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ABSTRACT 

As digital microfluidic biochips (DMFBs) have matured over the 

last decade, efforts have been made to 1.) reduce the cost, and 2.) 

produce general-purpose chips. While work done to generalize 

DMFBs typically depends on the flexibility of individually 
controlled electrodes, such devices have high wiring complexity, 

which requires costly multi-layer printed circuit boards (PCBs). In 

contrast, pin-constrained DMFBs reduce the wiring complexity, 

but reduce the flexibility of droplet coordination. We present a 

field-programmable pin-constrained DMFB that leverages the 
cost-savings of pin-constrained designs, but is general-purpose, 

rather than assay-specific. We show that with just a few more pins 

than the state-of-the-art pin-constrained designs, we can execute 

arbitrary assays almost as fast as the most recent general-purpose 

DMFB designs. 

Categories and Subject Descriptors  

B.7.2 [Integrated Circuits]: Design Aids; J.3 [Life and Medical 
Sciences]: Biology and Genetics, Health 

General Terms  

Algorithms, Design, Performance. 

Keywords 

Digital Microfluidic Biochip (DMFB), Laboratory-on-Chip 

(LoC), Pin-Constrained, Field-Programmable. 

1. INTRODUCTION 
This paper presents a design for a field-programmable, pin-

constrained digital microfluidic biochip  (DMFB). Just as a field-
programmable gate array (FPGA) can be programmed by an end-

user in the “field,” a field programmable pin-constrained DMFB 

can be programmed to execute any assay (biochemical protocol) 

after it has been designed and manufactured. In contrast, prior pin-

constrained DMFBs have been assay-specific [9][17].  

Direct-addressing DMFBs provide independent control over each 

electrode; these devices are costly  because the large number of 
control inputs and high wiring complexity increases the number of 

printed circuit board (PCB) layers. Pin-constrained DMFBs, in 

contrast, have fewer control inputs and low wiring complexity, 

but lack flexibility. This paper introduces the first pin-constrained 

DMFB with sufficient flexibility to enable field-programmability.   

1.1 DMFB Technology Overview 

1.1.1 Background: Physical Droplet Manipulation 
DMFBs execute assays by manipulating nanoliter-sized droplets 

of fluid. DMFBs are typically based on a phenomenon known as 
electrowetting [11]. An electrowetting-based DMFB, as seen in 

Figure 1, consists of a top and bottom plate coated with a 

hydrophobic layer. The bottom plate has an array of droplet-sized 

control electrodes, while the top plate has a single conducting 

electrode that spans the entire array of control electrodes. Each 
droplet is sandwiched between the bottom and top plates and will 

hold its place if its underlying electrode remains activated.  

In Figure 1(b), a droplet overlaps neighboring electrodes; if a 

neighboring electrode is activated, the droplet will begin to flow 

toward the newly activated electrodes. Thus, if CE3 is activated 

and CE2 is simultaneously deactivated, the entire droplet will 

move to cover CE3. As seen in Figure 2, with the proper 
sequence of electrode activations, several basic microfluidic 

operations can be performed. Sensor-based detection operations 

execute by moving a droplet to a detector (placed above an 

electrode) and storing the droplet there. Dispense and output 

operations are performed by I/O reservoirs on the perimeter.  

If a droplet is not centered over or adjacent to any activated 
electrodes, it will drift across the DMFB in an undetermined and 

unpredictable manner.  

1.1.2 Background: High-level Assay Synthesis 
Figure 3 illustrates the process of synthesizing an assay onto a 

DMFB. A directed acyclic graph (DAG) represents the assay; 

each node represents a microfluidic operation (i.e., dispense, 

output, split, mix/merge, detect), while the edges represent 
dependencies and order of operations (e.g., in Figure 3, M1 

cannot be executed until I1 and I2 are complete).  
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(a)                                                            (b) 

Figure 1. (a) Planar array of electrodes; (b) Cross-sectional view of 
electrode array. 

 

 

Figure 2. Basic microfluidic operations form the building blocks for 
assays to be executed on an array of electrodes. 

 



The DAG is scheduled such that each operation has a specific 

start and stop time-step; a time-step is the basic scheduling unit 

for operations and usually lasts for 1s or 2s. Next, the placer 
selects a specific I/O port or group of cells, called a module, to 

perform each assay operation. Lastly, the router computes droplet 

pathways between all operations at the start of each time-step. 

