
A Field-Programmable Pin-Constrained

Digital Microfluidic Biochip

Daniel Grissom, Philip Brisk
Department of Computer Science and Engineering

University of California, Riverside

{grissomd, philip}@cs.ucr.edu

ABSTRACT

As digital microfluidic biochips (DMFBs) have matured over the

last decade, efforts have been made to 1.) reduce the cost, and 2.)

produce general-purpose chips. While work done to generalize

DMFBs typically depends on the flexibility of individually
controlled electrodes, such devices have high wiring complexity,

which requires costly multi-layer printed circuit boards (PCBs). In

contrast, pin-constrained DMFBs reduce the wiring complexity,

but reduce the flexibility of droplet coordination. We present a

field-programmable pin-constrained DMFB that leverages the
cost-savings of pin-constrained designs, but is general-purpose,

rather than assay-specific. We show that with just a few more pins

than the state-of-the-art pin-constrained designs, we can execute

arbitrary assays almost as fast as the most recent general-purpose

DMFB designs.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids; J.3 [Life and Medical
Sciences]: Biology and Genetics, Health

General Terms

Algorithms, Design, Performance.

Keywords

Digital Microfluidic Biochip (DMFB), Laboratory-on-Chip

(LoC), Pin-Constrained, Field-Programmable.

1. INTRODUCTION
This paper presents a design for a field-programmable, pin-

constrained digital microfluidic biochip (DMFB). Just as a field-
programmable gate array (FPGA) can be programmed by an end-

user in the “field,” a field programmable pin-constrained DMFB

can be programmed to execute any assay (biochemical protocol)

after it has been designed and manufactured. In contrast, prior pin-

constrained DMFBs have been assay-specific [9][17].

Direct-addressing DMFBs provide independent control over each

electrode; these devices are costly because the large number of
control inputs and high wiring complexity increases the number of

printed circuit board (PCB) layers. Pin-constrained DMFBs, in

contrast, have fewer control inputs and low wiring complexity,

but lack flexibility. This paper introduces the first pin-constrained

DMFB with sufficient flexibility to enable field-programmability.

1.1 DMFB Technology Overview

1.1.1 Background: Physical Droplet Manipulation
DMFBs execute assays by manipulating nanoliter-sized droplets

of fluid. DMFBs are typically based on a phenomenon known as
electrowetting [11]. An electrowetting-based DMFB, as seen in

Figure 1, consists of a top and bottom plate coated with a

hydrophobic layer. The bottom plate has an array of droplet-sized

control electrodes, while the top plate has a single conducting

electrode that spans the entire array of control electrodes. Each
droplet is sandwiched between the bottom and top plates and will

hold its place if its underlying electrode remains activated.

In Figure 1(b), a droplet overlaps neighboring electrodes; if a

neighboring electrode is activated, the droplet will begin to flow

toward the newly activated electrodes. Thus, if CE3 is activated

and CE2 is simultaneously deactivated, the entire droplet will

move to cover CE3. As seen in Figure 2, with the proper
sequence of electrode activations, several basic microfluidic

operations can be performed. Sensor-based detection operations

execute by moving a droplet to a detector (placed above an

electrode) and storing the droplet there. Dispense and output

operations are performed by I/O reservoirs on the perimeter.

If a droplet is not centered over or adjacent to any activated
electrodes, it will drift across the DMFB in an undetermined and

unpredictable manner.

1.1.2 Background: High-level Assay Synthesis
Figure 3 illustrates the process of synthesizing an assay onto a

DMFB. A directed acyclic graph (DAG) represents the assay;

each node represents a microfluidic operation (i.e., dispense,

output, split, mix/merge, detect), while the edges represent
dependencies and order of operations (e.g., in Figure 3, M1

cannot be executed until I1 and I2 are complete).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC ’13, May 29 – June 07 2013, Austin, TX, USA.

Copyright 2013 ACM 978-1-4503-2071-9/13/05 …$15.00.

(a) (b)

Figure 1. (a) Planar array of electrodes; (b) Cross-sectional view of
electrode array.

Figure 2. Basic microfluidic operations form the building blocks for
assays to be executed on an array of electrodes.

The DAG is scheduled such that each operation has a specific

start and stop time-step; a time-step is the basic scheduling unit

for operations and usually lasts for 1s or 2s. Next, the placer
selects a specific I/O port or group of cells, called a module, to

perform each assay operation. Lastly, the router computes droplet

pathways between all operations at the start of each time-step.

1.1.3 Background: Low-Level Pin Mapping
The output of the compiler is a list of pins to active each cycle; a

cycle is the time it takes to move a droplet from one electrode to

the next. In Figure 4, a "dry" controller (e.g., a PC) sends signals

to activate pins during each cycle on the "wet" DMFB.

