
Path Scheduling on Digital Microfluidic Biochips

Daniel Grissom, Philip Brisk
Department of Computer Science and Engineering

University of California, Riverside
{grissomd, philip}@cs.ucr.edu

ABSTRACT

Since the inception of digital microfluidics, the synthesis

problems of scheduling, placement and routing have been

performed offline (before runtime) due to their algorithmic

complexity. However, with the increasing maturity of digital

microfluidic research, online synthesis is becoming a realistic

possibility that can bring new benefits in the areas of dynamic

scheduling, control-flow, fault-tolerance and live-feedback. This

paper contributes to the digital microfluidic synthesis process by

introducing a fast, novel path-based scheduling algorithm that

produces better schedules than list scheduler for assays with high

fan-out; path scheduler computes schedules in milliseconds,

making it suitable for both offline and online synthesis.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; B.8.2 [Performance

and Reliability]: Performance Analysis and Design Aids; J.3

[Life and Medical Sciences]: Biology and Genetics, Health

General Terms
Algorithms, Design, Performance.

Keywords

Digital Microfluidic Biochip (DMFB), Laboratory-on-Chip

(LoC), Electrowetting-on-Dielectric (EWoD), Scheduling.

1. INTRODUCTION
This work presents a scheduling heuristic for digital microfluidic

synthesis called Path-scheduler. Instead of scheduling each node

individually, Path-scheduler schedules sets of connected,

dependent operations, called paths, to increase utilization and

yield better schedules for assays with high fan-out. Path-scheduler

computes schedules in milliseconds, making it useful for both

offline and online scheduling.

1.1 Background
Microfluidics is a laboratory-on-chip (LoC) technology that

manipulates fluids on the micro-liter to nano-liter scale to perform

biochemical reactions called assays. In contrast to the first

generation of microfluidic devices that transport continuous

volumes of fluid through channels by actuating pumps and valves,

digital microfluidic biochips (DMFBs) manipulate discrete

droplets of fluid to perform assays.

A DMFB is arranged as a 2-dimensional array of electrodes, as

seen in Figure 1(a). Figure 1(b) shows a droplet sandwiched

between ground and control electrodes. Although the droplet is

centered over CE2, it overlaps neighboring electrodes CE1 and

CE3. An activation of CE1 or CE3 will invoke a phenomenon

called electrowetting and cause the droplet to flow left or right,

respectively, toward the newly-activated electrode [4].

Figure 2 shows how several fundamental microfluidic operations

can be performed by activating/deactivating adjacent electrodes in

a particular sequence. In addition to droplet transport, splitting,

merging and mixing, droplets can be stored on an electrode and

input/output from/to reservoirs. Furthermore, individual cells can

be equipped with various sensors, cameras and heating elements

to perform detection and heating operations [6][11]. These basic

operations have been shown adequate to perform an assortment of

assays such as in-vitro diagnostics and immunoassays used in

clinical pathology [9], DNA polymerase chain reaction (PCR)

mixing stages used to amplify DNA [3] and protein

crystallizations [12].

A digital microfluidic system consists of two parts: a ñwetò array

of electrodes, as seen in Figure 1(a), and a ñdryò computing

device, such as a processor or microcontroller, which sends

signals to the microfluidic array to activate electrodes in a pre-

determined sequence. This sequence of electrode activations, in

turn, causes droplets to perform all the necessary operations (e.g.

mixing, merging, transport) to execute an assay.

To obtain the proper sequence of electrode activations, a compiler

solves three NP-complete synthesis problems, as seen in Figure 3.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2012, June 3-7, 2012, San Francisco, California, USA.

Copyright 2012 ACM 978-1-4503-1199-1/12/06é$10.00.

(a) (b)

Figure 1. (a) A DMFB 2D array of electrodes; (b) Cross-sectional

view of electrode array.

Figure 2. Basic microfluidic operations being performed on 2D array

of electrodes.

Figure 3. A microfluidic compiler obtains a sequence of electrode

activations by scheduling a DAG, placing DAG operations on the

array, and routing droplets between operations.