1.1.3 Background: Low-Level Pin Mapping 
The output of the compiler is a list of pins to active each cycle; a 

cycle is the time it takes to move a droplet from one electrode to 

the next. In Figure 4, a "dry" controller (e.g., a PC) sends signals 

to activate pins during each cycle on the "wet" DMFB.  

In a direct-addressing DMFB, each pin is electrically tied to a 

single electrode such that an     array of electrodes has     
external pins driven by the dry controller. As each electrode is 

individually controllable, direct addressing allows for maximal 

flexibility in coordinating droplet-movement. Unfortunately, the 

complexity of routing     pins underneath a     electrode 
array is complicated and requires increasingly more PCB layers as 

the array increases in size, leading to expensive products [17].  

Pin-constrained DMFBs connect each control pin to multiple 

electrodes (Figure 4(b)) to reduce the number of wires routed 
underneath the electrode array; this reduces the number of PCB 

layers, which, in turn, reduces cost. For a pin-constrained DMFB, 

activating a control pin will active multiple electrodes, as shown 

in Figure 4(b). This complicates assay compilation, as 

independent control over individual electrodes no longer exists. 
Thus far, pin-assignment has been proposed to reduce the cost of 

assay-specific DMFBs [9][17], but generalized pin-constrained 

DMFBs that execute arbitrary assays have not yet been realized.  

1.2 Contribution 
The contribution of this paper is a pin assignment scheme that 
facilitates all basic microfluidic operations at pre-determined 

locations in a pin-constrained DMFB; the resulting DMFB is 

therefore field-programmable, rather than assay-specific. A high-

level synthesis flow targeting this device establishes automatic 

compilation. Experiments demonstrate that field-programmability 
is achieved with a handful of additional control pins compared to 

state-of-the-art assay-specific pin-constrained DMFBs, and that 

the performance overhead incurred at the cost of field-

programmability is marginal.  

2. RELATED WORK 
Griffith and Akella [1] and Grissom and Brisk [2][3] impose 

virtual topologies on top of direct-addressing DMFBs; a virtual 

topology is a mesh-like network of streets and rotaries that 

perform droplet transport, and dedicated reaction chambers that 

perform all other assay operations. This limits flexibility, but 
simplifies certain aspects of dynamic recompilation in response to 

operation variability and errors. The field-programmable pin-

constrained DMFB employs a physical topology/architecture in 

order to facilitate general-purpose assay execution.   

Xu and Chakrabarty [17] introduced a multi-functional pin-

constrained DMFB that can execute a pre-defined set of assays; 

however, it is not field-programmable. Luo and Chakrabarty [9] 
introduced a pin-assignment algorithm that ensures that two 

droplets can move independently on a pin-constrained DMFB 

without conflicting; their algorithm reduced the number of pins 

required to realize the multi-functional architecture. To the best of 

our knowledge, their approach is not field-programmable when 

more than two droplets move concurrently.  

Other works have since come and optimized various aspects of the 

pin-constrained problem. One such recent work is presented by 

Huang and Ho and combines the droplet routing and pin-count 

reduction problems together [6]. This is different from the typical 

approach which starts with droplet routes that have been 
computed on a direct-addressing array and then attempts to reduce 

pins. Their solution uses sequential global routing and incremental 

integer linear programming (ILP) stages to compute solutions. 

Zhao and Chakrabarty also offer an ILP and heuristic solution to 

the droplet routing and pin-count co-optimization problem [19]. 

Lin and Chang present work which focuses on the problem of 

droplet cross-contamination on pin-constrained devices [8]; they 
describe scalable algorithms which allow wash droplets to safely 

clean up contaminated areas on pin-constrained devices. Finally, 

S. Roy describes an orientation strategy to connect and wire 

external pins to electrodes on multi-chip devices executing 

identical assays in lockstep [12]. 

3. PIN-CONSTRAINED ASSIGNMENT 
The field-programmable pin-constrained DMFB employs a pin 

assignment scheme that enables all of the basic assay operations 
(Figure 2) to execute in a conflict-free manner. Figure 5 shows a 

 

Figure 3. A microfluidic assay is represented in the form of a DAG; 
its operations are then scheduled and placed onto the DMFB array; 

droplets are then routed between operation locations. 

 

                                                      (a)                    (b) 

Figure 4. Activating a pin on a (a) direct-addressing DMFB activates 
(white) exactly 1 electrode per pin; (b) a pin on a pin-constrained 
DMFB activates 1+ electrodes per pin, depending on the pin layout. 

