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ABSTRACT 

We introduce an online interpreter to execute biochemical assays 

on droplet-based digital microfluidic biochips (DMFBs). Online 

interpretation enables adaptivity, e.g., response to faults during 

assay execution, variable-latency assay operations, and concurrent 

workloads whose composition is not known statically. Our online 

method routes droplets dynamically, making decisions in 

milliseconds while running on a low-cost Intel Atom™ processor.  

Categories and Subject Descriptors 

B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Performance 

and Reliability]: Performance Analysis and Design Aids; J.3 

[Life and Medical Sciences]: Biology and Genetics, Health 

General Terms 

Algorithms, Design, Performance 

Keywords 

Digital Microfluidic Biochip (DMFB), Electrowetting-on-

Dielectric (EWoD), Virtual Architecture, Routing, Deadlock. 

1. INTRODUCTION 
Digital microfluidic biochips (DMFBs) are cyber-physical MEMS 

devices that manipulate droplets of liquid on a 2-dimensional grid 

(Fig. 1). A DMFB is a planar array of indistinguishable cells; a 

cell is the abstraction of a square region on top of each electrode. 

Cells can perform basic operations—e.g., droplet movement, 

merging, mixing, splitting, storage—that form building blocks for 

larger chemical reactions called assays.  

DMFBs will pave the way for programmable chemistry: the 

chemist of the future will specify assays using domain-specific 

languages. The assay representation is compiled into a sequence 

of droplet actuation cycles. Each cycle specifies a set of signals to 

be sent to the DMFB to actuate droplet movement. A program 

running on a computing device connected to the DMFB traverses 

the sequence of cycles, sends the appropriate signals for each 

cycle, and holds the signals for an appropriate period of time to 

ensure that all droplets complete their movements.   

Historically, DMFB compilation has been performed offline. This 

works fine under ideal circumstances in which the behavior of the 

system can be characterized statically, and execution proceeds 

without error; however, it cannot handle any form of variability. 

This paper introduces online assay interpretation for DMFBs, as 

an alternative to static compilation. Online interpretation will 

enable interesting new capabilities in the areas of control flow and 

dynamic scheduling. For instance, a particular assay could be 

executed based on the results of a previous assay or environmental 

condition. Other potential benefits include the ability to detect and 

respond dynamically to faults or to dynamically adjust a schedule 

to account for variable-latency operations [2].   

Static compilation methods employ long-running algorithms that 

produce highly optimized results, effectively minimizing assay 

completion time. Online interpretation, in contrast, must overlap 

algorithmic decision-making steps with the execution of each 

cycle. A DMFB typically runs at around 100 Hz, meaning that 

each cycle lasts for around 10ms. If the online decision-making 

algorithm runs for longer than 10ms, then the length of the cycle 

must be extended, thereby increasing assay execution time.  

A secondary consideration is the cost of the computing device that 

is connected to the DMFB, especially when integrated into 

products that perform low-cost portable point-of-care diagnostics. 

Ideally, 10ms runtimes could be achieved on low-cost battery-

operated embedded computers, as opposed to higher-performance 

power-hungry desktop PCs. The interpreter described here meets 

these constraints on a single-threaded Intel Atom™ processor. 

2. RELATED WORK 
Static DMFB compilers must solve three NP-complete problems: 

scheduling [7], placement [8], and routing [1, 3, 5, 9]. High 

quality solutions are achieved using long-running iterative 

improvement algorithms [7, 8] or optimally via Integer Linear 

Programming [7] or A* Search [1].  

Obviously, these methods do not meet the real-time constraints 

imposed by the interpretation framework. For example, the 

BioRoute router reports droplet routing times as low as 40ms on a 

1.2 GHz Sun Blade-2000 machine with 8GB of memory. Our 

interpreter, in contrast, is able to meet the timing constraints while 

running on a low-cost Intel Atom™ processor. 

 

(a)                                                       (b) 

Figure 1. (a) DMFB with a 2D array of control electrodes; (b) DMFB 

cross-section: a droplet is centered on top of electrode CE2 and 

overlaps adjacent electrodes, CE1 and CE3. A voltage applied to 

CE1 or CE3 induces motion to the left or right. Other feasible 

operations include droplet splitting, merging, mixing, and storage. 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA. 
Copyright 2012 ACM 978-1-4503-1244-8/12/05…$10.00. 

 



Griffith and Akella [5] impose a virtual architecture on the 

DMFB that restricts the functions that different cells can perform. 

Similar to the layout of a city, the DMFB is organized into streets, 

intersections, rotaries (e.g., traffic circles), and city blocks (where 

all assay operations happen). This limits the flexibility of the 

DMFB, but facilitates the adaptation of network routing 

algorithms for droplet transport. To prevent deadlock, they limit 

the injection rate of droplets into the system. Our interpreter takes 

a similar approach, but adopts mesh network deadlock-free 

routing algorithms [4], rather than limiting the injection rate. 

