the total synthesis time to be less than the synthesis-
per-error time.

Table V shows the baseline assay execution time for a fault-free run and the average
additional overhead incurred to reexecute operations for varying error rates. Although
ORS produces a better fault-free result, INT adds much less recovery time to the assay
because it does a merge and resplit instead of executing more complicated recovery
operations [Alistar et al. 2012]. Another concern, which we did not explicitly model, is
that ORS may recursively encounter further errors when reexecuting recovery opera-
tions that include splits themselves that were originally successful in the original run.
This would further add to the assay execution time. This experiment demonstrates that
interpretation can seamlessly address reliability challenges that arise due to operation
variability in DMFBs.

5.2. Experiment #2: In-Vitro Diagnostics

In-vitro diagnostics is a common microfluidic application, where four human physiolog-
ical fluids (plasma, serum, urine, and saliva) are assayed for glucose, lactate, pyruvate,
and glutamate measurements to identify metabolic disorders [Su and Chakrabarty
2008].

The in-vitro assay mixes each of the four samples with each of the four reagents
and then transports the 16 resultant droplets to optical detectors for measurement.
These 16 mixes can be part of the same assay and performed concurrently, as shown
in Figure 18(a). Our BioCoder implementation of this assay runs in 47.93s in our
simulator.

It is also possible to rewrite the assay using our interpretation engine and virtual
architecture to preserve reagents. Figure 18(b) shows a CFG created by BioCoder that
is composed of four assays, each of which performs four mix operations where a human
sample is mixed with a single reaction; Figure 19 shows the BioCoder specification.
The four assays are executed sequentially, and the protocol stops as soon as the first
positive reading occurs.

Our optical sensor returns a random probability in the range [0, 1), and we assume
that a reading is irregular (i.e., positive) if the value returned is greater than some
various health thresholds. Table VI shows the average results (over ten runs) for the
thresholds 75%, 90%, 95%, and 99%, where a higher threshold represents a generally
healthier patient. Tests run at the 75% and 90% thresholds use less time and reagents.
Although the 95% and 99% tests take more time, they do use fewer reagents, which may
be preferable in many contexts. Figure 20 reports the simulator output for a particular
run with a 99% threshold; in this example, all four DAGs were executed and no tests
were determined to be irregular.
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Fig. 18. (a) Parallel and (b) sequential CFG implementations of the in-vitro diagnostics assay.

Fig. 19. BioCoder specification of the sequential in-vitro assay for a 99% threshold.
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Table VI. Average Sequential InVitro Completion Time and Sample Usage Compared to
the Parallel InVitro Implementation

Average Sequential InVitro Completion Time/Sample Usage

Health/Pass Rate Completion Time (s)
Comparison To Parallel InVitro

Time Saving (s) % Reagent Usage
75% 28.04 19.90 32.5
90% 36.52 11.42 42.5
95% 57.72 −9.79 67.5
99% 78.86 −30.93 92.5

Note: Averages were found over 10 runs for each health/pass rate.

Fig. 20. Simulator output for a particular run of the sequential in-vitro assay (99% threshold).

5.3. Experiment #3: Baseline Assays

Finally, we perform a standard set of benchmark assays commonly reported in litera-
ture. The first assay, a polymerase chain reaction (PCR), is a technique for exponential
DNA amplification used in molecular biology. In-vitro diagnostics were highlighted in
the last section; here, we run five common in-vitro configurations with different com-
binations of samples and reagents [Ricketts et al. 2006; Su and Chakrabarty 2008].
Finally, we run a colorimetric protein assay based on the Bradford reaction [Su and
Chakrabarty 2008]. DAGs for the PCR and protein assays, as well as the 5th in-vitro
assay (four samples, four reagents), are seen in Figure 21. Each of the seven assays
represents a DAG with no control flow.

All assays have dispense times of 2s. We used the module libraries provided by Duke
University to choose operation timings [Su and Chakrabarty 2006a]. We chose the 2 ×
4 mixer (3s) for all PCR mixes. For the protein assay, we chose the 2 × 4 mixer (3s) and
2 × 4 diluter (5s) for all mix and dilution operations, respectively; because we did not
have an explicit dilution operation implemented, we divided the dilution operations
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Fig. 21. PCR, In-Vitro, and Protein DAG specifications.

into a mix node followed by a split operation that consumed a total of 5s. All operation
timings and sample/reagent configurations for the in-vitro diagnostic family of assays
are taken from Table I of Su and Chakrabarty [2008].

Here, we compare the performance of the interpreter and virtual architecture (INT)
with a long-running static compiler (LRSC), with no virtual restrictions on placement
and routing; the compiler cannot handle assays featuring control flow and therefore
could not produce results for Experiments #1 and #2, as discussed in the preceding
sections. We compare the schedule and route quality between LRSC and INT while
simultaneously showing the trade-off that is made between computation time and
assay time (schedule and route length). INT was run on a 20 × 20 DMFB (2 × 2 tile
array); LRSC was able to fit the assays onto a smaller 15 × 19 DMFB. As in other
works, we assume a droplet actuation frequency of 100 Hz [Yuh et al. 2008].