 

 

Figure 5. Pin diagram for a 12×15 field-programmable, pin-

constrained DMFB which can accommodate 4 mix modules and 6 
split/store/detect (SSD) modules. Routing and mixing pins are 
shared; the interference region does not contain actual electrodes. 
Holding and I/O  electrodes are independently wired to single control 

pins for flexibility and programmability. 

 



12×15 field-programmable, pin-constrained DMFB. The 

topology/architecture reserves specific DMFB regions for assay 

operations and others for routing. The topology contains a vertical 

column of mixing modules on the left (blue/orange electrodes, 7-
17) and a vertical column of different modules on the right 

(orange electrodes, 28-33) that perform splitting, storage, and 

detection (which requires an external detector affixed above the 

module); we call these modules SSD modules.  

White electrodes labeled 1-6 surround the two columns of 

modules and define the droplet routing regions. I/O reservoirs can 

be placed anywhere along the perimeter of the chip. The gray 
electrodes labeled 18-27 indicate pins that allow droplets to enter 

and exit each module. An interference region (pink) surrounds 

each module to isolate droplets within the module from droplets in 

the routing region or adjacent modules. These regions are not 

functional, and do not contain electrodes. 

The layout is designed for operation concurrency  and scalability. 

Since routing times are so much shorter than operation times [16], 
we devote more pins to modules (as opposed to the routing 

region) to allow more operations to be executed simultaneously  at 

any time-step. The architecture can also be lengthened or 

shortened in the vertical dimension to produce a DMFB with any 

desired number of modules.  

3.1 DMFB Operations and Synchronization  
The following sub-sections briefly describe how the basic 

microfluidic operations are performed on our field-programmable, 

pin-constrained DMFB. 

3.1.1 Droplet Transport 
Figure 6 shows that at least 3 pins are required to successfully 

transport a droplet along a straight path; this is called a 3-phase 
transport bus [13]. In Figure 5, pins 1-3 control two horizontal 

transport buses; pins 4-6 construct three vertical transport buses. 

This pin-constrained virtual architecture facilitates droplet transfer 

between horizontal and vertical transport busses, and routable 

paths exist between all modules and I/O reservoirs on the chip’s 
perimeter. Chips of arbitrary vertical height can be instantiated 

without remapping the transport electrodes. The mix and SSD 

module hold electrodes remain active during routing to ensure that 

droplets within the modules do not drift.  

Droplets are routed one at a time because the 3-phase transport 

busses do not provide a sufficient number of unique pins to 
sufficiently hold droplets in the routing area while another droplet 

enters/exits a module. Additional cells could be added to the bus 

to increase routing parallelism; however, given that routing times 

(milliseconds) are much smaller than operations (seconds), they 

are typically considered negligible and are often ignored [16]. See 

supplemental Section S2 for more details on sequential routing. 

3.1.2 Droplet Dispensing and Outputting 
I/O reservoirs are placed on the DMFB perimeter. Each I/O 

reservoir has  an individually controlled electrode that leads a 

droplet to the edge of the array; these are left off the diagram in 

Figure 5 because they are common to all DMFB designs. 

3.1.3 Merging/Mixing 
Figure 7(a) illustrates a droplet (D2) entering and exiting a 

mixing module (M2) without conflicting with droplets in other 
modules (D1, D3). At the top, D2 has reached the routing 

electrode adjacent to the mixing module (M2) it will enter; D1 is 

stored in mixing module M1 and D3 is stored in SSD module 

SSD1. All SSD module electrodes are activated (pins 21-23) to 

hold all stored droplets in place during mixing module I/O. 
Activating pin 17 (M2’s I/O cell) moves droplet D2 to a position 

adjacent to M2. Activating pin 13 draws D2 into M2, while 

transporting D1 to an adjacent cell within M1. Next, all droplet 

hold cells (pins 14 and 15) move D1 and D2 to identical positions 

within M1 and M2 respectively. Figure 7(a) also shows that the 
electrode sequence is simply reversed to facilitate a droplet 

leaving a mixing module.  

Before mixing, two droplets must first merge (i.e.,  collide into 

each other).  A nearly-identical electrode sequence as the one seen 

in Figure 7(a) handles this case. For the interested reader, we 

demonstrate this in Figure S1 in the supplementary section. Once 

M1 and M2 each contain a merged droplet, they can perform 
mixing operations concurrently by activating cells 7-13 in 

sequence, followed by 14 and 15 together. This permits both 

droplets to complete one clockwise cycle in the mixing modules. 

