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ABSTRACT

Since the inception of digital microfluidics, the synthesis
problems of scheduling, placement and routing have been
performed offline (before runtime)due to their algorithmic
complexity However, with the increasing maturity of digital
microfluidic research, online synthesis is becoming a realistic (@ (b)

pOSSIbIII.ty that can bring new benefits in the. areas of dy”f’?m'c Figure 1. (a) A DMFB 2D array of electrodes; (b) Crosssectional
scheduling, contreflow, fault-tolerance and livéeedback. This view of electrode array.

paper contributes to the digital microfluidic synthesis process by
introducing a fast, novel pattased scheduling algorithm that D @

produces better schedules than list scheduler for assays with higt
fan-out; path schduler computes schedules in milliseconds, C:]

making it suitable for both offline and online synthesis.
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Figure 2. Basic microfluidic operations being performed on 2D array
of electrodes
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1. INTRODUCTION

This work preserst a scheduling heuristic for digital microfluidic
synthesiscalled Path-scheduler Instead of scheduling each node
individually, Pathscheduler schedules sets of connected,

dependentoperations called paths to increase utilization and

yield better schedes for assays with high faout. Pathscheduler

Figure 3. A microfluidic compiler obtains a sequence of electrode
activations by schedulinga DAG, placing DAG operations on the
array, and routing droplets between operations

between ground and control electroddfhoughthe droplet is
centered over CE2, it overlapeighboring electrode€E1 and
CE3. An activation of CE1 or CE®ill invoke a phenomenon
called electrowetting andausethe droplet toflow left or right,

respectively, toward theewly-activated electrog[4].

computes schedules in milliseconds, makingiseful for both Figure 2 shows low several fundamental microfluidic operations
offline and online scheduling. can be performely activatingdeactivatingadjacentlectrodes in

a particular sequencén addition to droplet transport, splitting,
1.1 Background merging and mixing, droplets care stored on an electrode and

Microfluidics is a laboratorpn-chip (LoC) technology that  input/output frontto reservoirs Furthermore, individual cells can
manipulates fluiden the micreliter to nancliter scale to perform be equipped witlvarious sensors, cameras and heating elements
biochemical reactions called assays. contrast tothe first to perform detedvn and heating operatiorj§][11]. These basic
generation of microfluidic devices that transport continuous operations have been shown adequate to perform an assortment of
volumes of fluid through channels by actuating pumps and valves,assays such as-intro diagnostics and immunoassays used in
digital microfluidic biochips (DMFBs) maipulate discrete clinical pathology[9], DNA polymerasechain reaction(PCR)

droplets of fluid to perform assays. mixing stages used to amplify DNA [3] and protein
A DMFB is arrangedasa 2dimensional array of etérodes, as  Ccrystallizationg12].
seenin Figure 1(a). Figure 1(b) shows a droplesandwiched A digital microfluidic system con

of electrodes, as seean Figure 1(a), and a fAdryo co
device such as a processor or microcontrgllahich sends

Permission to make digital or hard copies of all or part of this work - signals to the microfluidic array to activate electrodes in a pre
personal or classroom use is granted without fee provided that copie: determined sequenc@his sequence of electrode activations, in
not made or disiiouted for profit or commercial advantage and thi turn, causes droplets to perform all the necessary opergégns
copies bear this notice and the full citation on the first page. To ct mixing, merging, transportp execute massay

otherwise,to republish, to post on servers or to redistribute to lis ' ' '

requires prior specific permission and/or a fee. To obtain the proper sequence of electrode activations, a compiler
DAC 2012, June 37, 2012, San FranciscdCalifornia, USA. solves three NRRompletesynthesigproblems as seen ifrigure 3.
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As input to thecompiler, an assay is given as a directed acyclic algorithm is too large for use in an online context; however, it
graph (DAG), which contains the operation dependencies, typesillustrates the importance of module selection during synthEsis
and lengths. The compiler first performs resowroastrained enable a fair comparison with MLS, we assume uniform module
scheduling to assign each operatastarting and stopping time sizes; incorporating module selection into the path scheduling
step ensuring tht there are sufficient resources to perform the mechansm, without significantly increasing the runtime, is left
operations at the scheduled timg[5][9]. With the newly open for future work.

