
A High-Performance Online Assay Interpreter

for Digital Microfluidic Biochips

Daniel Grissom, Philip Brisk
Department of Computer Science and Engineering

University of California, Riverside
{grissomd, philip}@cs.ucr.edu

ABSTRACT

We introduce an online interpreter to execute biochemical assays

on droplet-based digital microfluidic biochips (DMFBs). Online

interpretation enables adaptivity, e.g., response to faults during

assay execution, variable-latency assay operations, and concurrent

workloads whose composition is not known statically. Our online

method routes droplets dynamically, making decisions in

milliseconds while running on a low-cost Intel Atom™ processor.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Performance

and Reliability]: Performance Analysis and Design Aids; J.3

[Life and Medical Sciences]: Biology and Genetics, Health

General Terms

Algorithms, Design, Performance

Keywords

Digital Microfluidic Biochip (DMFB), Electrowetting-on-

Dielectric (EWoD), Virtual Architecture, Routing, Deadlock.

1. INTRODUCTION
Digital microfluidic biochips (DMFBs) are cyber-physical MEMS

devices that manipulate droplets of liquid on a 2-dimensional grid

(Fig. 1). A DMFB is a planar array of indistinguishable cells; a

cell is the abstraction of a square region on top of each electrode.

Cells can perform basic operations—e.g., droplet movement,

merging, mixing, splitting, storage—that form building blocks for

larger chemical reactions called assays.

DMFBs will pave the way for programmable chemistry: the

chemist of the future will specify assays using domain-specific

languages. The assay representation is compiled into a sequence

of droplet actuation cycles. Each cycle specifies a set of signals to

be sent to the DMFB to actuate droplet movement. A program

running on a computing device connected to the DMFB traverses

the sequence of cycles, sends the appropriate signals for each

cycle, and holds the signals for an appropriate period of time to

ensure that all droplets complete their movements.

Historically, DMFB compilation has been performed offline. This

works fine under ideal circumstances in which the behavior of the

system can be characterized statically, and execution proceeds

without error; however, it cannot handle any form of variability.

This paper introduces online assay interpretation for DMFBs, as

an alternative to static compilation. Online interpretation will

enable interesting new capabilities in the areas of control flow and

dynamic scheduling. For instance, a particular assay could be

executed based on the results of a previous assay or environmental

condition. Other potential benefits include the ability to detect and

respond dynamically to faults or to dynamically adjust a schedule

to account for variable-latency operations [2].

Static compilation methods employ long-running algorithms that

produce highly optimized results, effectively minimizing assay

completion time. Online interpretation, in contrast, must overlap

algorithmic decision-making steps with the execution of each

cycle. A DMFB typically runs at around 100 Hz, meaning that

each cycle lasts for around 10ms. If the online decision-making

algorithm runs for longer than 10ms, then the length of the cycle

must be extended, thereby increasing assay execution time.

A secondary consideration is the cost of the computing device that

is connected to the DMFB, especially when integrated into

products that perform low-cost portable point-of-care diagnostics.

Ideally, 10ms runtimes could be achieved on low-cost battery-

operated embedded computers, as opposed to higher-performance

power-hungry desktop PCs. The interpreter described here meets

these constraints on a single-threaded Intel Atom™ processor.

2. RELATED WORK
Static DMFB compilers must solve three NP-complete problems:

scheduling [7], placement [8], and routing [1, 3, 5, 9]. High

quality solutions are achieved using long-running iterative

improvement algorithms [7, 8] or optimally via Integer Linear

Programming [7] or A* Search [1].

Obviously, these methods do not meet the real-time constraints

imposed by the interpretation framework. For example, the

BioRoute router reports droplet routing times as low as 40ms on a

1.2 GHz Sun Blade-2000 machine with 8GB of memory. Our

interpreter, in contrast, is able to meet the timing constraints while

running on a low-cost Intel Atom™ processor.