Mixing pauses by holding droplets on their hold cells whenever 

another mixing module I/O operation occurs.  

3.1.4 Storage, Detection, and Splitting 
SSD modules perform storage and detection (if equipped with an 
external detector). Both operations require a droplet to enter an 

 

Figure 6. At least 3 repeatable pins are needed to move a droplet 
along a straight path without causing the droplet to split. Electrodes 
with bold borders indicate electrodes being activated next cycle. 

 

 

                         (a)                                                         (b) 

Figure 7. Pin-activation sequence showing how a single droplet (D2) 

can enter/exit (a) mix modules and (b) split/store/detect modules. 
Sequences are designed to allow a droplet to enter/exit any module 
without adversely affecting droplets (D1, D3) in other modules. 

 



SSD module and remain in place. Figure 7(b)  illustrates the 

process by which a droplet enters/exits an SSD module (SSD3) 

without affecting other droplets in other modules. All SSD hold 

electrodes are kept on, except for SSD3’s, which allows droplet 
D2 to enter. SSD3's I/O electrode is activated, followed by its hold 

electrode, to complete the entrance. This sequence is reversed to 

facilitate droplets exiting SSD modules.  

Figure 8(a)-(c) illustrates droplet splitting. The initial position of 

droplet D2, which will be split, is on a vertical transport bus next 

to an SSD module’s I/O cell (a). The cell on the transport bus is 

activated throughout the split. The I/O cell is then activated, 
which stretches D2 to cover both cells (b). Next, the SSD 

module’s hold cell is activated, and the I/O cell is deactivated; this 

splits D2 into two separate droplets: D2, on the hold cell,  and D4, 

in the transport bus. If storage is required for D4, then it must be 

routed to an available SSD module, as shown in Figure 8(d). 

4. FIELD-PROGRAMMABLE SYNTHESIS 
This section describes the synthesis flow (Figure 3) that maps an 

assay to the field-programmable pin-constrained DMFB.  

4.1 Scheduling 
List scheduling [3][16] is a fast, greedy, single-path scheduling 

algorithm. List scheduling targeting the field-programmable, pin-

constrained DMFB differs from prior implementations in several 

respects. The most important difference is that prior list 

schedulers use one generic module type for all assay operations, 

rather than distinguishing between mixing and SSD modules.  

As shown in Figure 8(d), split modules may require two SSD 
modules if both droplets that are produced must be stored. As 

shown in Figure 9, the split node is converted into an 

instantaneous split followed by two storage operations.  

The scheduler reserves one SSD module to address routing 

deadlocks, as explained later in Section 4.3. Thus, in Figure 5, 

only 5 of the 6 SSD modules are available for storage and 
detection. Prior list schedulers may transport droplets between 

modules for storage for a variety of reasons [3][10]. Since only 

SSD modules perform storage and each stores at most one droplet, 

there is no motivation to transport droplets between SSD modules 

during storage; thus, a stored droplet remains in a single SSD 

module for the entirety of its storage lifetime. This may reduce the 

number of droplets that must be routed in certain cases.  

4.2 Placement/Binding 
Similar to Grissom and Brisk [2][3], we reduce placement to a 
binding problem, which is solved using the left-edge algorithm 

[7]. One minor difference between our binder and others is that 

we do not bind split operations since they yield two immediate 

storage nodes (Figure 9). Instead, we simply bind the two storage 

children directly. In the interest of space, we direct the reader to 
other references for a more-complete description and psuedocode 

of the left-edge binder [2][3]. 

4.3 Routing 

4.3.1 Route Computation 
A routing sub-problem refers to the set of droplets that must be 

routed just before each time-step begins in the schedule. Before 

each time-step (operation) begins, droplets are routed 

sequentially, one at-a-time. Given the topology in Figure 5, three 

different types of routes must be computed: input reservoir to 

module, module to module, and module to output reservoir.  

To route a droplet from an input reservoir to a module, it suffices 

to compute the shortest distance from the input reservoir to the 

electrode adjacent to the target module’s I/O electrode. The main 

question is to determine whether the clockwise or counter-

clockwise path is shorter. Once the droplet arrives, the appropriate 

module input sequence is applied, as discussed in Section 3.1. 

Module-to-module routing uses the vertical column in the center 
of the DMFB. The router applies the output sequence to extract 

the droplet from the source module, routes the droplet north or 

south as appropriate, and applies the input sequence to deliver the 

droplet to its target module.  

