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ABSTRACT 

Since the inception of digital microfluidics, the synthesis 

problems of scheduling, placement and routing have been 

performed offline (before runtime) due to their algorithmic 

complexity. However, with the increasing maturity of digital 

microfluidic research, online synthesis is becoming a realistic 

possibility that can bring new benefits in the areas of dynamic 

scheduling, control-flow, fault-tolerance and live-feedback. This 

paper contributes to the digital microfluidic synthesis process by 

introducing a fast, novel path-based scheduling algorithm that 

produces better schedules than list scheduler for assays with high 

fan-out; path scheduler computes schedules in milliseconds, 

making it suitable for both offline and online synthesis. 

Categories and Subject Descriptors 

B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Performance 

and Reliability]: Performance Analysis and Design Aids; J.3 

[Life and Medical Sciences]: Biology and Genetics, Health 

General Terms 

Algorithms, Design, Performance. 

Keywords 

Digital Microfluidic Biochip (DMFB), Laboratory-on-Chip 

(LoC), Electrowetting-on-Dielectric (EWoD), Scheduling. 

1. INTRODUCTION 
This work presents a scheduling heuristic for digital microfluidic 

synthesis called Path-scheduler. Instead of scheduling each node 

individually, Path-scheduler schedules sets of connected, 

dependent operations, called paths, to increase utilization and 

yield better schedules for assays with high fan-out. Path-scheduler 

computes schedules in milliseconds, making it useful for both 

offline and online scheduling. 

1.1 Background 
Microfluidics is a laboratory-on-chip (LoC) technology that 

manipulates fluids on the micro-liter to nano-liter scale to perform 

biochemical reactions called assays. In contrast to the first 

generation of microfluidic devices that transport continuous 

volumes of fluid through channels by actuating pumps and valves, 

digital microfluidic biochips (DMFBs) manipulate discrete 

droplets of fluid to perform assays.   

A DMFB is arranged as a 2-dimensional array of electrodes, as 

seen in Figure 1(a). Figure 1(b) shows a droplet sandwiched 

between ground and control electrodes. Although the droplet is 

centered over CE2, it overlaps neighboring electrodes CE1 and 

CE3. An activation of CE1 or CE3 will invoke a phenomenon 

called electrowetting and cause the droplet to flow left or right, 

respectively, toward the newly-activated electrode [4]. 

Figure 2 shows how several fundamental microfluidic operations 

can be performed by activating/deactivating adjacent electrodes in 

a particular sequence. In addition to droplet transport, splitting, 

merging and mixing, droplets can be stored on an electrode and 

input/output from/to reservoirs. Furthermore, individual cells can 

be equipped with various sensors, cameras and heating elements 

to perform detection and heating operations [6][11]. These basic 

operations have been shown adequate to perform an assortment of 

assays such as in-vitro diagnostics and immunoassays used in 

clinical pathology [9], DNA polymerase chain reaction (PCR) 

mixing stages used to amplify DNA [3] and protein 

crystallizations [12]. 

A digital microfluidic system consists of two parts: a “wet” array 

of electrodes, as seen in Figure 1(a), and a “dry” computing 

device, such as a processor or microcontroller, which sends 

signals to the microfluidic array to activate electrodes in a pre-

determined sequence. This sequence of electrode activations, in 

turn, causes droplets to perform all the necessary operations (e.g. 

mixing, merging, transport) to execute an assay. 

To obtain the proper sequence of electrode activations, a compiler 

solves three NP-complete synthesis problems, as seen in Figure 3. 
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(a)                                                       (b) 

Figure 1. (a) A DMFB 2D array of electrodes; (b) Cross-sectional 

view of electrode array. 

 

             

Figure 2. Basic microfluidic operations being performed on 2D array 

of electrodes. 

 

 

Figure 3. A microfluidic compiler obtains a sequence of electrode 

activations by scheduling a DAG, placing DAG operations on the 

array, and routing droplets between operations. 

 



As input to the compiler, an assay is given as a directed acyclic 

graph (DAG), which contains the operation dependencies, types 

and lengths. The compiler first performs resource-constrained 

scheduling to assign each operation a starting and stopping time-

step, ensuring that there are sufficient resources to perform the 

operations at the scheduled times [3][5][9]. With the newly-

scheduled DAG, the compiler then attempts to place/assign each 

operation to a set of adjacent electrodes at the specified time-

steps. Finally, after the operations are placed, droplet routes are 

computed to transport droplets between dependent operations [2]. 