In a direct-addressing DMFB, each pin is electrically tied to a

single electrode such that an array of electrodes has
external pins driven by the dry controller. As each electrode is

individually controllable, direct addressing allows for maximal

flexibility in coordinating droplet-movement. Unfortunately, the

complexity of routing pins underneath a electrode
array is complicated and requires increasingly more PCB layers as

the array increases in size, leading to expensive products [17].

Pin-constrained DMFBs connect each control pin to multiple

electrodes (Figure 4(b)) to reduce the number of wires routed
underneath the electrode array; this reduces the number of PCB

layers, which, in turn, reduces cost. For a pin-constrained DMFB,

activating a control pin will active multiple electrodes, as shown

in Figure 4(b). This complicates assay compilation, as

independent control over individual electrodes no longer exists.
Thus far, pin-assignment has been proposed to reduce the cost of

assay-specific DMFBs [9][17], but generalized pin-constrained

DMFBs that execute arbitrary assays have not yet been realized.

1.2 Contribution
The contribution of this paper is a pin assignment scheme that
facilitates all basic microfluidic operations at pre-determined

locations in a pin-constrained DMFB; the resulting DMFB is

therefore field-programmable, rather than assay-specific. A high-

level synthesis flow targeting this device establishes automatic

compilation. Experiments demonstrate that field-programmability
is achieved with a handful of additional control pins compared to

state-of-the-art assay-specific pin-constrained DMFBs, and that

the performance overhead incurred at the cost of field-

programmability is marginal.

2. RELATED WORK
Griffith and Akella [1] and Grissom and Brisk [2][3] impose

virtual topologies on top of direct-addressing DMFBs; a virtual

topology is a mesh-like network of streets and rotaries that

perform droplet transport, and dedicated reaction chambers that

perform all other assay operations. This limits flexibility, but
simplifies certain aspects of dynamic recompilation in response to

operation variability and errors. The field-programmable pin-

constrained DMFB employs a physical topology/architecture in

order to facilitate general-purpose assay execution.

Xu and Chakrabarty [17] introduced a multi-functional pin-

constrained DMFB that can execute a pre-defined set of assays;

however, it is not field-programmable. Luo and Chakrabarty [9]
introduced a pin-assignment algorithm that ensures that two

droplets can move independently on a pin-constrained DMFB

without conflicting; their algorithm reduced the number of pins

required to realize the multi-functional architecture. To the best of

our knowledge, their approach is not field-programmable when

more than two droplets move concurrently.

Other works have since come and optimized various aspects of the

pin-constrained problem. One such recent work is presented by

Huang and Ho and combines the droplet routing and pin-count

reduction problems together [6]. This is different from the typical

approach which starts with droplet routes that have been
computed on a direct-addressing array and then attempts to reduce

pins. Their solution uses sequential global routing and incremental

integer linear programming (ILP) stages to compute solutions.

Zhao and Chakrabarty also offer an ILP and heuristic solution to

the droplet routing and pin-count co-optimization problem [19].

Lin and Chang present work which focuses on the problem of

droplet cross-contamination on pin-constrained devices [8]; they
describe scalable algorithms which allow wash droplets to safely

clean up contaminated areas on pin-constrained devices. Finally,

S. Roy describes an orientation strategy to connect and wire

external pins to electrodes on multi-chip devices executing

identical assays in lockstep [12].

3. PIN-CONSTRAINED ASSIGNMENT
The field-programmable pin-constrained DMFB employs a pin

assignment scheme that enables all of the basic assay operations
(Figure 2) to execute in a conflict-free manner. Figure 5 shows a

Figure 3. A microfluidic assay is represented in the form of a DAG;
its operations are then scheduled and placed onto the DMFB array;

droplets are then routed between operation locations.

 (a) (b)

Figure 4. Activating a pin on a (a) direct-addressing DMFB activates
(white) exactly 1 electrode per pin; (b) a pin on a pin-constrained
DMFB activates 1+ electrodes per pin, depending on the pin layout.

Figure 5. Pin diagram for a 12×15 field-programmable, pin-

constrained DMFB which can accommodate 4 mix modules and 6
split/store/detect (SSD) modules. Routing and mixing pins are
shared; the interference region does not contain actual electrodes.
Holding and I/O electrodes are independently wired to single control

pins for flexibility and programmability.

12×15 field-programmable, pin-constrained DMFB. The

topology/architecture reserves specific DMFB regions for assay

operations and others for routing. The topology contains a vertical

column of mixing modules on the left (blue/orange electrodes, 7-
17) and a vertical column of different modules on the right

(orange electrodes, 28-33) that perform splitting, storage, and

detection (which requires an external detector affixed above the

module); we call these modules SSD modules.

White electrodes labeled 1-6 surround the two columns of

modules and define the droplet routing regions. I/O reservoirs can

be placed anywhere along the perimeter of the chip. The gray
electrodes labeled 18-27 indicate pins that allow droplets to enter

and exit each module. An interference region (pink) surrounds

each module to isolate droplets within the module from droplets in

the routing region or adjacent modules. These regions are not

functional, and do not contain electrodes.