Figure 8. Pin-activation sequence for splitting a droplet (D2) and 

storing in split/store/detect (SSD) modules. Sequences are designed to 

allow a droplet to split and store without adversely affecting droplets 
(D1, D3) in other modules. NO TE: Legend same as Figure 7. 

 

 

Figure 9. Split operations are converted to a split and two stores for 
synthesis. 

 

 

Figure 10. Cyclic routing dependencies can be broken by first 

routing a droplet in the cycle  to the routing buffer module (one of the 
SSD modules). Arrows indicate that the droplet at the tail  end is 
about to travel to the module at the head end. NO TE: Legend same 
as Figure 7. 

 

 



To route a droplet from a module to an output reservoir, the 

output sequence is applied to extract the droplet from the source 
module; then the droplet is routed either clockwise or counter-

clockwise along the shortest path to the output reservoir.  

4.3.2 Droplet Dependencies and Deadlock 
Special care must be taken to prevent droplet dependencies from 

turning into deadlock. Routing deadlock occurs when one or more 

droplets are waiting for resources to become available that will 

never become free. This can occur when a droplet dependency 
cycle occurs, as seen in Figure 10. D1 is in SSD1 and waiting for 

droplet D3 to leave M1, while droplet D3 is in M1 and waiting for 

droplet D1 to leave SSD1. To break the cycle, we pick D3 to first 

route itself to an empty SSD module (SSD2), as shown in step 2 of 

Figure 10. The scheduler always keeps one SSD module 

unallocated, as it cannot predict routing dependencies a-priori.  

As seen in step 3 of Figure 10, although the cyclic dependency is 

broken between droplets D1 and D3, deadlock can still occur if 

the sequential droplet routing order is chosen poorly . Now, 

droplet D3 travels to SSD1, while droplets D1 and D2 travel from 

SSD1 and SSD3, respectively, to M1. Droplet D2 can be routed at 
any time, because no droplets will travel to SSD3 (its source) and 

no droplets remain at M1 (its destination) that must first move. If 

the router tries to route droplet D3 before routing D1, then 

deadlock will occur because SSD1 is not yet free to receive new 

droplets. If there is no such dependency check, droplet 
contamination will occur. We describe a general algorithm to 

eliminate droplet dependencies and provide the details and 

pseudocode in supplemental Section S3. 

5. EXPERIMENTAL RESULTS 
We implemented our field-programmable, pin-constrained DMFB 

in C++; we compare with Grissom and Brisk’s fast online 

synthesis framework [3], which is publicly available online [5].  

All tests were run using a 2.8GHz Intel Core i7 CPU and 4GB 
RAM on a 64-bit version of Windows 7. 

5.1 Comparison to General DMFB 
We first compare our implementation to the most recent generally 
programmable direct-addressing DMFB design [3]. We run a set 

of 13 assays based on the PCR [15], in-vitro diagnostics [14][15] 

and protein-split benchmarks [4]. Table 1 shows the number of 
seconds spent both routing and executing assay operations; the 

total time is the sum of the two. Results are also given for the 

number of usable electrodes (i.e., tied to a control pin) and 

number of external control pins for the DMFB size used. For 

Protein Split 5-7, the array dimensions had to be increased to 

execute the assay for one or both of the DMFBs. 

Our DMFB has longer routing times for the first 7 benchmarks 
because of sequential routing; however, it actually has shorter 

routing times for Protein Split 2-7 because additional routes are 

not generated between storage nodes, as described in Section 4.1. 

Modules in the direct-addressing DMFB [3] can store up to two 

droplets at any time. To utilize as many resources as possible, 
droplets stored alone in separate modules will consolidate in order 

to free up more modules to do useful work; routing these droplets 

adds to the routing time, and therefore the total time as well.  

The bottom row of Table 1 shows the average improvement of 

our field-programmable DMFB compared to the direct-addressing 

DMFB. We calculated this metric by computing the improvement 
of FP over DA (baseline) for each benchmark and then averaging 

these values over the entire set of benchmarks. Any value over 1 

means FP is an improvement. Notice that, although FP’s average 

routing time is 32% slower, its average operation time is 7% 

faster. On average, the field-programmable pin-constrained 
DMFB only suffers an average 2% slowdown in total execution 

time, while reducing the pin count by 6-7×. 