3. VIRTUAL ARCHITECTURE  
As shown in Fig. 2, our interpreter imposes a virtual architecture 

onto the DMFB, and exploits its restrictive structure to achieve 

fast algorithmic runtimes. Input and output reservoirs are placed 

on the perimeter of the DMFB.  

The city blocks are referred to as (reaction) chambers, because all 

assay operations occur there. Each chamber can perform one 

operation (e.g., merging, mixing or splitting) or can store up to 

four droplets. External devices such as heaters or optical detectors 

can be affixed to the DMFB above or below a chamber.  

All streets are 1-way; eight 1-one streets come together at rotaries 

(Fig. 2(a)), which offer an abstraction like a network router. 

Droplets travel clockwise through the rotary. Without loss of 

generality, a droplet traveling north that enters a rotary could 

continue straight, or turn left (west) or right (east); our routing 

algorithms do not allow droplets to reverse directions, so a droplet 

would not enter a rotary traveling north and then exit traveling 

south.  

Each chamber and the four adjacent streets surrounding it is called 

a tile, as shown in Fig. 2(b). For a 5x5 chamber size, each tile is a 

10x10 array of cells. Tiles are repeated to form a virtual 

architecture, e.g., Fig. 2(a) shows a 2x2 array of tiles.   

3.1 Simplifying Placement and Routing 
The virtual architecture simplifies the placement and routing steps 

of an assay as follows: 

Placement: we sacrifice the ability to place an assay operation at 

any DMFB location. Instead, the interpreter dynamically binds 

operations to chambers.  

Routing: traditional routers move droplets across the DMFB in a 

chaotic and unorderly fashion while ensuring separation between 

all droplets at all times. The DMFB imposes a city-like network of 

streets that all droplets must follow. This limits the number of 

routes between each source-destination, which simplifies routing.  

3.2 Intermediate Bytecode Language 
Conceptually, the set of signals sent to a DMFB during each cycle 

can be treated like a machine language. If the DMFB is comprised 

of N cells, then N binary signals are sent to the device (e.g., a ‘1’ 

activates an electrode, and a ‘0’ leaves it off).  

The virtual architecture is a virtual machine with its own 

intermediate bytecode language that operates at a higher-level of 

abstraction than the DMFB machine language described above. 

There are two types of bytecode instructions: operations (O-type) 

and transport (T-type):  

Each O-type instruction has the form (opcode, chamber-id), where 

the opcode specifies the operation to perform, and the chamber-id 

specifies which chamber to perform the operation. All chambers 

support four basic opcodes: {start-mix, stop-mix, split}. If a 

chamber has an external device affixed to the outside of the chip, 

such as a heater or detector, then it may support additional 

opcodes such as {heater-on, heater-off, detector-on, detector-off}.  

Each T-Type instruction has the form (droplet-id, src, dst); the 

droplet-id specifies a droplet originating at the source (src), and 

the instruction is to transport the droplet to the destination (dst). 

The source may be a chamber or an input reservoir, and the 

destination may be a chamber or an output or waste reservoir. The 

droplet-id field is necessary to handle the situation where a 

chamber is storing multiple droplets, but can be dropped when 

convenient: an input reservoir generates a new droplet, so no 

droplet-id field is necessary; similarly, if the chamber only 

contains one droplet, then its id is implicitly known. If a T-type 

instruction transports a droplet to a chamber, it is stored 

implicitly, until an O-type instruction initiates an operation. 

4. ONLINE INTERPRETER 
Assays are specified as directed acyclic precedence graphs (DAG) 

[7], which are input to the interpreter. The interpreter is 

decomposed into two phases: a virtual machine layer (VML), 

which schedules the DAG and binds its operations to chambers, 

converting the assay to an intermediate bytecode representation. 

The droplet transportation protocol (DTP) converts each T-type 

instruction into a path from source-to-destination, and moves all 

droplets along their respective paths one cell at a time.  

The DTP converts the intermediate byte code representation of the 

assay into machine language: the cells that are activated during 

each cycle can be derived from the transport information, coupled 

with the state of each chamber (as set by prior O-type 

instructions). For example, if a chamber is performing a mixing 

operation, the cells to activate (at each cycle) are known.     

The interpreter can run in either online or offline mode. In offline 

mode, all scheduling, binding, and routing decisions are made up-

front, and the output is a statically compiled sequence of cycles. 