For our LRSC, we chose a genetic scheduling algorithm [Su and Chakrabarty 2008], a
simulated annealing-based placer [Su and Chakrabarty, 2006], and a fast maze router
[Roy et al. 2010] to compile the DAGs onto a DMFB. Scheduling is the most important
synthesis task, since it determines the bulk of the assay time (scheduling units are
on the order of seconds; routing units are on the order of milliseconds). We selected
a genetic scheduler because it tends to produce high-quality results in a relatively
reasonable amount of time. Optimal scheduling based on integer linear programming
(ILP) [Su and Chakrabarty 2008] is also possible but may run for days or weeks on
DAGs of nontrivial size. Placement does not significantly affect assay performance;
however, it is an important step when targeting very small DMFB architectures. We
chose a placement algorithm based on iterative improvement for similar reasons. The
choice of router is far less important, as prior work has noted that routing times do not
significantly impact the assay completion time [Su and Chakrabarty 2008]. We chose
to implement a maze router [Roy et al. 2010; Grissom and Brisk 2012b] primarily due
to ease of implementation. To the best of our knowledge, the literature on routing lacks
a comprehensive comparison among all previously published routing algorithms, so we
do not claim that the maze router is either the fastest or best performing.

Tables VII and VIII show the results of LRSC and INT, respectively, including compu-
tation times and assay times (the actual time spent executing the assay, i.e., schedule
length and route lengths). The results show that LRSC can complete an assay, from
first dispense to last output, from 3s to 41.5s faster than INT. Thus, overall, LRSC’s
scheduling-routing solutions (SL+RL) are better than INT’s solutions; however, in an
online setting when synthesis/interpretation time will be experienced by the end-user
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Table VII. Static Compiler Synthesis Results for 7 Deterministic Benchmarks Showing Algorithmic Computation
Times (CT), the Computed Schedule Lengths (SL), and Computed Route Lengths (RL)

Long-Running Static Compiler (LRSC): Genetic Scheduler→Simulated Annealing
Placer→Roy’s Maze Router

Benchmark
Scheduling (s) Placement (s) Router (s) Total Synthesis (s)

CT SL CT CT RL CT SL+RL CT+SL+RL
PCR 2.621 11 0.200 0.002 0.780 2.823 11.780 14.603
InVitro 1 4.475 14 12.843 0.002 1.350 17.320 15.350 32.670
InVitro 2 8.122 16 141.177 0.004 1.800 149.303 17.800 167.103
InVitro 3 13.156 18 506.767 0.010 2.070 519.933 20.070 540.003
InVitro 4 22.376 22 3,317.571 0.007 2.340 3,339.954 24.340 3,364.294
InVitro 5 39.410 30 1,399.936 0.009 3.420 1,439.355 33.420 1,472.775
Protein 22.334 109 79,531.695 0.032 12.120 79,554.061 121.120 79,675.181

Table VIII. Online Interpreter (Using the Virtual Architecture) Synthesis Results for 7 Deterministic
Benchmarks Showing Algorithmic Computation Times (CT), Computed Schedule Lengths (SL), and

Computed Route Lengths (RL)

Online Interpreter (INT): List Scheduler→Chamber Binding Placer→XY Router

Benchmark
Scheduling (s) Placement (s) Router (s) Total Synthesis (s)
CT SL CT CT RL CT SL+RL CT+SL+RL

PCR 0.001 11 0.001 0.009 0.560 0.011 11.560 11.571
InVitro 1 0.001 18 0.002 0.015 1.330 0.018 19.330 19.348
InVitro 2 0.002 19 0.003 0.022 1.860 0.027 20.860 20.887
InVitro 3 0.005 29 0.006 0.034 2.540 0.045 31.540 31.585
InVitro 4 0.008 34 0.009 0.045 3.330 0.062 37.330 37.392
InVitro 5 0.015 44 0.016 0.058 4.110 0.089 48.110 48.199
Protein 0.014 154 0.017 0.150 8.670 0.181 162.670 162.851

Table IX. Scheduling Results for Various Scheduling Methods for Large ProteinSplit Assays on a 20 × 20
DMFB with Four Work Chambers, Each Equipped with a Detector

Computation Time (CT) and Schedule Length (SL) For Various Schedulers On Large Assays

Benchmark
Genetic List Force-Directed List Path

CT (s) SL (s) CT (s) SL (s) CT (s) SL (s) CT (s) SL (s)
ProteinSplit 1 26.227 72 0.019 72 0.108 72 0.009 73
ProteinSplit 2 70.887 107 0.054 107 0.487 108 0.021 111
ProteinSplit 3 199.358 180 0.135 198 2.132 182 0.048 187
ProteinSplit 4 677.353 358 0.338 390 10.284 367 0.105 339

Note: Scheduling computation times (CT) and the computed schedule lengths (SL) are shown. The best
overall scheduler for each benchmark is emboldened.

who is waiting for the computations to complete, these gains can be considered negli-
gible when compared to the increase in computation times from 2.8s to 22h.