The layout is designed for operation concurrency and scalability.

Since routing times are so much shorter than operation times [16],
we devote more pins to modules (as opposed to the routing

region) to allow more operations to be executed simultaneously at

any time-step. The architecture can also be lengthened or

shortened in the vertical dimension to produce a DMFB with any

desired number of modules.

3.1 DMFB Operations and Synchronization
The following sub-sections briefly describe how the basic

microfluidic operations are performed on our field-programmable,

pin-constrained DMFB.

3.1.1 Droplet Transport
Figure 6 shows that at least 3 pins are required to successfully

transport a droplet along a straight path; this is called a 3-phase
transport bus [13]. In Figure 5, pins 1-3 control two horizontal

transport buses; pins 4-6 construct three vertical transport buses.

This pin-constrained virtual architecture facilitates droplet transfer

between horizontal and vertical transport busses, and routable

paths exist between all modules and I/O reservoirs on the chip’s
perimeter. Chips of arbitrary vertical height can be instantiated

without remapping the transport electrodes. The mix and SSD

module hold electrodes remain active during routing to ensure that

droplets within the modules do not drift.

Droplets are routed one at a time because the 3-phase transport

busses do not provide a sufficient number of unique pins to
sufficiently hold droplets in the routing area while another droplet

enters/exits a module. Additional cells could be added to the bus

to increase routing parallelism; however, given that routing times

(milliseconds) are much smaller than operations (seconds), they

are typically considered negligible and are often ignored [16]. See

supplemental Section S2 for more details on sequential routing.

3.1.2 Droplet Dispensing and Outputting
I/O reservoirs are placed on the DMFB perimeter. Each I/O

reservoir has an individually controlled electrode that leads a

droplet to the edge of the array; these are left off the diagram in

Figure 5 because they are common to all DMFB designs.

3.1.3 Merging/Mixing
Figure 7(a) illustrates a droplet (D2) entering and exiting a

mixing module (M2) without conflicting with droplets in other
modules (D1, D3). At the top, D2 has reached the routing

electrode adjacent to the mixing module (M2) it will enter; D1 is

stored in mixing module M1 and D3 is stored in SSD module

SSD1. All SSD module electrodes are activated (pins 21-23) to

hold all stored droplets in place during mixing module I/O.
Activating pin 17 (M2’s I/O cell) moves droplet D2 to a position

adjacent to M2. Activating pin 13 draws D2 into M2, while

transporting D1 to an adjacent cell within M1. Next, all droplet

hold cells (pins 14 and 15) move D1 and D2 to identical positions

within M1 and M2 respectively. Figure 7(a) also shows that the
electrode sequence is simply reversed to facilitate a droplet

leaving a mixing module.

Before mixing, two droplets must first merge (i.e., collide into

each other). A nearly-identical electrode sequence as the one seen

in Figure 7(a) handles this case. For the interested reader, we

demonstrate this in Figure S1 in the supplementary section. Once

M1 and M2 each contain a merged droplet, they can perform
mixing operations concurrently by activating cells 7-13 in

sequence, followed by 14 and 15 together. This permits both

droplets to complete one clockwise cycle in the mixing modules.

Mixing pauses by holding droplets on their hold cells whenever

another mixing module I/O operation occurs.

3.1.4 Storage, Detection, and Splitting
SSD modules perform storage and detection (if equipped with an
external detector). Both operations require a droplet to enter an

Figure 6. At least 3 repeatable pins are needed to move a droplet
along a straight path without causing the droplet to split. Electrodes
with bold borders indicate electrodes being activated next cycle.

 (a) (b)

Figure 7. Pin-activation sequence showing how a single droplet (D2)

can enter/exit (a) mix modules and (b) split/store/detect modules.
Sequences are designed to allow a droplet to enter/exit any module
without adversely affecting droplets (D1, D3) in other modules.

SSD module and remain in place. Figure 7(b) illustrates the

process by which a droplet enters/exits an SSD module (SSD3)

without affecting other droplets in other modules. All SSD hold

electrodes are kept on, except for SSD3’s, which allows droplet
D2 to enter. SSD3's I/O electrode is activated, followed by its hold

electrode, to complete the entrance. This sequence is reversed to

facilitate droplets exiting SSD modules.

Figure 8(a)-(c) illustrates droplet splitting. The initial position of

droplet D2, which will be split, is on a vertical transport bus next

to an SSD module’s I/O cell (a). The cell on the transport bus is

activated throughout the split. The I/O cell is then activated,
which stretches D2 to cover both cells (b). Next, the SSD

module’s hold cell is activated, and the I/O cell is deactivated; this

splits D2 into two separate droplets: D2, on the hold cell, and D4,

in the transport bus. If storage is required for D4, then it must be

routed to an available SSD module, as shown in Figure 8(d).