(a) (b)

Figure 1. (a) DMFB with a 2D array of control electrodes; (b) DMFB

cross-section: a droplet is centered on top of electrode CE2 and

overlaps adjacent electrodes, CE1 and CE3. A voltage applied to

CE1 or CE3 induces motion to the left or right. Other feasible

operations include droplet splitting, merging, mixing, and storage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05…$10.00.

Griffith and Akella [5] impose a virtual architecture on the

DMFB that restricts the functions that different cells can perform.

Similar to the layout of a city, the DMFB is organized into streets,

intersections, rotaries (e.g., traffic circles), and city blocks (where

all assay operations happen). This limits the flexibility of the

DMFB, but facilitates the adaptation of network routing

algorithms for droplet transport. To prevent deadlock, they limit

the injection rate of droplets into the system. Our interpreter takes

a similar approach, but adopts mesh network deadlock-free

routing algorithms [4], rather than limiting the injection rate.

3. VIRTUAL ARCHITECTURE
As shown in Fig. 2, our interpreter imposes a virtual architecture

onto the DMFB, and exploits its restrictive structure to achieve

fast algorithmic runtimes. Input and output reservoirs are placed

on the perimeter of the DMFB.

The city blocks are referred to as (reaction) chambers, because all

assay operations occur there. Each chamber can perform one

operation (e.g., merging, mixing or splitting) or can store up to

four droplets. External devices such as heaters or optical detectors

can be affixed to the DMFB above or below a chamber.

All streets are 1-way; eight 1-one streets come together at rotaries

(Fig. 2(a)), which offer an abstraction like a network router.

Droplets travel clockwise through the rotary. Without loss of

generality, a droplet traveling north that enters a rotary could

continue straight, or turn left (west) or right (east); our routing

algorithms do not allow droplets to reverse directions, so a droplet

would not enter a rotary traveling north and then exit traveling

south.

Each chamber and the four adjacent streets surrounding it is called

a tile, as shown in Fig. 2(b). For a 5x5 chamber size, each tile is a

10x10 array of cells. Tiles are repeated to form a virtual

architecture, e.g., Fig. 2(a) shows a 2x2 array of tiles.

3.1 Simplifying Placement and Routing
The virtual architecture simplifies the placement and routing steps

of an assay as follows:

Placement: we sacrifice the ability to place an assay operation at

any DMFB location. Instead, the interpreter dynamically binds

operations to chambers.

Routing: traditional routers move droplets across the DMFB in a

chaotic and unorderly fashion while ensuring separation between

all droplets at all times. The DMFB imposes a city-like network of

streets that all droplets must follow. This limits the number of

routes between each source-destination, which simplifies routing.

3.2 Intermediate Bytecode Language
Conceptually, the set of signals sent to a DMFB during each cycle

can be treated like a machine language. If the DMFB is comprised

of N cells, then N binary signals are sent to the device (e.g., a ‘1’

activates an electrode, and a ‘0’ leaves it off).

The virtual architecture is a virtual machine with its own

intermediate bytecode language that operates at a higher-level of

abstraction than the DMFB machine language described above.

There are two types of bytecode instructions: operations (O-type)

and transport (T-type):

Each O-type instruction has the form (opcode, chamber-id), where

the opcode specifies the operation to perform, and the chamber-id

specifies which chamber to perform the operation. All chambers

support four basic opcodes: {start-mix, stop-mix, split}. If a

chamber has an external device affixed to the outside of the chip,

such as a heater or detector, then it may support additional

opcodes such as {heater-on, heater-off, detector-on, detector-off}.

Each T-Type instruction has the form (droplet-id, src, dst); the

droplet-id specifies a droplet originating at the source (src), and

the instruction is to transport the droplet to the destination (dst).

The source may be a chamber or an input reservoir, and the

destination may be a chamber or an output or waste reservoir. The

droplet-id field is necessary to handle the situation where a

chamber is storing multiple droplets, but can be dropped when

convenient: an input reservoir generates a new droplet, so no

droplet-id field is necessary; similarly, if the chamber only

contains one droplet, then its id is implicitly known. If a T-type

instruction transports a droplet to a chamber, it is stored

implicitly, until an O-type instruction initiates an operation.