1.2 Motivation and Contribution 
This paper contributes to the synthesis process by introducing a 

fast, novel, path-based scheduling algorithm. To date, a list 

scheduling variant is the fastest scheduling algorithm used for 

DMFB synthesis [7][9]. When compared to list scheduling, Path-

scheduler produces better schedules in competitive times 

(milliseconds) for assays with high fan-out. 

Path-scheduler is also suitable for online synthesis. Currently, 

assay compilation is performed completely offline due to the 

complexity of the synthesis process, requiring an assay to be 

fully-specified before runtime. Ho, Chakrabarty and Pop suggest 

that “specialized heuristics for the synthesis problems” 

(scheduling, placement and routing) might enable online 

synthesis, which would bring new features to DMFBs in the areas 

of dynamic scheduling, control-flow, fault-tolerance and live-

feedback [2]. To date, modified list scheduling (MLS) is the only 

other scheduler able to generate schedules quick enough to be 

used in an online manner [7][9]; Path-scheduler can compute 

better schedules in an online setting for high fan-out assays.  

2. RELATED WORK 
Our work is closely related to four prior scheduling algorithms 

that have been proposed in the literature: MLS [7][9], as 

mentioned above; an optimal scheduler based on integer linear 

programming (ILP) [9], and two genetic algorithms [5][9]. All of 

these algorithms solve the resource-constrained scheduling 

problem, where the DMFB size is known a-priori. This size limits 

the number of concurrent mixing and storage operations the 

DMFB can support. The scheduler computes valid start and stop 

times for each assay operation while ensuring that each DMFB 

resource is used to process, at most, one operation at each point in 

time; the objective is to minimize the assay completion time.  

Among these four approaches, the genetic algorithms and ILP 

formulation achieve high quality solutions but with very long 

runtimes. The genetic algorithms use the iterative improvement 

paradigm to randomly explore the search space, eventually 

converging at a local optima; the ILP model employs a 

commercial solver with an exponential worst-case time 

complexity to find an optimal solution. Neither of these solutions 

is appropriate for usage in an online context.   

Luo and Akella [3] analyzed a pipelined variant of the PCR assay 

(Figure 4(b)), and developed optimal algorithms for scheduling it 

(and assays with a similar topology called a “full binary tree”) 

under various resource constraints. In our experiments, both MLS 

and Path-scheduler found optimal schedules for PCR.  

For mixing and dilution operations, larger modules achieve faster 

runtimes, but consume more area, reducing the availability of 

resources for other concurrent operations. Su and Chakrabarty 

[10] developed a genetic algorithm that performs scheduling, 

module selection, and placement concurrently. The runtime of this 

algorithm is too large for use in an online context; however, it 

illustrates the importance of module selection during synthesis. To 

enable a fair comparison with MLS, we assume uniform module 

sizes; incorporating module selection into the path scheduling 

mechanism, without significantly increasing the runtime, is left 

open for future work.  

3. PATH SCHEDULER 

3.1 Definitions and Resource Constraints 
Let         be a directed acyclic graph (DAG) in which the 

vertices ( ) are the operations of an assay and the edges ( ) 

describe the dependencies between operations.    is the total 

number of work modules (the areas where operations are 

performed) that can be accommodated on the DMFB. A general 

module is a work module that can perform mixing, merging, 

splitting, and storage operations. A special-purpose module is a 

general module equipped with a sensor, heater, or other external 

device; special-purpose modules can use these devices to perform 

additional operations, such as heating and detection. Let     be 

the number of special-purpose modules of type   and    be the 

number of general modules; then: 

                                                                               (1) 

Any time that a work module is not performing an operation, it is 

free to be used for storage and can be used to store a maximum of 

   droplets at any given time-step. Let      be the number of 

special-purpose operations of type   being processed at time-step 

 . Let    be the number of general operations being processed and 

   be the number of droplets being stored, respectively, at time-

step  . Then, the following inequalities must hold: 

                                           
  

  
                               (2) 

                                                                                        (3) 

In prior work, the feasibility of a given schedule cannot be 

determined until it is given to a placer and router and successfully 

mapped to a DMFB. In previous works, a value known as    is 

determined as the number of cells on the DMFB;    is then 

normalized to the number of mixers of a particular size that can fit 

on the DMFB [9].   , used in this work, is similar to    in that it 

represents the number of work areas of a particular size that have 

been pre-determined to fit on the DMFB. It is assumed that the 

modules/mixers can be placed in such a way to allow sufficient 

room for routing. 