4. FIELD-PROGRAMMABLE SYNTHESIS
This section describes the synthesis flow (Figure 3) that maps an

assay to the field-programmable pin-constrained DMFB.

4.1 Scheduling
List scheduling [3][16] is a fast, greedy, single-path scheduling

algorithm. List scheduling targeting the field-programmable, pin-

constrained DMFB differs from prior implementations in several

respects. The most important difference is that prior list

schedulers use one generic module type for all assay operations,

rather than distinguishing between mixing and SSD modules.

As shown in Figure 8(d), split modules may require two SSD
modules if both droplets that are produced must be stored. As

shown in Figure 9, the split node is converted into an

instantaneous split followed by two storage operations.

The scheduler reserves one SSD module to address routing

deadlocks, as explained later in Section 4.3. Thus, in Figure 5,

only 5 of the 6 SSD modules are available for storage and
detection. Prior list schedulers may transport droplets between

modules for storage for a variety of reasons [3][10]. Since only

SSD modules perform storage and each stores at most one droplet,

there is no motivation to transport droplets between SSD modules

during storage; thus, a stored droplet remains in a single SSD

module for the entirety of its storage lifetime. This may reduce the

number of droplets that must be routed in certain cases.

4.2 Placement/Binding
Similar to Grissom and Brisk [2][3], we reduce placement to a
binding problem, which is solved using the left-edge algorithm

[7]. One minor difference between our binder and others is that

we do not bind split operations since they yield two immediate

storage nodes (Figure 9). Instead, we simply bind the two storage

children directly. In the interest of space, we direct the reader to
other references for a more-complete description and psuedocode

of the left-edge binder [2][3].

4.3 Routing

4.3.1 Route Computation
A routing sub-problem refers to the set of droplets that must be

routed just before each time-step begins in the schedule. Before

each time-step (operation) begins, droplets are routed

sequentially, one at-a-time. Given the topology in Figure 5, three

different types of routes must be computed: input reservoir to

module, module to module, and module to output reservoir.

To route a droplet from an input reservoir to a module, it suffices

to compute the shortest distance from the input reservoir to the

electrode adjacent to the target module’s I/O electrode. The main

question is to determine whether the clockwise or counter-

clockwise path is shorter. Once the droplet arrives, the appropriate

module input sequence is applied, as discussed in Section 3.1.

Module-to-module routing uses the vertical column in the center
of the DMFB. The router applies the output sequence to extract

the droplet from the source module, routes the droplet north or

south as appropriate, and applies the input sequence to deliver the

droplet to its target module.

Figure 8. Pin-activation sequence for splitting a droplet (D2) and

storing in split/store/detect (SSD) modules. Sequences are designed to

allow a droplet to split and store without adversely affecting droplets
(D1, D3) in other modules. NO TE: Legend same as Figure 7.

Figure 9. Split operations are converted to a split and two stores for
synthesis.

Figure 10. Cyclic routing dependencies can be broken by first

routing a droplet in the cycle to the routing buffer module (one of the
SSD modules). Arrows indicate that the droplet at the tail end is
about to travel to the module at the head end. NO TE: Legend same
as Figure 7.

To route a droplet from a module to an output reservoir, the

output sequence is applied to extract the droplet from the source
module; then the droplet is routed either clockwise or counter-

clockwise along the shortest path to the output reservoir.

4.3.2 Droplet Dependencies and Deadlock
Special care must be taken to prevent droplet dependencies from

turning into deadlock. Routing deadlock occurs when one or more

droplets are waiting for resources to become available that will

never become free. This can occur when a droplet dependency
cycle occurs, as seen in Figure 10. D1 is in SSD1 and waiting for

droplet D3 to leave M1, while droplet D3 is in M1 and waiting for

droplet D1 to leave SSD1. To break the cycle, we pick D3 to first

route itself to an empty SSD module (SSD2), as shown in step 2 of

Figure 10. The scheduler always keeps one SSD module

unallocated, as it cannot predict routing dependencies a-priori.

As seen in step 3 of Figure 10, although the cyclic dependency is

broken between droplets D1 and D3, deadlock can still occur if

the sequential droplet routing order is chosen poorly . Now,

droplet D3 travels to SSD1, while droplets D1 and D2 travel from

SSD1 and SSD3, respectively, to M1. Droplet D2 can be routed at
any time, because no droplets will travel to SSD3 (its source) and

no droplets remain at M1 (its destination) that must first move. If

the router tries to route droplet D3 before routing D1, then

deadlock will occur because SSD1 is not yet free to receive new

droplets. If there is no such dependency check, droplet
contamination will occur. We describe a general algorithm to

eliminate droplet dependencies and provide the details and

pseudocode in supplemental Section S3.