As input to the compiler, an assay is given as a directed acyclic

graph (DAG), which contains the operation dependencies, types

and lengths. The compiler first performs resource-constrained

scheduling to assign each operation a starting and stopping time-

step, ensuring that there are sufficient resources to perform the

operations at the scheduled times [3][5][9]. With the newly-

scheduled DAG, the compiler then attempts to place/assign each

operation to a set of adjacent electrodes at the specified time-

steps. Finally, after the operations are placed, droplet routes are

computed to transport droplets between dependent operations [2].

1.2 Motivation and Contribution
This paper contributes to the synthesis process by introducing a

fast, novel, path-based scheduling algorithm. To date, a list

scheduling variant is the fastest scheduling algorithm used for

DMFB synthesis [7][9]. When compared to list scheduling, Path-

scheduler produces better schedules in competitive times

(milliseconds) for assays with high fan-out.

Path-scheduler is also suitable for online synthesis. Currently,

assay compilation is performed completely offline due to the

complexity of the synthesis process, requiring an assay to be

fully-specified before runtime. Ho, Chakrabarty and Pop suggest

that ñspecialized heuristics for the synthesis problemsò

(scheduling, placement and routing) might enable online

synthesis, which would bring new features to DMFBs in the areas

of dynamic scheduling, control-flow, fault-tolerance and live-

feedback [2]. To date, modified list scheduling (MLS) is the only

other scheduler able to generate schedules quick enough to be

used in an online manner [7][9]; Path-scheduler can compute

better schedules in an online setting for high fan-out assays.

2. RELATED WORK
Our work is closely related to four prior scheduling algorithms

that have been proposed in the literature: MLS [7][9], as

mentioned above; an optimal scheduler based on integer linear

programming (ILP) [9], and two genetic algorithms [5][9]. All of

these algorithms solve the resource-constrained scheduling

problem, where the DMFB size is known a-priori. This size limits

the number of concurrent mixing and storage operations the

DMFB can support. The scheduler computes valid start and stop

times for each assay operation while ensuring that each DMFB

resource is used to process, at most, one operation at each point in

time; the objective is to minimize the assay completion time.

Among these four approaches, the genetic algorithms and ILP

formulation achieve high quality solutions but with very long

runtimes. The genetic algorithms use the iterative improvement

paradigm to randomly explore the search space, eventually

converging at a local optima; the ILP model employs a

commercial solver with an exponential worst-case time

complexity to find an optimal solution. Neither of these solutions

is appropriate for usage in an online context.

Luo and Akella [3] analyzed a pipelined variant of the PCR assay

(Figure 4(b)), and developed optimal algorithms for scheduling it

(and assays with a similar topology called a ñfull binary treeò)

under various resource constraints. In our experiments, both MLS

and Path-scheduler found optimal schedules for PCR.

For mixing and dilution operations, larger modules achieve faster

runtimes, but consume more area, reducing the availability of

resources for other concurrent operations. Su and Chakrabarty

[10] developed a genetic algorithm that performs scheduling,

module selection, and placement concurrently. The runtime of this

algorithm is too large for use in an online context; however, it

illustrates the importance of module selection during synthesis. To

enable a fair comparison with MLS, we assume uniform module

sizes; incorporating module selection into the path scheduling

mechanism, without significantly increasing the runtime, is left

open for future work.

3. PATH SCHEDULER

3.1 Definitions and Resource Constraints
Let Ὃ ὠȟὉ be a directed acyclic graph (DAG) in which the

vertices (ὠ) are the operations of an assay and the edges (Ὁ)

describe the dependencies between operations. ὔ is the total

number of work modules (the areas where operations are

performed) that can be accommodated on the DMFB. A general

module is a work module that can perform mixing, merging,

splitting, and storage operations. A special-purpose module is a

general module equipped with a sensor, heater, or other external

device; special-purpose modules can use these devices to perform

additional operations, such as heating and detection. Let ὔ be

the number of special-purpose modules of type Ὥ and ὔ be the

number of general modules; then:

 В ὔᶪ ὔ ὔ (1)

Any time that a work module is not performing an operation, it is

free to be used for storage and can be used to store a maximum of

ί droplets at any given time-step. Let ίὴ be the number of

special-purpose operations of type Ὥ being processed at time-step

ὸ. Let Ὣ be the number of general operations being processed and

ί be the number of droplets being stored, respectively, at time-

step ὸ. Then, the following inequalities must hold:

 В ίὴᶪ Ὣ ὔ ȟ ᶅὸ (2)

 ίὴ ὔ ȟᶅὭȟᶅὸ (3)

In prior work, the feasibility of a given schedule cannot be

determined until it is given to a placer and router and successfully

mapped to a DMFB. In previous works, a value known as ὔ is

determined as the number of cells on the DMFB; ὔ is then

normalized to the number of mixers of a particular size that can fit

on the DMFB [9]. ὔ , used in this work, is similar to ὔ in that it

represents the number of work areas of a particular size that have

been pre-determined to fit on the DMFB. It is assumed that the

modules/mixers can be placed in such a way to allow sufficient

room for routing.

Lastly, an I/O port can only process one dispense or output

operation at a given time-step and a dispense operation must be

bound to a reservoir that contains the appropriate fluid type.

3.2 Approach
A DMFB array contains a fixed number of electrodes on which

assay operations can be executed. Unlike a traditional computer

where data can be offloaded to a higher-level memory until

needed, droplets that are waiting on other dependencies must be

stored on the array using the same electrodes that might otherwise

be used to perform operations. Consequently, the number of

droplets being stored on a DMFB is inversely proportional to the

amount of useful work that can be done. Thus, it is important to

schedule operations with a goal to minimize the amount of time

and number of droplets being stored.

As a simple example, consider the protein assay seen in Figure

4(a), typically used as a benchmark for DMFBs [8][9]. Eight

paths can be identified in this assay; path 1 starts with two

dispenses, while paths 2-7 originate from one dispense node and

one split operation from another path. All paths in Figure 4(a)

end with an output operation, although this is not the general case,

as seen in assays with mix/merge operations (Figure 4(b)). It is

important to note that the order of paths here is not necessarily

unique. Path 1 could be chosen to go down the right side, instead

of the left, if all paths from the root split to each output node are

the same length. Once the paths are identified, the order in which

they are processed is important, as shown in the next paragraph

and in Section 3.3.

As seen in Figure 5(a), a scheduler that attempts to schedule

single operations at-a-time may attempt to schedule along all eight

paths simultaneously (e.g. list-scheduling with a priority function

favoring nodes with longer paths to an output) such that there are

eight droplets in the system that need to be processed. Assuming

the DMFB has enough room for four work modules that can be

used to process one operation or store up to four droplets (i.e.

ὔ ί τ), this schedule forces two work modules to be used

for storage. However, if operations are first scheduled along paths

1, 2 and 3, only one module is required for storage (see Figure

5(b)). This approach effectively prevents droplets from being split

until at least one of a split operationôs children can be processed,

reducing the number of droplets being stored in the system and, in

turn, increasing work module utilization.

3.3 Priority Function
Path scheduler uses two priorities to efficiently produce schedules

that minimize the amount of time a droplet spends in the system.

To keep droplets from entering the system (via a dispense or split)

till as late as possible, path scheduler sets the first priority of each

node to the number of independent paths, which is the cumulative

number of droplets being output in a nodeôs fan-out.

Figure 6 shows the independent-path priorities (IPPs) for assays

with high fan-out and fan-in (the protein/PCR assays from Figure

4). Recall Figure 5 with the paths and IPPs from Figure 4(a) and

Figure 6(a), respectively, in mind. The first node on each path is

known as the path leader. If the scheduler first schedules path 1,

leaders from paths 2, 3 and 5 become candidates for scheduling.