In online mode, the VML and DTP collaborate to interpret the 

assay in real-time. The VML schedules and binds assay nodes 

dynamically, generating O-type instructions (for the operations it 

wants to perform) and T-type instructions (to transport the 

droplets to their appropriate destinations before the operations can 

commence). In real-time, the DTP executes T-type instructions 

one cell at a time, and informs the VML when each droplet arrives 

at its destination. The VML executes each O-type instruction 

when all of the droplets on which the operation depends (as 

specified by the DAG), arrive at their destinations. For example, 

when two droplets are set to be mixed, the DTP must route both 

droplets to the chamber before the VML can execute the O-type 

instruction that initiates the mixing operation.  

 

(a)                                                  (b) 

Figure 2. (a) A 2x2 virtual architecture represented as an array of 

tiles (separated by double, dashed, black lines) showing potential I/O 

locations; (b) A tile, comprised of a work chamber (‘C’), 4 streets, 

and 4 intersections (‘i’).  

 



4.1 Virtual Machine Layer (VML) 
The VML uses modified list scheduling (MLS) [7] coupled with a 

fast and simple binder based on the left-edge algorithm [6]. MLS 

was chosen because of its speed and simplicity. The main goal of 

the left edge binder is to minimize storage overhead. For example, 

if two droplets are to be stored, it is better to store them together 

in one chamber, rather than separately in two chambers. Storing 

them together maximizes the number of free chambers that 

become available to perform other assay operations concurrently.  

4.2 Droplet Transportation Protocol (DTP) 
The primary job of the DTP is to select a path for each droplet and 

then to route all of the droplets along their respective paths while 

preventing interference among droplets. If two droplets occupy 

adjacent cells, they will mix. To prevent this, an interference 

region is defined to be the cells directly adjacent to a droplet (Fig. 

3(a)). When a droplet moves, its interference region expands to 

include the union of the source and destination cells (Fig. 3(b)). 

As long as no droplet enters the interference region of another, 

undesired mixing is prevented [1, 3, 5, 9]. 

The DTP must prevent deadlocks from occurring when multiple 

droplets are in transport at the same time. To accomplish this goal, 

we adapted deadlock-free routing algorithms from mesh networks. 

Our implementation uses a variant of XY routing, but other 

deadlock-free routing algorithms can also work. Conceptually, 

XY routing moves each droplet from its source position (x1, y1) to 

its destination position (x2, y2), by first traveling along the x-axis 

to (x2, y1) and then traveling along the y-axis to complete the 

route. XY routing is deterministic and non-adaptive, but worked 

well enough for our purposes. XY routing prevents specific turns 

from occurring during the route, as shown in Fig. 3(c).  

Several modifications to XY routing are required to account for 

rotaries (whose internal structure is quite different from mesh 

routers), the I/O reservoirs on the perimeter of the chip, and the 

process by which droplets enter and exit chambers. First, we need 

to introduce some terminology: the four streets and intersections 

surrounding a chamber form a counter-clockwise traffic circle 

called a chamber rotary (Fig. 4(a)). In Fig. 4(b), exchange 

rotaries, which allow droplets to move from one tile to its 

neighbors, are formed between tiles (earlier, we referred to them 

simply as “rotaries”). Larger counter-clockwise cycles can also be 

formed by combining multiple chamber rotaries (Fig. 4(b)).  

We now add four additional rules to the basic XY routing 

algorithm to prevent deadlock in the DMFB’s virtual architecture: 

Chamber Entries and Exits: Droplets may not make prohibited 

turns when leaving source and entering destination chambers. To 

ensure routability in light of prohibited turns, entries and exits are 

placed on all four sides of the chamber.  

Droplet I/O: To prevent forbidden turns, input, output, and waste 

reservoirs are placed on the DMFB perimeter and the allowable 

turns that a droplet may make at an entry point are limited.  

Exchange Rotaries: In Fig. 5(a), a droplet clips an exchange 

rotary if it touches one intersection before leaving. In Fig. 5(b) 

and (c), a droplet passes through an exchange rotary if it touches 

at least two intersections. As droplets move clockwise within an 

exchange rotary, a clip implies a left turn, and passing through 

implies that the droplet continues traveling straight or turns right. 

Fig. 5(d) depicts exchange rotary deadlock when four droplets 

attempt to pass through; no droplet can progress without violating 

spacing constraints (Figs. 3(a) and (b)). In Fig. 5(e), deadlock is 

eliminated if at least one droplet clips the exchange rotary. To 

prevent deadlock in an exchange rotary, at most three droplets 

that wish to pass through may enter concurrently.  

Chamber Rotaries: Fig. 6(a) illustrates chamber rotary deadlock. 

Droplet 16 creates a dependency chain which causes deadlock; 

however, if it does not enter the chamber rotary, then a bubble is 

created which ensures that the sequence of droplets can proceed, 

starting with Droplet 1. To prevent deadlock in a chamber rotary, 

no droplet may enter an exchange rotary unless the system can 

guarantee that there is space for it to exit into the next street; if 

the street is full, then the droplet must wait for space to become 

available prior to entering the exchange rotary. Droplets 

attempting to enter a street from an adjacent chamber or input 

reservoir must also wait until that street has room; in Fig. 6(b), 

Droplets 1, 2, 3, 5 and 6 must wait for this reason.  