5. EXPERIMENTAL RESULTS
We implemented our field-programmable, pin-constrained DMFB

in C++; we compare with Grissom and Brisk’s fast online

synthesis framework [3], which is publicly available online [5].

All tests were run using a 2.8GHz Intel Core i7 CPU and 4GB
RAM on a 64-bit version of Windows 7.

5.1 Comparison to General DMFB
We first compare our implementation to the most recent generally
programmable direct-addressing DMFB design [3]. We run a set

of 13 assays based on the PCR [15], in-vitro diagnostics [14][15]

and protein-split benchmarks [4]. Table 1 shows the number of
seconds spent both routing and executing assay operations; the

total time is the sum of the two. Results are also given for the

number of usable electrodes (i.e., tied to a control pin) and

number of external control pins for the DMFB size used. For

Protein Split 5-7, the array dimensions had to be increased to

execute the assay for one or both of the DMFBs.

Our DMFB has longer routing times for the first 7 benchmarks
because of sequential routing; however, it actually has shorter

routing times for Protein Split 2-7 because additional routes are

not generated between storage nodes, as described in Section 4.1.

Modules in the direct-addressing DMFB [3] can store up to two

droplets at any time. To utilize as many resources as possible,
droplets stored alone in separate modules will consolidate in order

to free up more modules to do useful work; routing these droplets

adds to the routing time, and therefore the total time as well.

The bottom row of Table 1 shows the average improvement of

our field-programmable DMFB compared to the direct-addressing

DMFB. We calculated this metric by computing the improvement
of FP over DA (baseline) for each benchmark and then averaging

these values over the entire set of benchmarks. Any value over 1

means FP is an improvement. Notice that, although FP’s average

routing time is 32% slower, its average operation time is 7%

faster. On average, the field-programmable pin-constrained
DMFB only suffers an average 2% slowdown in total execution

time, while reducing the pin count by 6-7×.

5.2 Comparison To Pin-Constrained DMFBs
Table 2 presents results for two prior pin-constrained assay-

specific and multi-functional DMFB architectures [9][17]; assay-
specific architectures were generated for PCR, In-vitro 1, and

Protein Split 3 assays, while the multi-functional chip can perform

all three assays. Many differences exist between these designs,

most notably that they are assay specific while ours is field-

programmable, and that they use linear array mixing modules,
which have longer latencies than the 4×2 mixers used here. Thus,

the schedules are different, and it is unclear if their reported

results include droplet routing times, as their primary objective

was to reduce the cost of their pin-constrained DMFBs by

reducing the pin-count. Table 2 is reproduced from Ref. [9].

Table 2. We present results from Xu's [17] and Luo's
[9] pin-constrained designs for chips which can run

PCR, In-Vitro 1, Protein Split 3 and a multi-functional
chip which can run all three.

Table 3. We demonstrate the three benchmark assays
from Xu [17] and Luo [9] on our field-programmable,

pin-constrained DMFB design of various sizes.

Table 1. Experimental results comparing the direct-addressing DMFB (DA) [3] with
our field-programmable, pin-constrained DMFB (FP).

Table 3 reports the performance and pin-count for PCR, In-Vitro

1, and Protein Split 3 for field programmable pin-constrained

DMFBs of varying sizes. For PCR and In-Vitro 1, execution times
decrease as the DMFB size (and thus the number of available

modules) increase, saturating at 12×15. For larger DMFBs,

performance degrades slightly due to longer routing times.

The Protein Split 3 assay requires 6 droplets to be stored at several

instances during the assay; thus, the 12×18 array with 7 SSD

modules (6 available to the scheduler) is the smallest compatible

device. The total execution time remains steady, regardless of
resources (we also tested on a 12×81 DMFB with abundant

resources) at 189s. In this case, the total execution time is not

limited by resource availability, but by the 7s droplet dispense

times [15]. It is unclear what droplet dispense times were assumed

in prior work [9][17]; reducing the dispense times to 2s instead of

7s reduces the assay execution time to approximately 100s.

In general, the field-programmable pin-constrained DMFBs

require more pins than the assay-specific or multi-functional pin-

constrained DMFBs reported in Table 2; this is to be expected

because our device is optimized for field-programmability, while

their devices are optimized for reduced pin-count.

Luo and Chakrabarty’s pin assignment scheme [9] theoretically

provides some flexibility , as two droplets are guaranteed to be
able to move without interfering with one another; however, they

did not provide details on how synthesis was performed, so it is

difficult to provide a direct comparison.

In contrast, the different versions of our field-programmable pin-

constrained DMFB reported in Table 3 are the same generic 2-

column architecture, but with a different number of resources. As
seen in Table 1, if we pick dimensions of reasonable size

(12×21), we can run all three assays in Table 2, as well as others,

due to the field-programmable nature of our design.