According to the IPPs in Figure 6(a), path leaders 2, 3 and 5 have

priorities of 1, 2 and 4, respectively. By choosing the lowest

priority, path 2 is processed next, preventing additional splits from

being made until necessary.

Each node has a second priority called the critical-path priority

(CPP), which is computed as the length of the longest path (in

time-steps) from itself to an output node. As seen in Figure 7, if

the IPP of two candidate nodes (S1 and M1) are the same (2), the

path with the lower CPP (S1, CPP = 3) may result in a shorter

overall run-time. Since there is only one detect module, one of the

 (a) (b)

Figure 4. (a) A protein assay with 8 paths; (b) A PCR mixing assay

with 4 paths. Input arrows not attached to a node on both sides

represent a dispense operation (nodes omitted for clarity).

 (a) (b)

Figure 5. (a) A non-path scheduler may attempt to process all paths

simultaneously, forcing two modules to be used as storage; (b) Path

scheduler first schedules paths 1, 2 and 3, and uses only one module

to store droplets.

 (a) (b)

Figure 6. The independent-path priorities for (a) a protein assay with

high fan-out and (b) a PCR assay with high fan-in.

Figure 7. Two schedules for a set of two simple DAGs. The DMFB, in

this case, has one general module (GM) and one detect module (DM).

Path leaders S1 and M1 both have equal IPPs; if CPP is used as a

second, tie-breaking priority, overall runtimes can be reduced if

paths with smaller CPPs are chosen first.

droplets from split-node S1 must be stored in the general module

until the other detect finishes. Taking the shortest critical path

results in less storage time (1 time-step vs. 2 time-steps in Figure

7), which provides more opportunity to increase overall system

utilization.

3.4 Algorithm
The pseudocode for the path scheduler algorithm is given in

Figure 8. Before the scheduling process begins, all nodes in the

sequencing graph are assigned first and second priorities as

described in Section 3.3 and the candidate operations are

determined. The initial candidate operations are those whose

parents are only dispense operations.

Lines 6-35 describe the main scheduling process that repeats until

all candidate nodes have been scheduled. Lines 7-9 first select the

candidate node, or path leader, with the lowest priority value (the

lowest IPP first, and in the event of an IPP tie, the lowest CPP),

reset the scheduling time-step and initialize an empty path.

Lines 10-24 attempt to allocate resources for an entire path of

operations starting with the path leader chosen in Line 7, and

ending with an output or merge operation (see Figure 4). Lines

11-13 attempt to find the earliest gap in time where the current

node, Ὓ, can fit, given the available resources. If a gap is found, it

means there is a resource of type Ὧ (general or special-purpose)

available from time-step ὸ to ὸ ὛȢὨόὶὥὸὭέὲ, any required input

reservoirs are available and that there are sufficient resources to

store any incoming droplets from ὛᴂÓ parent nodes, if necessary. If

a gap is not found in Lines 11-13, it means the current path cannot

be scheduled at the moment because of some resource conflict

(e.g. there is not enough room to store a droplet from one of ὛᴂÓ
parents (in path ὖ) to Ὓ) ; the path is discarded and any resources

being temporarily reserved to schedule path ὖ are relinquished. In

this case, Path-scheduler will try to schedule the path again later,

but will first return to Line 6 and attempt to schedule another path.

In the event that a gap is found for Ὓ, the starting time-step and

resource-type are temporarily saved and Ὓ is added to the current

path ὖ (Lines 14-16); however, Ὓ is not marked as scheduled.

Once Ὓ has been added to path ὖ, Lines 21-22 select the next node

to consider adding to the path from ὛᴂÓ children. If the new Ὓ is an

output or unscheduled mixing operation, then path ὖ is a complete

path, is ready to be officially scheduled and can break from the

path-constructing loop of Lines 10-24; otherwise the loop

continues and path scheduler attempts to find a gap for the new Ὓ.

Finally, in Lines 26-34, each operation in the schedulable path ὖ

is marked as scheduled and the resources temporarily reserved in

Line 15 to schedule each of path ὖᴂÓ operations are officially

reserved in Line 29. Also, any unscheduled children of the nodes

in path ὖ are added to the candidate operations as path leaders.