 

       (a)           (b) 

Figure 4. (a) A chamber rotary (the cycle formed by four streets and 

intersections) (b) An exchange rotary (the clockwise inner loop) and 

counter-clockwise turns (outer loop) of a tiled design. 

 

   

           (a)                  (b)                  (c)                   (d)                    (e)     

Figure 5. (a) Clipping an exchange rotary (‘ER’); (b) Passing 

through an ER while traveling straight; (c) Passing through an ER 

while turning right; (d) Deadlocked ER; (e) Non-deadlocked ER. 

                     

             (a)                 (b)     (c) 

Figure 3. (a) The interference region (‘I’) of a droplet at the 

beginning of a cycle; (b) the interference region at the end of a cycle; 

(c) prohibited turns (white) in XY routing. 

       

                        (a)                                                               (b)  

Figure 6. (a) Deadlock in a chamber rotary; (b) Chamber rotary with 

street capacity rules being enforced to prevent deadlock. 



5. EXPERIMENTAL RESULTS 

5.1 Experimental Setup 
We implemented our interpreter in C++. We compare against a 

C++ implementation of a static compilation framework that uses 

modified list scheduling [7], Su and Chakrabarty’s placer [8], and 

Cho and Pan’s high-performance droplet router [3]. We assume a 

droplet actuation frequency of 100 Hz, as in other works [9].  

We evaluated the system on an Inforce SYS9402-01 development 

board, with a 1GHz Intel Atom™ E638 processor and 512MB 

RAM, running TimeSys 11 Linux. We chose a low-end processor 

to show that our interpreter performs well on cheap hardware.  

5.2 Experiments Performed 
We used the PCR sequencing graph, shown in Fig. 7, for our 

experiments. Droplet input times are assumed to be 0s. We 

executed PCR using the two synthesis methods described above. 

Before obtaining results, we optimized the I/O locations for both 

methods to ensure that neither method had an unfair advantage. 

Our online interpreter was run on a 20x20 DMFB (2x2 tile array) 

and the traditional method on a 17x17 DMFB. 

We also ran a stress test on the DTP under a heavy transport load. 

We generated random traffic on 2x2, 3x3, 4x4, and 8x8 arrays of 

tiles. For each array, we inject 5 droplets at each input reservoir as 

quickly as possible. Each droplet stops at two random chambers 

before exiting at a random output reservoir. These tests required 

the DTP to route up to 160 droplets concurrently.  

5.3 Results and Discussion 
Table 1 compares the online interpreter (ON) with the offline 

compiler (OFF). A routing sub-problem is defined as the time 

when at least one droplet is routed between assay operations. ON 

successfully routed the PCR assay in 14ms, while OFF required 

10.66 seconds, 769 times longer. The lengths of the computed 

routes were 670ms and 520ms, respectively; when accounting for 

scheduling, the total assay completion times were 19.67s and 

19.52s respectively. Thus, the total slowdown experienced by our 

online interpreter was less than 1% of the total execution time. 

Furthermore, the maximum time ON spent computing routes 

during any cycle was 2.33ms, well within the 10ms droplet-

actuation cycle of a 100Hz DMFB. 

Table 2 shows the results of the random traffic stress test. For the 

largest test, the DTP required 2.7s to compute 480 routes (3 per 

droplet). The offline method took 10.6s to compute 15 routes for a 

smaller example. Clearly, the offline router would be a poor 

choice for use as an interpreter, despite the fact that it produces 

higher quality routes than the DTP.   

6. CONCLUSION 
This paper introduced an online assay interpreter for DMFBs and 

compared it with a static compiler. The router (DTP) can compute 

routes within milliseconds on low-powered commodity hardware, 

and the overall impact on assay completion time is negligible. The 

virtual architecture greatly simplifies placement and routing, but it 

sacrifices route optimality. A secondary drawback of the virtual 

architecture is that it is not area efficient, although this is offset by 

its ability to guarantee deadlock-free routing.  

Here, we have established the feasibility of online interpretation. 

In the future, we plan to exploit the interpreter to introduce new 

capabilities to the DMFB, such as the ability to execute assays 

with control flow, to handle variable-latency operations, and to 

dynamically detect faulty cells and reconfigure the virtual 

architecture around them. Lastly, we plan to formally verify the 

correctness of our criteria for deadlock free routing, as proofs 

were omitted from this paper due to space limitations.  
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Table 1. PCR droplet routing results for online vs. offline router. 

 

 

 

Table 2. Random traffic results for our online droplet router. 

 

 

Figure 7. PCR sequencing graph annotated with mixing times. 