Lastly, an I/O port can only process one dispense or output 

operation at a given time-step and a dispense operation must be 

bound to a reservoir that contains the appropriate fluid type.  

3.2 Approach 
A DMFB array contains a fixed number of electrodes on which 

assay operations can be executed. Unlike a traditional computer 

where data can be offloaded to a higher-level memory until 

needed, droplets that are waiting on other dependencies must be 

stored on the array using the same electrodes that might otherwise 

be used to perform operations. Consequently, the number of 

droplets being stored on a DMFB is inversely proportional to the 

amount of useful work that can be done. Thus, it is important to 

schedule operations with a goal to minimize the amount of time 

and number of droplets being stored. 



As a simple example, consider the protein assay seen in Figure 

4(a), typically used as a benchmark for DMFBs [8][9]. Eight 

paths can be identified in this assay; path 1 starts with two 

dispenses, while paths 2-7 originate from one dispense node and 

one split operation from another path. All paths in Figure 4(a) 

end with an output operation, although this is not the general case, 

as seen in assays with mix/merge operations (Figure 4(b)). It is 

important to note that the order of paths here is not necessarily 

unique. Path 1 could be chosen to go down the right side, instead 

of the left, if all paths from the root split to each output node are 

the same length. Once the paths are identified, the order in which 

they are processed is important, as shown in the next paragraph 

and in Section 3.3.    

As seen in Figure 5(a), a scheduler that attempts to schedule 

single operations at-a-time may attempt to schedule along all eight 

paths simultaneously (e.g. list-scheduling with a priority function 

favoring nodes with longer paths to an output) such that there are 

eight droplets in the system that need to be processed. Assuming 

the DMFB has enough room for four work modules that can be 

used to process one operation or store up to four droplets (i.e. 

       ), this schedule forces two work modules to be used 

for storage. However, if operations are first scheduled along paths 

1, 2 and 3, only one module is required for storage (see Figure 

5(b)). This approach effectively prevents droplets from being split 

until at least one of a split operation’s children can be processed, 

reducing the number of droplets being stored in the system and, in 

turn, increasing work module utilization. 

3.3 Priority Function 
Path scheduler uses two priorities to efficiently produce schedules 

that minimize the amount of time a droplet spends in the system. 

To keep droplets from entering the system (via a dispense or split) 

till as late as possible, path scheduler sets the first priority of each 

node to the number of independent paths, which is the cumulative 

number of droplets being output in a node’s fan-out.  

Figure 6 shows the independent-path priorities (IPPs) for assays 

with high fan-out and fan-in (the protein/PCR assays from Figure 

4). Recall Figure 5 with the paths and IPPs from Figure 4(a) and 

Figure 6(a), respectively, in mind. The first node on each path is 

known as the path leader. If the scheduler first schedules path 1, 

leaders from paths 2, 3 and 5 become candidates for scheduling. 

According to the IPPs in Figure 6(a), path leaders 2, 3 and 5 have 

priorities of 1, 2 and 4, respectively. By choosing the lowest 

priority, path 2 is processed next, preventing additional splits from 

being made until necessary. 

Each node has a second priority called the critical-path priority 

(CPP), which is computed as the length of the longest path (in 

time-steps) from itself to an output node. As seen in Figure 7, if 

the IPP of two candidate nodes (S1 and M1) are the same (2), the 

path with the lower CPP (S1, CPP = 3) may result in a shorter 

overall run-time. Since there is only one detect module, one of the 

            

                               (a)                                                     (b) 

Figure 4. (a) A protein assay with 8 paths; (b) A PCR mixing assay 

with 4 paths. Input arrows not attached to a node on both sides 

represent a dispense operation (nodes omitted for clarity). 

 

               

       

                      (a)                                                (b) 

Figure 5. (a) A non-path scheduler may attempt to process all paths 

simultaneously, forcing two modules to be used as storage; (b) Path 

scheduler first schedules paths 1, 2 and 3, and uses only one module 

to store droplets. 