5.2 Comparison To Pin-Constrained DMFBs 
Table 2 presents results for two prior pin-constrained assay-

specific and multi-functional DMFB architectures [9][17]; assay-
specific architectures were generated for PCR, In-vitro 1, and 

Protein Split 3 assays, while the multi-functional chip can perform 

all three assays. Many differences exist between these designs, 

most notably that they are assay specific while ours is field-

programmable, and that they use linear array mixing modules, 
which have longer latencies than the 4×2 mixers used here.  Thus, 

the schedules are different, and it is unclear if their reported 

results include droplet routing times, as their primary objective 

was to reduce the cost of their pin-constrained DMFBs by 

reducing the pin-count. Table 2 is reproduced from Ref. [9].  

Table 2. We present results from Xu's [17] and Luo's 
[9] pin-constrained designs for chips which can run 

PCR, In-Vitro 1, Protein Split 3 and a multi-functional 
chip which can run all three. 

 

Table 3. We demonstrate the three benchmark assays 
from Xu [17] and Luo [9] on our field-programmable, 

pin-constrained DMFB design of various sizes. 

 

Table 1. Experimental results comparing the direct-addressing DMFB (DA) [3] with 
our field-programmable, pin-constrained DMFB (FP). 

 



Table 3 reports the performance and pin-count for PCR, In-Vitro 

1, and Protein Split 3 for field programmable pin-constrained 

DMFBs of varying sizes. For PCR and In-Vitro 1, execution times 
decrease as the DMFB size (and thus the number of available 

modules) increase, saturating at 12×15. For larger DMFBs, 

performance degrades slightly due to longer routing times.   

The Protein Split 3 assay requires 6 droplets to be stored at several 

instances during the assay; thus, the 12×18 array with 7 SSD 

modules (6 available to the scheduler) is the smallest compatible 

device. The total execution time remains steady, regardless of 
resources (we also tested on a 12×81 DMFB with abundant 

resources) at 189s. In this case, the total execution time is not 

limited by resource availability, but by the 7s droplet dispense 

times [15]. It is unclear what droplet dispense times were assumed 

in prior work [9][17]; reducing the dispense times to 2s instead of 

7s reduces the assay execution time to approximately 100s.  

In general, the field-programmable pin-constrained DMFBs 

require more pins than the assay-specific or multi-functional pin-

constrained DMFBs reported in Table 2; this is to be expected 

because our device is optimized for field-programmability, while 

their devices are optimized for reduced pin-count.  

Luo and Chakrabarty’s pin assignment scheme [9] theoretically 

provides some flexibility , as two droplets are guaranteed to be 
able to move without interfering with one another; however, they 

did not provide details on how synthesis was performed, so it is 

difficult to provide a direct comparison.   

In contrast, the different versions of our field-programmable pin-

constrained DMFB reported in Table 3 are the same generic 2-

column architecture, but with a different number of resources. As 
seen in Table 1, if  we pick dimensions of reasonable size 

(12×21), we can run all three assays in Table 2, as well as others, 

due to the field-programmable nature of our design.  

6. CONCLUSION 
This paper has introduced the first field-programmable pin-
constrained DMFB that can execute arbitrary assays; prior pin-

constrained DMFBs have all been assay-specific or multi-

functional, but not field-programmable. To program the device, 

we describe modifications to a synthesis flow for DMFBs, which 

address architectural issues that are specific to our design.  

Compared to field-programmable, direct-addressing DMFBs, the 

field-programmable, pin-constrained DMFB offered comparable 
or improved performance, while reducing the pin-count by 6-7x. 

Compared to assay-specific, pin-constrained DMFBs, the field-

programmable device offered better performance and a 

comparable pin-count for the PCR and In-vitro 1 benchmarks, but 

degraded performance and a 2x higher pin-count for Protein Split 
3. Compared to the multi-functional, pin-constrained DMFB, the 

field-programmable pin-constrained DMFB required 1.44x more 

pins for a comparably sized array (12x18 vs. 15x15). Thus, field-

programmable does come at a price in terms of pin-count and, 

sometimes, assay execution time, compared to state-of-the-art 
assay-specific and multi-functional pin-constrained DMFBs; 

however, the flexibility provided is unmatched by prior DMFBs 

and offers a significant advancement in terms of programmability. 
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S1. MERGING TWO DROPLETS 
Figure S1 shows how a droplet (D4) merges with an existing 

droplet (D2) in M2 to become D5. Once merged, the new droplet 

(D5, with twice the volume) is synced with D1 back to the 

mixers’ hold locations (the bottom image in Figure S1). If D1 has 

already been merged, then mixing can begin; if not, the general 

process in Figure S1 must be repeated to merge a new droplet 

with D1 before the merged droplets in M1 and M2 can be mixed. 