The edge between the path node and the new candidate operation

added in Line 31 represents a droplet that must be stored

indefinitely and accounted for to properly determine resource

availability since it has been scheduled to be created, but may not

be used for awhile. Thus, when an operation is added to the

candidate list in Line 31, the corresponding edge is added to a list

of droplets being indefinitely stored from their parentôs scheduled

ending time-step. When path scheduler is finding a gap for

operations in Lines 11-13, it considers all droplets being stored

indefinitely at that point. When an operation is finally scheduled

in Lines 28-29, any edges/droplets connected to that node that are

being indefinitely stored are removed from the indefinite storage

list and the finite period that the droplet must be stored for, if any,

is accounted for in the systemôs available resources.

4. EXPERIMENTAL RESULTS
We implemented our algorithm, as well as two versions of

modified-list scheduling in C++; all tests were run on a 64-bit

Windows 7 machine with 4GB of RAM, and an Intel Core i7 CPU

operating at 2.8GHz.

4.1 Implementation
Our Path-scheduler (PS) was implemented as described in Figure

8. We re-implemented modified-list scheduling as described in

ref. [7] as faithfully as possible. In their work, Su and Chakrabarty

describe an urgency priority function which sets each nodeôs

priority to ñthe weight of their longest path to the sinkò and then

ñsort[s] them in decreasing orderò such that nodes with longer

paths are addressed first. We interpret ñweight of the longest

pathò to be calculated in the number of time-steps and compute it

similarly to the CPP, described in Section 3.3. Our re-

implementation of modified-list scheduling (MLS_DEC)

processes nodes with higher priorities first.

We also implemented another version of modified-list scheduling

with a better-performing priority function. By setting the priorities

to our CPP and then sorting them in decreasing order, it causes the

scheduler to process a DAG similar to what is seen in Figure

5(a), which is inefficient in terms of utilization. Thus, to be fair to

list scheduling, we implemented a new version of modified-list

scheduling (MLS_INC) which uses CPP for operation priorities,

but sorts the nodes in increasing order so nodes with lower

priorities are processed first.

4.2 Benchmarks
We used a set of three standard benchmarks: PCR, in-vitro and a

protein assay [8]. Figure 4 displays the protein and PCR DAGs.

Figure 8. Pseudocode for the Path-scheduler algorithm.

1 Given sequencing graph G=(V, E)

2 Given resource constraints ὔ ὔ ÁÎÄ ί

3 Assign priorities for all nodes ὺɴ ὠȟᶅ ὺ based on IPP and CPP

4 Find candidate operations Ὑ ὺᶰὠȡ 4ÙÐÅὺ ÉÎÐÕÔȟ ᶅὮȡ ὺȟὺ ᶰὉ

5

6 Repeat {

7 Select ὛṖὙḊ0ÒÉÏÒÉÔÙὛ 0ÒÉÏÒÉÔÙὶȟᶅὶḊὶɴ Ὑ

8 Time-step t = 1

9 Path ὖ ɲ

10 Repeat {

11 Attempt to find earliest time-step ὸ and module-type Ὧ ÆÏÒ Ὓȡ
12 Ὧ ɴ Ὣὧȟ ίὴȡ !ÖÁÉÌὸίȟὯ ÔÒÕÅȟ ᶅὸίḊ ὸ ὸίὸ ὛȢὨόὶὥὸέὭὲ

13 while holding Equations (2) and (3)

14 if (Attempt found a gap for S)