 

            

                                 (a)                                                   (b) 

Figure 6. The independent-path priorities for (a) a protein assay with 

high fan-out and (b) a PCR assay with high fan-in. 

 

 

Figure 7. Two schedules for a set of two simple DAGs. The DMFB, in 

this case, has one general module (GM) and one detect module (DM). 

Path leaders S1 and M1 both have equal IPPs; if CPP is used as a 

second, tie-breaking priority, overall runtimes can be reduced if 

paths with smaller CPPs are chosen first. 



droplets from split-node S1 must be stored in the general module 

until the other detect finishes. Taking the shortest critical path 

results in less storage time (1 time-step vs. 2 time-steps in Figure 

7), which provides more opportunity to increase overall system 

utilization. 

3.4 Algorithm 
The pseudocode for the path scheduler algorithm is given in 

Figure 8. Before the scheduling process begins, all nodes in the 

sequencing graph are assigned first and second priorities as 

described in Section 3.3 and the candidate operations are 

determined. The initial candidate operations are those whose 

parents are only dispense operations. 

Lines 6-35 describe the main scheduling process that repeats until 

all candidate nodes have been scheduled. Lines 7-9 first select the 

candidate node, or path leader, with the lowest priority value (the 

lowest IPP first, and in the event of an IPP tie, the lowest CPP), 

reset the scheduling time-step and initialize an empty path. 

Lines 10-24 attempt to allocate resources for an entire path of 

operations starting with the path leader chosen in Line 7, and 

ending with an output or merge operation (see Figure 4). Lines 

11-13 attempt to find the earliest gap in time where the current 

node,  , can fit, given the available resources. If a gap is found, it 

means there is a resource of type   (general or special-purpose) 

available from time-step    to              , any required input 

reservoirs are available and that there are sufficient resources to 

store any incoming droplets from     parent nodes, if necessary. If 

a gap is not found in Lines 11-13, it means the current path cannot 

be scheduled at the moment because of some resource conflict 

(e.g. there is not enough room to store a droplet from one of     

parents (in path  ) to  ) ; the path is discarded and any resources 

being temporarily reserved to schedule path   are relinquished. In 

this case, Path-scheduler will try to schedule the path again later, 

but will first return to Line 6 and attempt to schedule another path. 

In the event that a gap is found for  , the starting time-step and 

resource-type are temporarily saved and   is added to the current 

path   (Lines 14-16); however,   is not marked as scheduled. 

Once   has been added to path  , Lines 21-22 select the next node 

to consider adding to the path from     children. If the new   is an 

output or unscheduled mixing operation, then path   is a complete 

path, is ready to be officially scheduled and can break from the 

path-constructing loop of Lines 10-24; otherwise the loop 

continues and path scheduler attempts to find a gap for the new  . 

Finally, in Lines 26-34, each operation in the schedulable path   

is marked as scheduled and the resources temporarily reserved in 

Line 15 to schedule each of path     operations are officially 

reserved in Line 29. Also, any unscheduled children of the nodes 

in path   are added to the candidate operations as path leaders. 

The edge between the path node and the new candidate operation 

added in Line 31 represents a droplet that must be stored 

indefinitely and accounted for to properly determine resource 

availability since it has been scheduled to be created, but may not 

be used for awhile. Thus, when an operation is added to the 

candidate list in Line 31, the corresponding edge is added to a list 

of droplets being indefinitely stored from their parent’s scheduled 

ending time-step. When path scheduler is finding a gap for 

operations in Lines 11-13, it considers all droplets being stored 

indefinitely at that point. When an operation is finally scheduled 

in Lines 28-29, any edges/droplets connected to that node that are 

being indefinitely stored are removed from the indefinite storage 

list and the finite period that the droplet must be stored for, if any, 

is accounted for in the system’s available resources. 

4. EXPERIMENTAL RESULTS 
We implemented our algorithm, as well as two versions of 

modified-list scheduling in C++; all tests were run on a 64-bit 

Windows 7 machine with 4GB of RAM, and an Intel Core i7 CPU 

operating at 2.8GHz. 