S2. SEQUENTIAL ROUTING  
In this section, we provide more details to explain why sequential 

routing was chosen. As mentioned in Section 3, operation times 

are on the order of seconds, while droplet transport times are on 

the order of milliseconds. A typical time-step is 1 or 2 seconds 

[16], while a typical droplet actuation is at most 10ms (100Hz) 

[18]. With this in mind, we chose the 3-phase bus approach 

because, although it restricts droplet routing parallelism, it 

simplifies the general-purpose nature of the device. 

Consider Figure S2 which shows our field-programmable, pin-

constrained design with two different numbers of modules and 

module sizes. Notice that, despite the central vertical bus ending 

with pin 4 or pin 5, a clean transition can be made between buses 

because all of the pins adjacent to the intersection are guaranteed 

to be unique [9]. Thus, the same algorithms can be used to map 

assays to field-programmable, pin-constrained arrays of various 

sizes, given that they keep the same general form. This is 

important because it would allow an end-user to design an assay 

and then go purchase the cheapest compatible pin-constrained 

DMFB; here, compatibility means that there are sufficient 

resources available (meaning mixing and SSD modules) and that 

the SSD modules have appropriate detectors.  

As seen in Figure S3(a), it is always possible to move multiple 

droplets along a straight path on the 3-phase bus because there is 

sufficient space between repeating pin numbers. However, Figure 

S3(b) shows that droplet interference can occur when moving 

around a corner. In cycle two, if the next two pins are activated 

(pin 3 and pin 5), the droplets will most likely merge. It would be 

possible to hold pin 2 in cycle 3 such that the top droplet would 

stall and avoid the droplet interference in cycle 3. However, 

consider that droplets will only be making this transition when 

traveling to or from an I/O reservoir. 

Most of the opportunities to parallelize routing occur when 

routing between modules. In light of this, consider Figure S4, 

which shows multiple droplets in the central vertical routing bus. 

    

Figure S1. Shows the electrode/pin activation sequence (from 

top to bottom) that causes D4 to merge with D2 (in M2) to 

become D5 (twice the volume) and re-sync with any other 

droplets in mix modules (i.e., D1 in M1). 

    

Figure S2. Shows that the number or size of modules can be 

changed and the 3-phase bus can be repeated, regardless of 

array size, without causing pin-conflict at the vertical-

horizontal bus intersections (bold borders).  

    

                                 (a)                                             (b)  

Figure S3. Shows that moving two droplets concurrently is (a) 

feasible when moving in a straight path, but (b) not always 

possible when moving around a bend because droplet 

interference can occur.  

    

Figure S4. Shows that multiple droplets moving through the 

vertical bus will result in an unintentional split when one tries 

to enter a module. 



For the lower droplet to enter the lower mixing module (M2), the 

DMFB must activate pin 17, while simultaneously deactivating 

pin 6. This is possible, but notice that the top droplet requires pin 

4 to be activated to continue downward on its path. Activating this 

pin will cause two adjacent electrodes to be activated near the 

lower droplet, which will result in a split. Moving the top droplet 

up, down or keeping it stationary will require pins 5, 4, or 6 to be 

activated in cycle 2, respectively, which will each cause the 

bottom droplet to split. If pins 4-6 are not activated, then the top 

droplet will drift and the assay will not execute correctly.  

Rather than deal with these complications, we chose to route 

droplets one-at-a-time instead, as the impact on total assay 

execution time is minimal. 

S3. ROUTING ALGORITHM 
This section elaborates on the routing process discussed in 

Section 4.3; Figure S5 presents pseudocode. The router receives 

a scheduled and placed DAG        , where vertices represent 

operations and edges represent droplets that must be transferred 

between operations. Each vertex has a         , which indicates 

the module or I/O reservoir where the corresponding operation 

will take place. 

Each vertex in   is scheduled to begin at a certain time-step, as 

computed by the scheduler. A time-step typically lasts one or two 

seconds and represents the time when operations are processed by 

their respective modules or I/O reservoirs. When a new time-step 

begins, then a new operation may start. This requires droplets to 

be routed to the module that will execute the operation. Thus, we 

start at time-step 0 (Line 2) and repeat the routing process for each 

time-step until the last scheduled operation begins (Lines 3-23); 

each iteration handles one routing sub-problem (time-step). 

First, a graph of dependencies ( ) is created based on the location 

of each node that is relevant to the current time-step (Lines 4-8). 

