

# A High-Performance Online Assay Interpreter for Digital Microfluidic Biochips Dan Grissom and Philip Brisk University of California, Riverside (UCR)

### **Digital Microfluidic Technology**

Digital Microfluidic Biochips (DMFBs) are an emerging "lab-on-a-chip (LoC)" technology that perform biochemical reactions by operating on fluidic droplets on the scale of nano-liters.

#### **Applications:**

- Clinical pathology
- Point of care diagnostics
- Drug discovery
- Proteomics, DNA, PCR, etc.

#### Key advantages:

- Reduced cost
- Reduced reagent and sample sizes
- Increased throughput and efficiency
- Increased sensitivity and accuracy

### **Preventing Droplet Deadlock in Rotaries**

An Exchange Rotary (ER) is the clockwise inner loop which allows droplets to move from one tile to its neighbor tiles.







**Offline Assay Compilation** 

### DMFB Topology & Deadlock Free Routing

Application of virtual topology to a tile (10x10 array of cells)



-Tile arranged like city block -Transport limited to1-way streets -Operations limited to chambers -Similar to multi-proc router

**Online Assay Interpretation** 

CR deadlock occurs when no droplet in the CR can move in the counterclockwise CR loop without interfering with another droplet. <u>To prevent CR</u> <u>deadlock, no droplet may enter an ER unless there is an open spot for it on</u> <u>the destination CR street.</u>

# Evaluation of DTP on Low-Powered Intel Atom<sup>™</sup>

Routed a common "PCR" benchmark with 5 routing sub-problems: -Online computation time for entire benchmark is only 13.83ms (10.6s for Offline) -Online routing spends 2.23ms, at most, computing routes during any routing cycle (if this number is less than 10ms (100Hz DMFB), routes can be computed in real-time, providing maximum flexibility and fault-tolerance potential) -Offline routing time is 15 cycles (0.15s if 100Hz DMFB) shorter than online

|  |             | PCR Routing Results - Offline Method |         |            |              |             |  |          |  |
|--|-------------|--------------------------------------|---------|------------|--------------|-------------|--|----------|--|
|  | Routing     | ng Can                               |         | Route      | Route Length | Route       |  | Deutina  |  |
|  | Sub-Problem | Compact                              | Route # | Comp. (ms) | (# cycles)   | Description |  | Kouting  |  |
|  |             |                                      | 1       | 618        | 4            | In->M5      |  | Sub-Prob |  |
|  |             | YES                                  | 2       | 582        | 4            | In->M5      |  |          |  |
|  |             |                                      | 3       | 859        | 12           | In->M4      |  |          |  |
|  | 1           |                                      | 4       | 576        | 4            | In->M4      |  |          |  |
|  |             |                                      | 5       | 916        | 13           | In->M1      |  |          |  |
|  |             |                                      | 6       | 584        | 4            | In->M1      |  |          |  |
|  |             |                                      | 7       | 572        | 4            | In->M2      |  | тот      |  |
|  |             |                                      | 8       | 587        | 4            | In->M2      |  | 101      |  |
|  | 2           | NO                                   | 9       | 793        | 7            | M4->M6      |  |          |  |
|  | 2           |                                      | 10      | 833        | 10           | M5->M6      |  |          |  |
|  | 3           | YES                                  | 11      | 709        | 6            | M1->M3      |  |          |  |
|  |             |                                      | 12      | 911        | 12           | M2->M3      |  |          |  |
|  | 4           | YES                                  | 13      | 662        | 4            | M3->M7      |  |          |  |
|  |             |                                      | 14      | 807        | 6            | M6->M7      |  |          |  |
|  | 5           | YES                                  | 15      | 655        | 4            | M7->Out     |  |          |  |
|  |             |                                      |         |            |              |             |  |          |  |