4. ONLINE INTERPRETER
Assays are specified as directed acyclic precedence graphs (DAG)

[7], which are input to the interpreter. The interpreter is

decomposed into two phases: a virtual machine layer (VML),

which schedules the DAG and binds its operations to chambers,

converting the assay to an intermediate bytecode representation.

The droplet transportation protocol (DTP) converts each T-type

instruction into a path from source-to-destination, and moves all

droplets along their respective paths one cell at a time.

The DTP converts the intermediate byte code representation of the

assay into machine language: the cells that are activated during

each cycle can be derived from the transport information, coupled

with the state of each chamber (as set by prior O-type

instructions). For example, if a chamber is performing a mixing

operation, the cells to activate (at each cycle) are known.

The interpreter can run in either online or offline mode. In offline

mode, all scheduling, binding, and routing decisions are made up-

front, and the output is a statically compiled sequence of cycles.

In online mode, the VML and DTP collaborate to interpret the

assay in real-time. The VML schedules and binds assay nodes

dynamically, generating O-type instructions (for the operations it

wants to perform) and T-type instructions (to transport the

droplets to their appropriate destinations before the operations can

commence). In real-time, the DTP executes T-type instructions

one cell at a time, and informs the VML when each droplet arrives

at its destination. The VML executes each O-type instruction

when all of the droplets on which the operation depends (as

specified by the DAG), arrive at their destinations. For example,

when two droplets are set to be mixed, the DTP must route both

droplets to the chamber before the VML can execute the O-type

instruction that initiates the mixing operation.

(a) (b)

Figure 2. (a) A 2x2 virtual architecture represented as an array of

tiles (separated by double, dashed, black lines) showing potential I/O

locations; (b) A tile, comprised of a work chamber (‘C’), 4 streets,

and 4 intersections (‘i’).

4.1 Virtual Machine Layer (VML)
The VML uses modified list scheduling (MLS) [7] coupled with a

fast and simple binder based on the left-edge algorithm [6]. MLS

was chosen because of its speed and simplicity. The main goal of

the left edge binder is to minimize storage overhead. For example,

if two droplets are to be stored, it is better to store them together

in one chamber, rather than separately in two chambers. Storing

them together maximizes the number of free chambers that

become available to perform other assay operations concurrently.

4.2 Droplet Transportation Protocol (DTP)
The primary job of the DTP is to select a path for each droplet and

then to route all of the droplets along their respective paths while

preventing interference among droplets. If two droplets occupy

adjacent cells, they will mix. To prevent this, an interference

region is defined to be the cells directly adjacent to a droplet (Fig.

3(a)). When a droplet moves, its interference region expands to

include the union of the source and destination cells (Fig. 3(b)).

As long as no droplet enters the interference region of another,

undesired mixing is prevented [1, 3, 5, 9].

The DTP must prevent deadlocks from occurring when multiple

droplets are in transport at the same time. To accomplish this goal,

we adapted deadlock-free routing algorithms from mesh networks.

Our implementation uses a variant of XY routing, but other

deadlock-free routing algorithms can also work. Conceptually,

XY routing moves each droplet from its source position (x1, y1) to

its destination position (x2, y2), by first traveling along the x-axis

to (x2, y1) and then traveling along the y-axis to complete the

route. XY routing is deterministic and non-adaptive, but worked

well enough for our purposes. XY routing prevents specific turns

from occurring during the route, as shown in Fig. 3(c).

Several modifications to XY routing are required to account for

rotaries (whose internal structure is quite different from mesh

routers), the I/O reservoirs on the perimeter of the chip, and the

process by which droplets enter and exit chambers. First, we need

to introduce some terminology: the four streets and intersections

surrounding a chamber form a counter-clockwise traffic circle

called a chamber rotary (Fig. 4(a)). In Fig. 4(b), exchange

rotaries, which allow droplets to move from one tile to its

neighbors, are formed between tiles (earlier, we referred to them

simply as “rotaries”). Larger counter-clockwise cycles can also be

formed by combining multiple chamber rotaries (Fig. 4(b)).