6. CONCLUSION
This paper has introduced the first field-programmable pin-
constrained DMFB that can execute arbitrary assays; prior pin-

constrained DMFBs have all been assay-specific or multi-

functional, but not field-programmable. To program the device,

we describe modifications to a synthesis flow for DMFBs, which

address architectural issues that are specific to our design.

Compared to field-programmable, direct-addressing DMFBs, the

field-programmable, pin-constrained DMFB offered comparable
or improved performance, while reducing the pin-count by 6-7x.

Compared to assay-specific, pin-constrained DMFBs, the field-

programmable device offered better performance and a

comparable pin-count for the PCR and In-vitro 1 benchmarks, but

degraded performance and a 2x higher pin-count for Protein Split
3. Compared to the multi-functional, pin-constrained DMFB, the

field-programmable pin-constrained DMFB required 1.44x more

pins for a comparably sized array (12x18 vs. 15x15). Thus, field-

programmable does come at a price in terms of pin-count and,

sometimes, assay execution time, compared to state-of-the-art
assay-specific and multi-functional pin-constrained DMFBs;

however, the flexibility provided is unmatched by prior DMFBs

and offers a significant advancement in terms of programmability.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF Grant CNS-1035603.

Daniel Grissom was supported by an NSF Graduate Research

Fellowship. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect those of the NSF.

8. REFERENCES
[1] E. Griffith and S. Akella. Performance characterization of a

reconfigurable planar-array digital microfluidic system. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst, 25(2), Feb. 2006.

[2] D. Grissom and P. Brisk. A high-performance online assay
interpreter for digital microfluidic biochips. In Proc. of GLSVLSI,

pages 103-106, Salt Lake City, UT, USA, May 3-4, 2012.

[3] D. Grissom and P. Brisk. Fast online synthesis of generally

programmable digital microfluidic biochips. In Proc. of
CODES+ISSS, pages 413-422, Tampere, Finland, Oct . 7-12, 2012.

[4] D. Grissom and P. Brisk. Path scheduling on digital microfluidic
biochips. In Proc. of DAC, pages 26-35, San Francisco, CA, USA,
Jun. 3-7, 2012.

[5] D. Grissom, et al. A digital microfluidic biochip synthesis
framework. In Proc. of VLSI-SoC, Santa Cruz, CA, Oct. 7-10,2012.

[6] T-W. Huang and T-Y. Ho. A two-stage integer linear programming-

based droplet routing algorithm for pin-constrained digital
microfluidic biochips. IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst, 30(2), Feb. 2011.

[7] F. J. Kurdahi and A. C. Parker, “REAL: a program for REgist er
ALlocation. In Proc. of DAC, pages 210-215, Miami, FL, USA,
1987.

[8] C. C-Y. Lin and Y-W. Chang. Cross-contamination aware design

methodology for pin-constrained digital microfluidic biochips. IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst, 30(6), Jun. 2006.

[9] Y. Luo and K. Chakrabarty. Design of pin-constrained general-

purpose digital microfluidic biochips. In Proc. of DAC, pages 18-25,
San Francisco, CA, USA, Jun. 3-7, 2012.

[10] K. O'Neal, D. Grissom, and P. Brisk. Force-directed list scheduling
for digital microfluidic biochips. In Proc. of VLSI-SoC, Santa Cruz,

CA, USA, Oct . 7-10, 2012.

[11] M. G. Pollack, A.D. Shenderov, and R. B. Fair. Electrowetting-based

actuation of droplets for integrated microfluidics. Lab on a Chip,
2:96-101, 2002.

[12] S. Roy, D. Mitra, B. B. Bhattacharya, K. Chakrabarty. Congestion-
aware layout design for high-throughput digital microfluidic
biochips. ACM Journal on Emerging Technologies in Computing

Systems, 8(3): article #17, Aug. 2012.

[13] V. Srinivasan, V. Pamula, and R. Fair. An integrated digital

microfluidic lab-on-a-chip for clinical diagnostics on human
physiological fluids. Lab on a Chip, 4:310-315, 2004.

[14] F. Su and K. Chakrabarty. Architectural-level synthesis of digital
microfluidics-based biochips. In Proc. of ICCAD, pages 223-228,
San Jose, CA, USA, Nov. 7-11, 2004.

[15] F. Su and K. Chakrabarty. “Benchmarks” for digital microfluidic
biochip design and synthesis. Duke University, Department of

Electrical and Computer Engineering, 2006.
http://www.ee.duke.edu/~fs/Benchmark.pdf

[16] F. Su and K. Chakrabarty. High-level synthesis of digital
microfluidic biochips. ACM Journal on Emerging Technologies in
Computing Systems, 3(4): article #16, Jan., 2008.

[17] T. Xu and K. Chakrabarty. Broadcast electrode-addressing for pin-
constrained multi-functional digital microfluidic biochips. In Proc. of

DAC, pages 173-178, Anaheim, CA, USA, Jun. 8-13, 2008.