4.1 Implementation 
Our Path-scheduler (PS) was implemented as described in Figure 

8. We re-implemented modified-list scheduling as described in 

ref. [7] as faithfully as possible. In their work, Su and Chakrabarty 

describe an urgency priority function which sets each node’s 

priority to “the weight of their longest path to the sink” and then 

“sort[s] them in decreasing order” such that nodes with longer 

paths are addressed first. We interpret “weight of the longest 

path” to be calculated in the number of time-steps and compute it 

similarly to the CPP, described in Section 3.3. Our re-

implementation of modified-list scheduling (MLS_DEC) 

processes nodes with higher priorities first. 

We also implemented another version of modified-list scheduling 

with a better-performing priority function. By setting the priorities 

to our CPP and then sorting them in decreasing order, it causes the 

scheduler to process a DAG similar to what is seen in Figure 

5(a), which is inefficient in terms of utilization. Thus, to be fair to 

list scheduling, we implemented a new version of modified-list 

scheduling (MLS_INC) which uses CPP for operation priorities, 

but sorts the nodes in increasing order so nodes with lower 

priorities are processed first. 

4.2 Benchmarks 
We used a set of three standard benchmarks: PCR, in-vitro and a 

protein assay [8]. Figure 4 displays the protein and PCR DAGs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Pseudocode for the Path-scheduler algorithm. 

 

1 Given sequencing graph G=(V, E) 

2 Given resource constraints                 

3 Assign priorities for all nodes        based on IPP and CPP  

4 Find candidate operations                                          

5  

6 Repeat { 

7  Select                                     

8  Time-step t = 1 

9  Path     

10  Repeat { 

11       Attempt to find earliest time-step    and module-type          
12                                                                    

13        while holding Equations (2) and (3) 

14       if (Attempt found a gap for S)  

15                                               

16           Add        

17       else // Gap could not be found, S not schedulable now 

18                                   

19       end if 

20  

21       Select new 

22                                                                     

23  } until (                                            

24                                                                        ) 

25  

26  if (                  ) 

27      for (      ){ 

28                                   

29            Reserve resources for path   

30             for (                       ) 
31                Add   to candidate operations    

32           end for 

33      end for 

34 end if 

35 } until (a                                          ) 

 



4.2.1 Assay Annotations 
Each benchmark was converted to a DAG and fed to the three 

schedulers. The module libraries from ref. [8] were used for 

operation timings. For the PCR assay, a 2x4 mixer (3s) was used 

for all mixes. The protein DAG was annotated to use the 2x4 

diluter (5s) and 2x4 mixer (3s) for all dilute and mix operations, 

respectively. The 2-input, 2-output dilute operations used in the 

protein assay were implemented with consecutive mix and split 

operation which took a cumulative time of 5s. For the in-vitro 

benchmark, we used the largest sequencing graph which assays 

four samples with four reagents for a total of 16 mixes/detects. 

We used the same mix and detect times as detailed in Table 1, 

Example 5 of ref. [7]. 

4.2.2 Experiments 
For the first set of experiments, we used the PCR, protein and in-

vitro DAGs described in Section 4.2.1 as a base. Then, for each of 

the three DAGs, we attempted to simultaneously schedule an 

increasing number of copies of the same DAG, from 1 to 10, to 

show how each scheduler performs with increasing workloads. As 

a second experiment, we executed 3 protein DAGs while varying 

the number of modules (  ) from 2 to 7. In a third set of 

experiments, we varied the number of splits performed by the 

protein assay, which allowed us to evaluate the quality of 

schedules produced by Path-scheduler as assay fan-out increases. 

In these experiments, we use the protein assay as the source assay. 

As seen in Figure 4, any path from the root split to an output goes 

through 3 splits before the final string of 7 operations, resulting in 

23=8 output droplets. Thus, we say that the original protein assay 

has 3 levels of splits.  We sweep the number of split levels from 

1-8, so that the number of output droplets sweeps from 21=2 to 

28=256. As seen in Figure 9, the final seven operations are 

appended to the end of each path after the last level of splits. 

4.3 Resource Constraints 
For the first and third experiment, we set the number of work 

modules to four (i.e.,     ); the second experiment varies   . 

For PCR, all four modules are general modules. For the in-vitro 

and protein benchmarks, all four modules are detect modules. 

Similar to ref. [5], we assume a detect module can be used for any 

detect operation. The PCR and in-vitro benchmarks have one 

input for each type of fluid used, while the protein benchmark 

uses one input for sample fluids, two inputs for buffer fluids and 

two inputs for reagent fluids. 