15 3ÅÔ ὛȢίὸὥὶὸ ὸȟ 3ÅÔ ὛȢὶὩίὝώὴὩὯ

16 Add Ὓ ÔÏ ὖ

17 else // Gap could not be found, S not schedulable now

18 3ÅÔ ὖȢίὧὬὩὨόὥὦὰὩÆÁÌÓÅ

19 end if

20

21 Select new

22 ὛṖὛȢὧὬὭὰὨὶὩὲȡ 0ÒÉÏÒÉÔÙὛ 0ÒÉÏÒÉÔÙὛ ȟᶅὛ ȡὛ ᶰὛȢὧὬὭὰὨὶὩὲ

23 } until (4ÙÐÅὛ ÍÉØ !.$ ὛȢίὧὬὩὨόὰὩὨÆÁÌÓÅ

24 /2 4ÙÐÅὛ ÏÕÔÐÕÔ /2 ὖȢίὧὬὩὨόὦὰὩÆÁÌÓÅ)

25

26 if (ὖȢίὧὬὩὨόὥὦὰὩÔÒÕÅ)

27 for (ὴᶅɴ ὖ){

28 3ÅÔ ὴȢίὧὬὩὨόὰὩὨÔÒÕÅ

29 Reserve resources for path ὖ

30 for (ὧᶅḊὧɴ ὴȢὧὬὭὰὨὶὩὲ Ẓ ὧ ɵ ὖ)
31 Add ὧ to candidate operations Ὑ

32 end for

33 end for

34 end if

35 } until (aÌÌ ÃÁÎÄÉÄÁÔÅ ÏÐÅÒÁÔÉÏÎÓ ÁÒÅ ÓÃÈÅÄÕÌÅÄȡ Ὑ)ɲ

4.2.1 Assay Annotations
Each benchmark was converted to a DAG and fed to the three

schedulers. The module libraries from ref. [8] were used for

operation timings. For the PCR assay, a 2x4 mixer (3s) was used

for all mixes. The protein DAG was annotated to use the 2x4

diluter (5s) and 2x4 mixer (3s) for all dilute and mix operations,

respectively. The 2-input, 2-output dilute operations used in the

protein assay were implemented with consecutive mix and split

operation which took a cumulative time of 5s. For the in-vitro

benchmark, we used the largest sequencing graph which assays

four samples with four reagents for a total of 16 mixes/detects.

We used the same mix and detect times as detailed in Table 1,

Example 5 of ref. [7].

4.2.2 Experiments
For the first set of experiments, we used the PCR, protein and in-

vitro DAGs described in Section 4.2.1 as a base. Then, for each of

the three DAGs, we attempted to simultaneously schedule an

increasing number of copies of the same DAG, from 1 to 10, to

show how each scheduler performs with increasing workloads. As

a second experiment, we executed 3 protein DAGs while varying

the number of modules (ὔ) from 2 to 7. In a third set of

experiments, we varied the number of splits performed by the

protein assay, which allowed us to evaluate the quality of

schedules produced by Path-scheduler as assay fan-out increases.

In these experiments, we use the protein assay as the source assay.

As seen in Figure 4, any path from the root split to an output goes

through 3 splits before the final string of 7 operations, resulting in

23=8 output droplets. Thus, we say that the original protein assay

has 3 levels of splits. We sweep the number of split levels from

1-8, so that the number of output droplets sweeps from 21=2 to

28=256. As seen in Figure 9, the final seven operations are

appended to the end of each path after the last level of splits.

4.3 Resource Constraints
For the first and third experiment, we set the number of work

modules to four (i.e., ὔ τ); the second experiment varies ὔ .

For PCR, all four modules are general modules. For the in-vitro

and protein benchmarks, all four modules are detect modules.

Similar to ref. [5], we assume a detect module can be used for any

detect operation. The PCR and in-vitro benchmarks have one

input for each type of fluid used, while the protein benchmark

uses one input for sample fluids, two inputs for buffer fluids and

two inputs for reagent fluids.

4.4 Results and Discussion
Three metrics are presented for evaluation: the completion time in

number of time-steps, the time required to compute the schedule

and the average number of modules used for storage during each

time-step. The last metric represents the schedulerôs storage

efficiency; the lower this metric, the higher the DMFB utilization.

Table 1 shows the results for Experiment 1. MLS_DEC handles

storage poorly, as indicated by its average storage usage; as a

consequence, both MLS_INC and PS outperform it significantly.