[18] P-H. Yuh, C-L. Yang, and Y-W. Chang. BioRoute: a network-flow-

based routing algorithm for the synthesis of digital microfluidic
biochips. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
27(11):1928-1941, Nov. 2008.

[19] Y. Zhao and K. Chakrabarty. Simultaneous optimization of droplet
routing and control-pin mapping to electrodes in digital microfluidic

biochips. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst,
31(2), Feb. 2012.

S1. MERGING TWO DROPLETS
Figure S1 shows how a droplet (D4) merges with an existing

droplet (D2) in M2 to become D5. Once merged, the new droplet

(D5, with twice the volume) is synced with D1 back to the

mixers’ hold locations (the bottom image in Figure S1). If D1 has

already been merged, then mixing can begin; if not, the general

process in Figure S1 must be repeated to merge a new droplet

with D1 before the merged droplets in M1 and M2 can be mixed.

S2. SEQUENTIAL ROUTING
In this section, we provide more details to explain why sequential

routing was chosen. As mentioned in Section 3, operation times

are on the order of seconds, while droplet transport times are on

the order of milliseconds. A typical time-step is 1 or 2 seconds

[16], while a typical droplet actuation is at most 10ms (100Hz)

[18]. With this in mind, we chose the 3-phase bus approach

because, although it restricts droplet routing parallelism, it

simplifies the general-purpose nature of the device.

Consider Figure S2 which shows our field-programmable, pin-

constrained design with two different numbers of modules and

module sizes. Notice that, despite the central vertical bus ending

with pin 4 or pin 5, a clean transition can be made between buses

because all of the pins adjacent to the intersection are guaranteed

to be unique [9]. Thus, the same algorithms can be used to map

assays to field-programmable, pin-constrained arrays of various

sizes, given that they keep the same general form. This is

important because it would allow an end-user to design an assay

and then go purchase the cheapest compatible pin-constrained

DMFB; here, compatibility means that there are sufficient

resources available (meaning mixing and SSD modules) and that

the SSD modules have appropriate detectors.

As seen in Figure S3(a), it is always possible to move multiple

droplets along a straight path on the 3-phase bus because there is

sufficient space between repeating pin numbers. However, Figure

S3(b) shows that droplet interference can occur when moving

around a corner. In cycle two, if the next two pins are activated

(pin 3 and pin 5), the droplets will most likely merge. It would be

possible to hold pin 2 in cycle 3 such that the top droplet would

stall and avoid the droplet interference in cycle 3. However,

consider that droplets will only be making this transition when

traveling to or from an I/O reservoir.

Most of the opportunities to parallelize routing occur when

routing between modules. In light of this, consider Figure S4,

which shows multiple droplets in the central vertical routing bus.

Figure S1. Shows the electrode/pin activation sequence (from

top to bottom) that causes D4 to merge with D2 (in M2) to

become D5 (twice the volume) and re-sync with any other

droplets in mix modules (i.e., D1 in M1).

Figure S2. Shows that the number or size of modules can be

changed and the 3-phase bus can be repeated, regardless of

array size, without causing pin-conflict at the vertical-

horizontal bus intersections (bold borders).

 (a) (b)

Figure S3. Shows that moving two droplets concurrently is (a)

feasible when moving in a straight path, but (b) not always

possible when moving around a bend because droplet

interference can occur.

Figure S4. Shows that multiple droplets moving through the

vertical bus will result in an unintentional split when one tries

to enter a module.

For the lower droplet to enter the lower mixing module (M2), the

DMFB must activate pin 17, while simultaneously deactivating

pin 6. This is possible, but notice that the top droplet requires pin

4 to be activated to continue downward on its path. Activating this

pin will cause two adjacent electrodes to be activated near the

lower droplet, which will result in a split. Moving the top droplet

up, down or keeping it stationary will require pins 5, 4, or 6 to be

activated in cycle 2, respectively, which will each cause the

bottom droplet to split. If pins 4-6 are not activated, then the top

droplet will drift and the assay will not execute correctly.

Rather than deal with these complications, we chose to route

droplets one-at-a-time instead, as the impact on total assay

execution time is minimal.

S3. ROUTING ALGORITHM
This section elaborates on the routing process discussed in

Section 4.3; Figure S5 presents pseudocode. The router receives

a scheduled and placed DAG , where vertices represent

operations and edges represent droplets that must be transferred

between operations. Each vertex has a , which indicates

the module or I/O reservoir where the corresponding operation

will take place.

Each vertex in is scheduled to begin at a certain time-step, as

computed by the scheduler. A time-step typically lasts one or two

seconds and represents the time when operations are processed by

their respective modules or I/O reservoirs. When a new time-step

begins, then a new operation may start. This requires droplets to

be routed to the module that will execute the operation. Thus, we

start at time-step 0 (Line 2) and repeat the routing process for each

time-step until the last scheduled operation begins (Lines 3-23);

each iteration handles one routing sub-problem (time-step).