| PCR Routing Results - Online Method                 |                  |      |      |                           |            |                        |                               |  |  |
|-----------------------------------------------------|------------------|------|------|---------------------------|------------|------------------------|-------------------------------|--|--|
| Pouting                                             | Cyclic Routing   |      |      | Routing Sub-Problem Stats |            |                        |                               |  |  |
| Sub-Problem                                         | Computation (ms) |      |      | Route Longest Route       |            | Route Lengths          | Poute Description             |  |  |
| Sub-Problem                                         | Avg              | Min  | Max  | Comp. (ms)                | (# cycles) | (# cycles)             | Route Description             |  |  |
| 1                                                   | 0.17             | 0.00 | 2.23 | 4.85                      | 7          | 6, 6, 6, 6, 7, 7, 7, 7 | In->M(1, 1, 2, 4, 2, 4, 5, 5) |  |  |
| 2                                                   | 0.20             | 0.12 | 0.37 | 5.89                      | 30         | 12, 30, 30             | M5->M6, M4->M6, M2->S2        |  |  |
| 3                                                   | 0.13             | 0.09 | 0.23 | 1.62                      | 12         | 12                     | S2->M3                        |  |  |
| 4                                                   | 0.09             | 0.06 | 0.14 | 1.07                      | 12         | 12                     | M6->M7                        |  |  |
| 5                                                   | 0.02             | 0.00 | 0.11 | 0.41                      | 6          | 6                      | M7->Out                       |  |  |
| TOTALS:                                             | 0.12             | 0.00 | 2.23 | 13.83                     | 67         | 154                    | -                             |  |  |
|                                                     | AVG              | MIN  | MAX  | SUM                       | SUM        | SUM                    |                               |  |  |
|                                                     |                  |      |      |                           |            |                        |                               |  |  |
| M1<br>10s<br>5s<br>5s<br>5s<br>5s<br>5s<br>5s<br>5s |                  |      |      |                           |            |                        |                               |  |  |
| M3<br>6s<br>M5<br>5c                                |                  |      |      |                           |            |                        |                               |  |  |

#### Tiled topology showing chambers, streets, intersections, rotaries and I/Os



-Similar to multi-proc network -Known methods for deadlock-free routing in

multi-proc networks

- Droplets travel from chamber to chamber via XY routing, which prevents deadlock by prohibiting turns in potential cycles





Performed routing stress test on DMFBs of varying size. 5 droplets were input at each input port, traveled to 2 random chambers each, and then output at a random output port. -2x2 & 3x3 can run in real-time on a

| Random Traffic Stress Test - Online Method |             |                 |                   |                            |      |       |  |  |  |  |
|--------------------------------------------|-------------|-----------------|-------------------|----------------------------|------|-------|--|--|--|--|
|                                            | Gene        | ral Simulation/ | Routing Stats     | Cyclic Routing Computation |      |       |  |  |  |  |
| UNIFE SIZE                                 | # Droplets/ | Completion      | Total Computation | Avg                        | Min  | Max   |  |  |  |  |
| # Champers)                                | #Routes     | Time (s)        | Time (ms)         | (ms)                       | (ms) | (ms)  |  |  |  |  |
| 2x2                                        | 40/120      | 2.19            | 235.77            | 1.08                       | 0.02 | 4.86  |  |  |  |  |
| 3x3                                        | 60/180      | 2.33            | 514.88            | 2.21                       | 0.02 | 8.23  |  |  |  |  |
| 4x4                                        | 80/240      | 2.26            | 809.57            | 3.58                       | 0.03 | 12.13 |  |  |  |  |
| 8x8                                        | 160/480     | 3.69            | 2780.24           | 7.53                       | 0.03 | 36.39 |  |  |  |  |
|                                            |             |                 |                   |                            |      |       |  |  |  |  |

-2x2 & 5x5 can run in real-time on a 100Hz DMFB driven by the Atom<sup>™</sup> -4x4 & 8x8 are too complex for the Atom<sup>™</sup> to compute in real-time, but can quickly route up to 160 droplets simultaneously in less than 4s

## Contact

Dan Grissom(grissomd@cs.ucr.edu)Philip Brisk(philip@cs.ucr.edu)Computer Science Department, Bourns College of EngineeringUniversity of California, Riverside