For the protein assay, MLS_DEC attempts to schedule along all

paths simultaneously, creating an overwhelming number of

storage droplets; for 3 protein DAGs, it already uses 2.67 of 4

modules, on average, for storage. Because of its poor storage

handling, it fails to produce feasible schedules for more than 3

protein DAGs because all of the modules are allocated for storage

and no assay operations are able to proceed.

The rest of our discussion is limited to MLS_INC and PS. As

expected, PS yields great gains with the protein assay, which has

high fan-out. In overall schedule quality, PS saves between 9-11

seconds on the first two runs and 37-39 seconds on the last two

runs. Furthermore, PS computes schedules 1.94x faster, on

average, than MLS_INC. For the interested reader, Supplementary

Section S1 shows the scheduled graphs for the protein assay for

MLS_DEC, MLS_INC and PS.

Results for the PCR and in-vitro assays are given to demonstrate

how PS performs on assays without fan-out since neither of these

assays contain a single split. For PCR, PS and MLS_INC yield

identical results; PS runs faster than MLS_INC, especially when

the number of DAGs increases.

For the in-vitro benchmark, neither PS nor MLS_INC require any

storage operations. PSôs computed schedules are an average of

Figure 9. DAG for Experiment 2; i levels results in 2i output droplets.

Table 1. Results of Experiment 1. Lower is better for all metrics.

2.7s slower than MLS_INC. The root of this small inefficiency is

actually due to input-reservoir conflicts. A conflict resolution step

was added to PS and it improved the results for in-vitro to be

equivalent with MLS_INC; however, due to its inherent quadratic

runtime, this step increased the runtime of PS significantly (e.g.

from 24ms to 7439ms for in-vitro run #10) and did not yield

improvements for protein or PCR schedules. We describe these

issues in greater detail in Supplementary Section S2. Lastly, we

note that the runtime of PS is 3.5x to 7.3x faster than MLS_INC

in this experiment.

Table 2 shows results for Experiment 2, where we varied the

number of work modules while scheduling the protein assay. For

2 modules, PS completed a schedule in 1177 time-steps, while

MLS_INC failed to compute a schedule. For ὔ 3, 4, 5, 6 and

7, PSôs schedules are 185, 73, 40, 40 and 33 time-steps shorter

than MLS_INCôs schedules, respectively. As the number of

modules increase, the schedules tend to converge since there are

abundant resources for storage and it becomes algorithmically

easier to compute latency-optimal schedules.

Table 3 reports results for Experiment 3, which confirms that PS

generates better schedules than MLS_INC when fan-out increases

by reducing storage usage. PS loses 1-4 time-steps for the first

two levels of splits. However, as the number of splits increase

from three to seven levels, PS saves up to 812s (13m 32s). Due to

poor memory management, MLS_INC fails to produce schedules

beyond seven split levels because it reaches a point where all four

modules are used for storage. With the constraints detailed in

Section 4.3, PS can theoretically compute schedules up to 12

levels (4096 droplets). We verified this experimentally: PS took

1269ms (1.3s) to compute a schedule of 31h 29m in length.

5. CONCLUSION
We have presented a path-based scheduling heuristic for digital

microfluidic synthesis. Instead of scheduling node-by-node, as list

scheduler does, Path-scheduler schedules path-by-path, reducing

the number of droplets being stored in the system on assays with

high fan-out. The increase in storage efficiency leads to an

increase in utilization, and in turn, an increase in overall schedule

quality. Similar to list scheduling, Path-scheduler produces

solutions on the order of milliseconds. As assays grow extremely

large, as seen in Experiment 3, the schedules generated by Path-

scheduler will be further appreciated when the compiler attempts

to place and route a much smaller schedule.