An edge (Dx, Dy) in the dependency graph means that droplet Dx 

will be routed to droplet Dy’s current location, so Dy must be 

routed first. As seen in Line 7, dependencies are added to the 

graph based on the location field because droplets are being 

routed from the parents’ location to the newly-executing node’s 

location.  

The next step is to decompose d into its connected components 

(Line 12), which can be computed using a simple recursive multi-

directional, depth-first search [S1]. Connected components are 

processed on-by-one. To simplify further discussion, we will 

assume that d is composed of a single connected component. 

Routing is simple if d is acyclic. Since the algorithm routes 

droplets one-at-a-time, edge (Dx, Dy) indicates that Dy must be 

routed before Dx; otherwise, Dx would merge inadvertently with 

Dy upon completing its route. A legal routing solution for the sub-

problem can be achieved by routing the droplets one-by-one in 

reverse topological order [S2]. Lines 10-20 in Figure S5 solve the 

more complicated cyclic case, which is described next; in the 

simple acyclic case, Lines 11, 13, and 14 are unnecessary. 

If d is cyclic, routing becomes more complicated, as a cycle 

means that no droplet can complete its route without inadvertently 

merging with a droplet waiting at its destination. This problem is 

solved by temporarily allocating DMFB resources for storage. 

The first step is to compute strongly connected components 

(SCCs) (Line 13) from the connected components using Gabow’s 

path-based, depth-first search [S3]. One minor modification is that 

we only need to identify the SCCs that contain more than one 

node, as single-node SCCs do not have cyclic droplet 

dependencies. 

Once the SCCs that represent cycles are identified, the cycles 

must be resolved (Line 14). As demonstrated in Figure 10, the 

router randomly selects a droplet Dy from the SCC and routes it to 

an empty SSD module for temporary storage, which breaks the 

dependency cycle. The dependency graph d is then modified to 

account for the relocated droplet’s new location: each edge of the 

form (Dx, Dy) is removed from d as Dx is now free to move to its 

destination, since Dy has moved out of the way. 

The scheduler always leaves at least one SSD module free so that 

there is room to break one cycle in the SCC. If the SCC contains 

multiple intersecting cycles, then any other free SSD or mixing 

module could be used for temporary storage. This process repeats 

until d becomes acyclic. Once d becomes acyclic, a legal routing 

solution can be found, as previously discussed.  

One optimization that can reduce the extra storage requirement 

(not shown in Figure S5) is to break SCCs one-by-one. Droplets 

corresponding to vertices with no predecessors in d are routed 

immediately, and the corresponding vertex is removed from d. 

Then, an SCC is chosen that satisfies the following property: for 

every vertex Dx belonging to the SCC and each outgoing edge 

(Dx, Dy), Dy also belongs to the SCC. Breaking all of the cycles in 

this particular SCC will ensure that at least one vertex in the 

updated graph d will have no successors.  

The advantage of the second approach is that it reduces the need 

for temporary storage resources. As an example, suppose that d 

has two SCCs, scc1 and scc2, and that each requires one additional 

storage resource to resolve. Under the first approach, two storage 

resources must be allocated in order to convert d to an acyclic 

graph before the droplets can be routed. Under the second scheme, 

all of the droplets in scc1 will be routed before all of the droplets 

in scc2, or vice-versa. Therefore, both SCCs can use the same 

storage resource, so just one available module suffices. In general, 

if d contains k SCCs, and scci requires mi storage modules, then 

the first scheme requires M1 = m1 + m2 + … mk modules for 

storage, whereas, the second requires M2 = max{m1, m2, …, mk} 

modules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Psuedocode for route computation. 

1    Given sequence graph         

2    int           ; 

3    Repeat { 

4       graph    ; // Dependencies 

5          for (                         ) 

6             for (            ) 

7                                             ; 
8          end for 

9  

10        list       ; // Connected Components 

11        list        ; // Strongly Connected Components 

12                                        ; 
13                                               ; 
14                                ; 

15                                  ; //        

16    

17        for (     ) 

18           for (                         ) 

19              for(             ) 

20                                                        ; 
21    

22                ++;  

23   }  until (                          ) 



That being said, we did not encounter a single droplet dependency 

cycle in any of the 25 benchmarks seen in Table 1 and Table 3; 

the largest assay, Protein Split 7, contains 2556 nodes. Although a 

droplet dependency problem can still occur in theory, it seems 

unnecessary, from a practical standpoint, to devote a large number 

of resources to resolving droplet dependency cycles, even for 

large assays. 
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