4.4 Results and Discussion 
Three metrics are presented for evaluation: the completion time in 

number of time-steps, the time required to compute the schedule 

and the average number of modules used for storage during each 

time-step. The last metric represents the scheduler’s storage 

efficiency; the lower this metric, the higher the DMFB utilization. 

Table 1 shows the results for Experiment 1. MLS_DEC handles 

storage poorly, as indicated by its average storage usage; as a 

consequence, both MLS_INC and PS outperform it significantly. 

For the protein assay, MLS_DEC attempts to schedule along all 

paths simultaneously, creating an overwhelming number of 

storage droplets; for 3 protein DAGs, it already uses 2.67 of 4 

modules, on average, for storage. Because of its poor storage 

handling, it fails to produce feasible schedules for more than 3 

protein DAGs because all of the modules are allocated for storage 

and no assay operations are able to proceed. 

The rest of our discussion is limited to MLS_INC and PS. As 

expected, PS yields great gains with the protein assay, which has 

high fan-out. In overall schedule quality, PS saves between 9-11 

seconds on the first two runs and 37-39 seconds on the last two 

runs. Furthermore, PS computes schedules 1.94x faster, on 

average, than MLS_INC. For the interested reader, Supplementary 

Section S1 shows the scheduled graphs for the protein assay for 

MLS_DEC, MLS_INC and PS. 

Results for the PCR and in-vitro assays are given to demonstrate 

how PS performs on assays without fan-out since neither of these 

assays contain a single split. For PCR, PS and MLS_INC yield 

identical results; PS runs faster than MLS_INC, especially when 

the number of DAGs increases.  

For the in-vitro benchmark, neither PS nor MLS_INC require any 

storage operations. PS’s computed schedules are an average of 

 

Figure 9. DAG for Experiment 2; i levels results in 2i output droplets. 

Table 1. Results of Experiment 1. Lower is better for all metrics. 

 

 

 

 



2.7s slower than MLS_INC. The root of this small inefficiency is 

actually due to input-reservoir conflicts. A conflict resolution step 

was added to PS and it improved the results for in-vitro to be 

equivalent with MLS_INC; however, due to its inherent quadratic 

runtime, this step increased the runtime of PS significantly (e.g. 

from 24ms to 7439ms for in-vitro run #10) and did not yield 

improvements for protein or PCR schedules. We describe these 

issues in greater detail in Supplementary Section S2. Lastly, we 

note that the runtime of PS is 3.5x to 7.3x faster than MLS_INC 

in this experiment. 

Table 2 shows results for Experiment 2, where we varied the 

number of work modules while scheduling the protein assay. For 

2 modules, PS completed a schedule in 1177 time-steps, while 

MLS_INC failed to compute a schedule. For     3, 4, 5, 6 and 

7, PS’s schedules are 185, 73, 40, 40 and 33 time-steps shorter 

than MLS_INC’s schedules, respectively. As the number of 

modules increase, the schedules tend to converge since there are 

abundant resources for storage and it becomes algorithmically 

easier to compute latency-optimal schedules. 

Table 3 reports results for Experiment 3, which confirms that PS 

generates better schedules than MLS_INC when fan-out increases 

by reducing storage usage. PS loses 1-4 time-steps for the first 

two levels of splits. However, as the number of splits increase 

from three to seven levels, PS saves up to 812s (13m 32s). Due to 

poor memory management, MLS_INC fails to produce schedules 

beyond seven split levels because it reaches a point where all four 

modules are used for storage. With the constraints detailed in 

Section 4.3, PS can theoretically compute schedules up to 12 

levels (4096 droplets). We verified this experimentally: PS took 

1269ms (1.3s) to compute a schedule of 31h 29m in length.  

5. CONCLUSION 
We have presented a path-based scheduling heuristic for digital 

microfluidic synthesis. Instead of scheduling node-by-node, as list 

scheduler does, Path-scheduler schedules path-by-path, reducing 

the number of droplets being stored in the system on assays with 

high fan-out. The increase in storage efficiency leads to an 

increase in utilization, and in turn, an increase in overall schedule 

quality. Similar to list scheduling, Path-scheduler produces 

solutions on the order of milliseconds. As assays grow extremely 

large, as seen in Experiment 3, the schedules generated by Path-

scheduler will be further appreciated when the compiler attempts 

to place and route a much smaller schedule. 