We now add four additional rules to the basic XY routing

algorithm to prevent deadlock in the DMFB’s virtual architecture:

Chamber Entries and Exits: Droplets may not make prohibited

turns when leaving source and entering destination chambers. To

ensure routability in light of prohibited turns, entries and exits are

placed on all four sides of the chamber.

Droplet I/O: To prevent forbidden turns, input, output, and waste

reservoirs are placed on the DMFB perimeter and the allowable

turns that a droplet may make at an entry point are limited.

Exchange Rotaries: In Fig. 5(a), a droplet clips an exchange

rotary if it touches one intersection before leaving. In Fig. 5(b)

and (c), a droplet passes through an exchange rotary if it touches

at least two intersections. As droplets move clockwise within an

exchange rotary, a clip implies a left turn, and passing through

implies that the droplet continues traveling straight or turns right.

Fig. 5(d) depicts exchange rotary deadlock when four droplets

attempt to pass through; no droplet can progress without violating

spacing constraints (Figs. 3(a) and (b)). In Fig. 5(e), deadlock is

eliminated if at least one droplet clips the exchange rotary. To

prevent deadlock in an exchange rotary, at most three droplets

that wish to pass through may enter concurrently.

Chamber Rotaries: Fig. 6(a) illustrates chamber rotary deadlock.

Droplet 16 creates a dependency chain which causes deadlock;

however, if it does not enter the chamber rotary, then a bubble is

created which ensures that the sequence of droplets can proceed,

starting with Droplet 1. To prevent deadlock in a chamber rotary,

no droplet may enter an exchange rotary unless the system can

guarantee that there is space for it to exit into the next street; if

the street is full, then the droplet must wait for space to become

available prior to entering the exchange rotary. Droplets

attempting to enter a street from an adjacent chamber or input

reservoir must also wait until that street has room; in Fig. 6(b),

Droplets 1, 2, 3, 5 and 6 must wait for this reason.

 (a) (b)

Figure 4. (a) A chamber rotary (the cycle formed by four streets and

intersections) (b) An exchange rotary (the clockwise inner loop) and

counter-clockwise turns (outer loop) of a tiled design.

 (a) (b) (c) (d) (e)

Figure 5. (a) Clipping an exchange rotary (‘ER’); (b) Passing

through an ER while traveling straight; (c) Passing through an ER

while turning right; (d) Deadlocked ER; (e) Non-deadlocked ER.

 (a) (b) (c)

Figure 3. (a) The interference region (‘I’) of a droplet at the

beginning of a cycle; (b) the interference region at the end of a cycle;

(c) prohibited turns (white) in XY routing.

 (a) (b)

Figure 6. (a) Deadlock in a chamber rotary; (b) Chamber rotary with

street capacity rules being enforced to prevent deadlock.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup
We implemented our interpreter in C++. We compare against a

C++ implementation of a static compilation framework that uses

modified list scheduling [7], Su and Chakrabarty’s placer [8], and

Cho and Pan’s high-performance droplet router [3]. We assume a

droplet actuation frequency of 100 Hz, as in other works [9].

We evaluated the system on an Inforce SYS9402-01 development

board, with a 1GHz Intel Atom™ E638 processor and 512MB

RAM, running TimeSys 11 Linux. We chose a low-end processor

to show that our interpreter performs well on cheap hardware.

5.2 Experiments Performed
We used the PCR sequencing graph, shown in Fig. 7, for our

experiments. Droplet input times are assumed to be 0s. We

executed PCR using the two synthesis methods described above.

Before obtaining results, we optimized the I/O locations for both

methods to ensure that neither method had an unfair advantage.

Our online interpreter was run on a 20x20 DMFB (2x2 tile array)

and the traditional method on a 17x17 DMFB.

We also ran a stress test on the DTP under a heavy transport load.

We generated random traffic on 2x2, 3x3, 4x4, and 8x8 arrays of

tiles. For each array, we inject 5 droplets at each input reservoir as

quickly as possible. Each droplet stops at two random chambers

before exiting at a random output reservoir. These tests required

the DTP to route up to 160 droplets concurrently.