As synthesis moves to an online setting, short runtimes become

increasingly important and assays will likely be scheduled with

specialized scheduling heuristics that perform well on a particular

assay-class (e.g. multiplexed, high fan-out/in, etc.). Path-scheduler

excels on and should be used on assays with high fan-out (easily

obtainable info). Even with no a-priori information, Path-

scheduler is fast enough that a DMFB could compute schedules

with path- and list scheduler and take the best schedule with little

penalty. As more fast, high-quality scheduling heuristics emerge,

online synthesis will become a growing possibility, bringing a

number of new features to DMFBs in the areas of dynamic

scheduling, control-flow, fault-tolerance and live-feedback.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF Grant CNS-1035603.

Daniel Grissom was supported by an NSF Graduate Research

Fellowship.

7. REFERENCES
[1] K. Chakrabarty. Design automation and test solutions for digital

microfluidic biochips. IEEE Transactions on Circuits and Systems-I:

Regular Papers, 57(1):4-17, January 2010.

[2] T. Ho, K. Chakrabarty, and P. Pop. Digital microfluidic biochips:
recent research and emerging challenges. In Proceedings of the

Conference on Codesign and System Synthesis, pages 335-343,

Taipei, Taiwan, Oct 9-14, 2011.

[3] L. Luo and S. Akella. Optimal scheduling of biochemical analyses
on digital microfluidic systems. In Proceedings of the Conference on

Intelligent Robots and Systems, pages 3151-3157, San Diego, CA,
USA, Oct 29-Nov 2, 2007.

[4] M. G. Pollack, A.D. Shenderov, and R. B. Fair. Electrowetting-based

actuation of droplets for integrated microfluidics. Lab on a Chip,
2:96-101,2002.

[5] A. J. Ricketts, K. Irick, N. Vijaykrishnan, and M. J. Irwin. Priority

scheduling in digital microfluidics-based biochips. In Proceedings of

the Conference on Design Automation and Test in Europe (DATE),
pages 329-334, Munich, Germany, March 6-10, 2006.

[6] V. Srinivasan, et al. A digital microfluidic biosensor for multianalyte

detection. Proc. IEEE MEMS, pages 327-330, Kyoto, Japan, Jan 19-
23, 2003.

[7] F. Su and K. Chakrabarty. Architectural-level synthesis of digital

microfluidics-based biochips. In Proceedings of ICCAD, pages 223-
228, San Jose, CA, USA, Nov 7-11, 2004.

[8] F. Su and K. Chakrabarty. ñBenchmarksò for digital microfluidic
biochip design and synthesis. Duke University, Department of

Electrical and Computer Engineering, 2006.
http://www.ee.duke.edu/~fs/Benchmark.pdf

[9] F. Su and K. Chakrabarty. High-level synthesis of digital

microfluidic biochips. ACM Journal on Emerging Technologies in
Computing Systems, 3(4): article #16, January, 2008.

[10] F. Su and K. Chakrabarty. Unifed high-level synthesis and module

placement for defect-tolerant microfluidic biochips. In Proceedings
of Design Automation Conference, pages 825-830, Anaheim, CA,

USA, June 13-17, 2005.

[11] K. Ugsornrat, et al. Experimental study of single-plate EWOD
device for a droplet based PCR system. In Proceedings of ECTI-

CON, pages 6-9, Khon Kaen, Thailand, July 12, 2011.

[12] T. Xu, K. Chakrabarty, and V. K. Pamula. Defect-tolerant design and

optimization of a digital microfluidic biochip for protein
crystallization. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 29(4): 552-565, April, 2010.

Table 2. Results of Experiment 2: scheduling the protein assay using

a varying number of modules. Lower is better for all metrics.

Table 3. Results of Experiment 3: varying the number of splits in the

protein assay. Lower is better for all metrics.

S1. STORAGE REDUCTION GRAPHS

 MLS_DEC (highest priorities first) ï 48 Storage Nodes MLS_INC (lowest priorities first) ï 34 Storage Nodes

 PS (Path Scheduling) ï 15 Storage Nodes

Figure S1. Scheduled DAGs for the basic protein assay (timing information was removed for clarity). These graphs have not been bound (placed),

and thus, each black storage node represents a droplet being stored for a length of time, possibly in a number of different modules.