As synthesis moves to an online setting, short runtimes become 

increasingly important and assays will likely be scheduled with 

specialized scheduling heuristics that perform well on a particular 

assay-class (e.g. multiplexed, high fan-out/in, etc.). Path-scheduler 

excels on and should be used on assays with high fan-out (easily 

obtainable info). Even with no a-priori information, Path-

scheduler is fast enough that a DMFB could compute schedules 

with path- and list scheduler and take the best schedule with little 

penalty. As more fast, high-quality scheduling heuristics emerge, 

online synthesis will become a growing possibility, bringing a 

number of new features to DMFBs in the areas of dynamic 

scheduling, control-flow, fault-tolerance and live-feedback. 
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Table 2. Results of Experiment 2: scheduling the protein assay using 

a varying number of modules. Lower is better for all metrics. 

 

Table 3. Results of Experiment 3: varying the number of splits in the 

protein assay. Lower is better for all metrics. 

 



S1. STORAGE REDUCTION GRAPHS  

       

              MLS_DEC (highest priorities first) – 48 Storage Nodes            MLS_INC (lowest priorities first) – 34 Storage Nodes 

                     

                                       PS (Path Scheduling) – 15 Storage Nodes  

Figure S1. Scheduled DAGs for the basic protein assay (timing information was removed for clarity). These graphs have not been bound (placed), 

and thus, each black storage node represents a droplet being stored for a length of time, possibly in a number of different modules. 

 



Figure S1 shows the scheduled graphs for the basic 118-node 

protein assay for MLS_DEC, MLS_INC, and PS. The main points 

of interest are the locations and number of storage nodes. Each 

storage node represents a droplet being stored for a number of 

time-steps, possibly in a number of different locations. MLS_DEC 

inserts storage nodes in-between almost every pair of consecutive 

non-dispense nodes for a total of 48 storage nodes. MLS_INC is 

slightly more conservative, while PS inserts only 15 storage 

nodes, usually after splits occur.  

Figure S2 shows the same protein assay that is now scheduled 

and bound to one of the four specific work modules. Here, the 

black storage nodes from Figure S1 have been unrolled and 

represent a droplet being stored for a number of time-steps in a 

particular work module. Although placement/binding is beyond 

 

    MLS_DEC (highest priorities first)                       MLS_INC (lowest priorities first)                              PS (Path Scheduling) 

                  252 Storage Nodes                                                  119 Storage Nodes                                              54 Storage Nodes 

 

Figure S2. Scheduled and bound DAGs for the basic protein assay. Each black storage node represents a droplet being stored for an amount of 

time in a particular module. 

 



the scope of this paper, we created Figure S2 from the scheduled 

graphs seen in Figure S1 using a simple left-edge binder to better-

demonstrate how the various schedules will execute. These results 

show that MLS_DEC tries to execute all paths concurrently, 

resulting in much greater demand for storage than MLS_INC or 

PS. In contrast, PS processes the left side of the assay first, while 

storing droplets at a few strategic locations on the right side. 

S2. IN-VITRO INEFFICIENCY 
In this section, we show that the slightly inferior schedules 

produced by PS for the in-vitro benchmark arise from input 

reservoir resource conflicts. In the basic 80-node in-vitro 

benchmark, four samples (S1-S4) are pairwise assayed with four 

reagents (R1-R4) yielding a DAG with 16 connected components. 

Each sample-reagent pair is mixed together, sent to a detector for 

evaluation, and then output. Mix times (Table S1) are based on 

the sample type, while detect times (Table S2) are based on the 

reagent type. All dispense times are 2s. 

Figure S3 shows what choices MLS_INC and PS make for the 

first four assays. Since the IPPs for PS all equal 1, PS and 

MLS_INC both use only CPPs to help decide which paths/nodes 

to schedule next. Both choose mix node M6, which mixes S2 and 

R2 together because the CPP of 7TS (3TS for M6 and 4TS for 

D6) is the smallest of any sample-reagent pair. From Table S1 

and Table S2, the assays with the next three lowest priorities, all 

tied at 8TS, are S2-R1 (3s+5s), S2-R4 (3s+5s) and S3-R2 (4s+4s). 