First, a graph of dependencies () is created based on the location

of each node that is relevant to the current time-step (Lines 4-8).

An edge (Dx, Dy) in the dependency graph means that droplet Dx

will be routed to droplet Dy’s current location, so Dy must be

routed first. As seen in Line 7, dependencies are added to the

graph based on the location field because droplets are being

routed from the parents’ location to the newly-executing node’s

location.

The next step is to decompose d into its connected components

(Line 12), which can be computed using a simple recursive multi-

directional, depth-first search [S1]. Connected components are

processed on-by-one. To simplify further discussion, we will

assume that d is composed of a single connected component.

Routing is simple if d is acyclic. Since the algorithm routes

droplets one-at-a-time, edge (Dx, Dy) indicates that Dy must be

routed before Dx; otherwise, Dx would merge inadvertently with

Dy upon completing its route. A legal routing solution for the sub-

problem can be achieved by routing the droplets one-by-one in

reverse topological order [S2]. Lines 10-20 in Figure S5 solve the

more complicated cyclic case, which is described next; in the

simple acyclic case, Lines 11, 13, and 14 are unnecessary.

If d is cyclic, routing becomes more complicated, as a cycle

means that no droplet can complete its route without inadvertently

merging with a droplet waiting at its destination. This problem is

solved by temporarily allocating DMFB resources for storage.

The first step is to compute strongly connected components

(SCCs) (Line 13) from the connected components using Gabow’s

path-based, depth-first search [S3]. One minor modification is that

we only need to identify the SCCs that contain more than one

node, as single-node SCCs do not have cyclic droplet

dependencies.

Once the SCCs that represent cycles are identified, the cycles

must be resolved (Line 14). As demonstrated in Figure 10, the

router randomly selects a droplet Dy from the SCC and routes it to

an empty SSD module for temporary storage, which breaks the

dependency cycle. The dependency graph d is then modified to

account for the relocated droplet’s new location: each edge of the

form (Dx, Dy) is removed from d as Dx is now free to move to its

destination, since Dy has moved out of the way.

The scheduler always leaves at least one SSD module free so that

there is room to break one cycle in the SCC. If the SCC contains

multiple intersecting cycles, then any other free SSD or mixing

module could be used for temporary storage. This process repeats

until d becomes acyclic. Once d becomes acyclic, a legal routing

solution can be found, as previously discussed.

One optimization that can reduce the extra storage requirement

(not shown in Figure S5) is to break SCCs one-by-one. Droplets

corresponding to vertices with no predecessors in d are routed

immediately, and the corresponding vertex is removed from d.

Then, an SCC is chosen that satisfies the following property: for

every vertex Dx belonging to the SCC and each outgoing edge

(Dx, Dy), Dy also belongs to the SCC. Breaking all of the cycles in

this particular SCC will ensure that at least one vertex in the

updated graph d will have no successors.

The advantage of the second approach is that it reduces the need

for temporary storage resources. As an example, suppose that d

has two SCCs, scc1 and scc2, and that each requires one additional

storage resource to resolve. Under the first approach, two storage

resources must be allocated in order to convert d to an acyclic

graph before the droplets can be routed. Under the second scheme,

all of the droplets in scc1 will be routed before all of the droplets

in scc2, or vice-versa. Therefore, both SCCs can use the same

storage resource, so just one available module suffices. In general,

if d contains k SCCs, and scci requires mi storage modules, then

the first scheme requires M1 = m1 + m2 + … mk modules for

storage, whereas, the second requires M2 = max{m1, m2, …, mk}

modules.

Figure S5. Psuedocode for route computation.

1 Given sequence graph

2 int ;

3 Repeat {

4 graph ; // Dependencies

5 for ()

6 for ()

7 ;
8 end for

9

10 list ; // Connected Components

11 list ; // Strongly Connected Components

12 ;
13 ;
14 ;

15 ; //

16

17 for ()

18 for ()

19 for()

20 ;
21

22 ++;

23 } until ()

That being said, we did not encounter a single droplet dependency

cycle in any of the 25 benchmarks seen in Table 1 and Table 3;

the largest assay, Protein Split 7, contains 2556 nodes. Although a

droplet dependency problem can still occur in theory, it seems

unnecessary, from a practical standpoint, to devote a large number

of resources to resolving droplet dependency cycles, even for

large assays.

S4. SUPPLEMENTAL REFERENCES
[S1] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for

graph manipulation. Communications of the ACM, 16(6):372-378,
Jun 1973.

[S2] A. Kahn. Topological sorting of large networks. Communications of
the ACM, 5(11):558-562, Nov 1962.

[S3] H. Gabow. Path-based depth-first search for strong and biconnected
components. Information Processing Letters, 74(3-4):107-114, May
2000.