5.3 Results and Discussion
Table 1 compares the online interpreter (ON) with the offline

compiler (OFF). A routing sub-problem is defined as the time

when at least one droplet is routed between assay operations. ON

successfully routed the PCR assay in 14ms, while OFF required

10.66 seconds, 769 times longer. The lengths of the computed

routes were 670ms and 520ms, respectively; when accounting for

scheduling, the total assay completion times were 19.67s and

19.52s respectively. Thus, the total slowdown experienced by our

online interpreter was less than 1% of the total execution time.

Furthermore, the maximum time ON spent computing routes

during any cycle was 2.33ms, well within the 10ms droplet-

actuation cycle of a 100Hz DMFB.

Table 2 shows the results of the random traffic stress test. For the

largest test, the DTP required 2.7s to compute 480 routes (3 per

droplet). The offline method took 10.6s to compute 15 routes for a

smaller example. Clearly, the offline router would be a poor

choice for use as an interpreter, despite the fact that it produces

higher quality routes than the DTP.

6. CONCLUSION
This paper introduced an online assay interpreter for DMFBs and

compared it with a static compiler. The router (DTP) can compute

routes within milliseconds on low-powered commodity hardware,

and the overall impact on assay completion time is negligible. The

virtual architecture greatly simplifies placement and routing, but it

sacrifices route optimality. A secondary drawback of the virtual

architecture is that it is not area efficient, although this is offset by

its ability to guarantee deadlock-free routing.

Here, we have established the feasibility of online interpretation.

In the future, we plan to exploit the interpreter to introduce new

capabilities to the DMFB, such as the ability to execute assays

with control flow, to handle variable-latency operations, and to

dynamically detect faulty cells and reconfigure the virtual

architecture around them. Lastly, we plan to formally verify the

correctness of our criteria for deadlock free routing, as proofs

were omitted from this paper due to space limitations.

7. ACKNOWLEDGMENTS
This work was supported in part by NSF Grant CNS-1035603.

Daniel Grissom was supported by an NSF Graduate Research

Fellowship.

8. REFERENCES
[1] K. F. Böhringer. Modeling and controlling parallel tasks in droplet-

based microfluidic systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(2): 334-344,

February, 2006.

[2] K. Chakrabarty, P. Pop, and T-Y. Ho. Digital microfluidic biochips:

recent research and emerging challenges. In Proc. 9th International
Conference on Hardware-Software Codesign and System Synthesis

(CODES-ISSS), pp. 335-344, Taipei, Taiwan, October 9-14, 2011.

[3] M. Cho and D. Z. Pan. A high-performance droplet router for digital
microfluidic biochips. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 27(10): 1714-1724

November, (2008).

[4] W. J. Dally and B. P. Towles. Principles and practices of
interconnection networks. Morgan Kaufammn, 2004.

[5] E. J. Griffith, S. Akella, and M. K. Goldberg. Performance
characterization of a reconfigurable planar-array digital microfluidic

system. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 25(2): 345-357, February, 2006.

[6] F. J. Kurdahi and A. C. Parker. REAL: a program for Register
Allocation. In Proc. ACM/IEEE Design Automation Conference

(DAC), pp. 210-215, Miami, FL, USA, June 28-July 1, 1987.

[7] F. Su and K. Chakrabarty. High-level synthesis of digital
microfluidic biochips. ACM Journal on Emerging Technologies in

Computing Systems, 3(4): article #16, January, 2008.

[8] F. Su and K. Chakrabarty. Module placement for fault-tolerant
microfluidics-based biochips. ACM Transactions on Design

Automation of Electronic Systems, 11(3):682-710, July, 2006.

[9] P-H. Yuh, C-L. Yang, and Y-W. Chang. BioRoute: a network-flow-

based routing algorithm for the synthesis of digital microfluidic
biochips. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 27(11): 1928-1941, November,

2008.

Table 1. PCR droplet routing results for online vs. offline router.

Table 2. Random traffic results for our online droplet router.

Figure 7. PCR sequencing graph annotated with mixing times.