Figure S3 reveals that PS’s first four scheduled DAGs include 

these 3 assays. However, notice that S2 and R2 were already 

scheduled and that each of the next three assays contain either S2 

or R2. PS first tries to schedule the input operations for S2-R1 at 

time-step 0, but finds that there is a resource conflict with the 

input port dispensing S2. Instead of moving to a new connected 

component, PS sticks with the current one and schedules it as 

soon as the input port for S2 is available at time-step 2. PS finds 

that its next component, which assays S3 with R2 (chosen next, at 

random, from the 3-way tie) has a resource conflict with R2 and 

must also start at time-step 2. Finally, PS receives the connected 

component with S2 and R4 and cannot schedule it until time-step 

4 because the input port for S2 is busy during the prior time-steps. 

If the random order of the ties is the same in MLS_INC and PS, 

MLS_INC will examine the assays in the same order. However, 

the behaviors of PS and MLS_INC cause the schedules to differ at 

this point.  PS can go back and add to a partial schedule that is 

already in place. For example, if PS has already scheduled a path 

from time-steps 0-10, it can revisit those time-steps and schedule 

another path from time-steps 0-10. However, list scheduling 

(including, but not limited to MLS_INC) takes a constructive 

approach and does not revisit a time-step once it has moved to the 

next. For example, if MLS_INC is scheduling a node at time-step 

5, it can never go back to time-steps 0-4 to add to the schedule. 

When MLS_INC reaches time-step 2, it schedules M6, along with 

its parent nodes for S2-R2. MLS_INC also examines the three 

assays with path-lengths (or CPPs) of 8TS, but finds that none can 

be scheduled at the moment because they all require the input port 

for S2 or R2. Since MLS_INC cannot come back to this time-step, 

it greedily examines all assays until it finds three that do not 

conflict with the inputs of the first assay or with each other. 

Figure S3 shows that MLS_INC is able to utilize all input ports in 

the first two time-steps. Once the first four mixers (and 

corresponding dispense parents) are scheduled, the DMFB runs 

out of modules and list scheduler moves to the next time-step. 

MLS_INC only releases one module (DM3) before PS. However, 

even though three of the four modules finish their first assay at the 

same time for both schedules, MLS_INC has scheduled longer 

assays, and thus, has less work than PS left to schedule. Both 

schedulers have nearly identical amounts of resources left due to 

the fact that PS expended more resources at the beginning of its 

schedule. This slight skew in scheduling is the cause of the 3-4 

time-step deficiencies seen in the PS schedules. 

Thus far, we have shown that the inefficiency for the multiplexed 

in-vitro benchmark is due to resource conflicts with the input 

reservoirs. The solution is to add some priority to the order in 

which paths are scheduled based on the input reservoirs required 

by that path. To test this idea, we modified Path-scheduler so that 

it no longer considered the CPP as a second priority. If there were 

a number of assays (mix nodes) with the same IPP priority, the 

modified Path-scheduler (PS_IN) examines all parents of the tied 

assays/nodes and schedules the mixers whose dispense parents are 

available earliest. This solution is quadratic in the number of 

paths, as it searches through the list of unprocessed (tied) nodes 

each time PS_IN chooses a new path to schedule. 

Table S3 shows the results of PS_IN alongside the original results 

for the in-vitro diagnostic test from experiment 1. The schedules 

for PS_IN are now within one time-step (+/-) of the MLS_INC 

schedules. We attribute the one time-step differences to 

randomness in the order that ties are ordered by each scheduler. 

As expected, runtimes for PS_IN are much longer than PS or 

MLS_INC, which arguably outweighs the benefits of improving 

the schedule quality by 2 to 3 time-steps. 

Table S1. Mix times according to in-vitro sample-type. 

 

Table S3. Experimental data from experiment 1 with results from PS_IN. 

 

Table S2. Detect times according to in-vitro reagent-type. 

 



 

MLS_INC (lowest priorities first)  

 

 

PS (Path-scheduler) 

Figure S3. Shows the first four scheduled mixes, along with bindings to work modules and inputs for MLS_INC and PS. S1-S4, R1-R4 and DM1-DM4 

represent the four sample input reservoirs, reagent input reservoirs and detect modules, respectively, on the DMFB.  