Furthermore, although LRSC’s schedules and routing times (SL+RL) are shorter
by 3s to 41.5s, the interpreter can make up this ground in several ways and still
maintain its fast synthesis times and remain suitable for online synthesis. One way
is to utilize new, fast schedulers that are targeted at certain types of assays. Two
recent examples are path scheduling [Grissom and Brisk 2012b] and force-directed list
scheduling [O’Neal et al. 2012]. List scheduling, path scheduling, and force-directed list
scheduling all run quickly, making it possible to run all three, without great concern
to computation time, and take the best schedule.

Table IX shows the results of genetic, list, force-directed list, and path schedulers
on four ProteinSplit assays with 1–4 levels of splits. Again, all results are on the
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low-powered Atom processor. The results show that although the genetic algorithm
generally produces the best schedule, its computation time dwarfs the savings and
makes it impractical for online scheduling. On the other hand, although the compu-
tation time for force-directed list scheduling begins to grow large as the assay size
increases, the list, path, and force-directed list schedulers all claim superior results
for at least one benchmark. For the sake of simplicity and space limitations, we only
include results for INT with list scheduling.

In this particular case, however, the inferior schedule quality of the interpreter is
mostly due to a lack of resources. On a 20 × 20 DMFB, the interpreter can perform
four concurrent mix operations, one in each of its four chambers. The static compiler,
on the other hand, has sufficient room to comfortably fit six 2 × 4 mixers on a smaller
15 × 19 DMFB. By increasing the size of the DMFB, the interpreter can close the
scheduling gap. For example, we ran the largest assay, the protein assay, on a 30 ×
20 DMFB that could fit six mixers and reran the interpreter; list-scheduler produced
a schedule of 111s, only 2 seconds longer than the compiler’s schedule length. With
new, highly-scalable DMFBs being developed [Noh et al. 2011; Hadwen et al. 2012],
increasing the array size does not increase the complexity and cost of a DMFB as it did
in the past; trading DMFB size for algorithmic simplicity is becoming an easy trade-off
to make.

6. CONCLUSION, LIMITATIONS, AND FUTURE WORK

This article introduced extensions to the BioCoder language to allow the specification
of biochemical protocols that feature control flow and described the design and im-
plementation of a software interpreter that executes assays dynamically, as opposed
to prior state of the art where assays were compiled statically. The key innovation
that facilitates interpretation is the imposition of a virtual architecture on top of a
DMFB which facilitates deadlock-free droplet routing through the simple adaptation
of deadlock-free routing algorithms for 2D computer mesh networks. This relieves the
interpreter of the need to explicitly schedule and place assay operations on the DMFB
and route droplets; instead, the interpreter binds assay operations to pre-positioned
work chambers and relies on the DTP to deliver the droplets to their locations in a
timely fashion. Experiment #1 (fault-tolerant splitting) and Experiment #2 (sequential
in-vitro diagnostics) validate the ability of the interpreter to execute assays that fea-
ture control flow. Experiment #3 demonstrates that the computational overhead of the
interpreter is far less than that of static compilation and recompilation methods.

The drawback of this approach is area overhead: the streets, rotaries, and separation
between them occupy a significant number of cells. It is clearly possible to pack the
work chambers in more tightly, thereby replacing the droplet routing protocol with
something simpler, yet ineffective (e.g., route one droplet at a time), or a more com-
plicated routing algorithm with greater complexity. In particular, DMFBs are often
I/O limited, especially for portable point-of-care devices. Our approach is compatible
with direct addressing (which uses one control pin per electrode), cross referencing
[Fan et al. 2003], and active matrix addressing [Noh et al. 2011; Hadwen et al. 2012]
DMFBs; the latter two devices use M + N control pins to control M×N electrodes. Our
approach, however, is not compatible with pin-constrained DMFBs, which are designed
to be assay-specific and allow one control pin to control multiple electrodes [Xu et al.
2007]. Pin-constrained DMFBs often use fewer than M + N control pins but sacrifice
flexibility in order to do so. In contrast, the interpreter can execute any assay on the
DMFB that satisfies the resource constraints of the device. On the other hand, the cells
shown in white in Figure 6 do not require electrodes, as they are not used; thus, the
number of control pins in a direct-addressing implementation of our interpreter can be
reduced as well.
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Future work will extend the interpreter, including (1) the integration of wash droplet
routing [Zhao and Chakrabarty 2009, 2010; Mitra et al. 2011; Huang et al. 2010],
which prevents cross-contamination, into the DTP; (2) techniques to maintain the
connectivity requirements of the virtual architecture in the presence of faulty cells; and
(3) techniques to ensure that the DTP provides an acceptable quality-of-service and can
make real-time guarantees for critical droplets traveling through the DMFB. Finally,
we hope to develop more assays that can exploit the control-flow-related extensions to
BioCoder that were introduced here.
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