scheduled DAG, the compiler thettempts to place/assign each

operation to a set of adjacent electrodes at the spedifies 3. PATH SCHEDULER

steps. tFigetlII)([, after trt'ucej oplertatignts are Slaced(,j dr:)plet routes are3 1 Definitions and Resource Constraints
computed to transport droplets between dependent operilons | o1 -5 0 bea directed acyclic graph (DAGh which the
1.2 Motivation and Contribution vertices () are the operations of an assay and the ed@ks (
This paper contributes to theynthesisprocess by introducing a  describe the dependencies between operatidnsis the total

fast, novel pathbased scheduling algorithnTo date, a list ~ number of work modules (the areas where operations are
scheduling variant is the fastest scheduling algorithm used for Performedjthat can be accommodated on the DMPBgeneral

DMFB synthesig7][9]. When compared to list schedulirgath moduleis a work module that can perform mixing, merging,
scheduler produces better schedules in competitive times Splitting, and storage operations. speciatpurpose modulés a
(milliseconds) for assays with high fanuit. general module equipped with a sensor, heater, or other external

device; speciapurpose modules can use these devices to perform
additiond operations, such as heating and detection.(Letbe

the number of specigurposemodules of type@and G be the
number of generahodules; then

Pathscheduleris also suitable for online syntsis. Currently,
assay compilatioris performedcompletely offline due to the
complexity of the synthesis procesgquiring an assay to be
fully-specifiedbeforeruntime. Ho, Chakrabarty and Pop suggest
t hat ispecialized heur i snmsiocs for theB, Osymwt hédsi s proil) e
(scheduling, placement and routing) might enable online ) . . .
synthesis, which would bring new features to DMFBs in the areas ANy time thata workmoduleis not performing an operation, it is
of dynamic schedulingcontroHiow, fault-tolerance and live  free to be usetbr storageand can be used to store a maximum of
feedback2]. To date, modified list schedulif@ILS) is the only [ droplets at any given timstep. Let i n be the number of
other scheduler able to generate schedules quick enough to beSPecialpurpose operations of typébeing processed at tinstep
used in an onlinemanner[7][9]; Pathschedulercan compute 0. Let"Q be the number of general operations being processed and
better schedulds anonlinesettingfor high fanout assays i be the number of droplets being stored, respectively, at time
stepo. Then, the followingnequalitiesmust hold:
2. RELATED WORK C R
Our work is closely related to foyrior scheduling algorithms Boin @ - 0 hlo @
that have been proposed in the literature: M[J[9], as . W e s
mentioned above; an optimal scheduler based on integer linear tn 0 H@o ®)
programming (ILP)9], and two genetic algorithnis][9]. All of In prior work, the feasibility of a giverschedule cannot be
these algorithms solve the resouommstrained scheduling — determineduntil it is given to a placer and router asutcessfully
problem, where the DMFB size isdwn apriori. This size limits mapped to a DMFB. In previous works, a value knowr ass
the number of concurrent mixing and storage operatit'es  determined as the number of cells on the DMKB; is then
DMFB can support. The scheduler computes valid start and stopnormalized to the number of mixers of a particular size that can fit
times for each assay operation while ensuring that each DMFBon the DMFB[9]. ( , used in this work, isimilarto 0 in that it
resource is useth processat mostone (oeration at each pointin  representshe number of work areas of a particular size that have
time; the objective is to minimize the assay completion time. been predetermined to fit on the DMFRB is assumed that the
Among these four approaches, the genetic algorithms and ILPmodules/mixes can be placed in suchvay to allow sufficient
formulation achieve high quality solutions but with very long room for routing.
runtimes. The genetic algorithms use thealige improvement
paradigm to randomly explore the search space, eventually
converging at a local optima; the ILPnodel employs a
commercial solve with an exponential worstase time
complexity to find an optimal solution. Neither of these solutions 3 2 Approach

is agpropriate for usage in an online context. A DMFB array contains a fixed number of electrodes on which

Luo and Akella[3] analyzed a pipelined variant of the PCR assay assay operations can be executed. Unlike a traditional computer
(Figure 4(b)), anddeveloped optimal algorithms for scheduling it where data can be offloaded # higherlevel memory until

(and assays with a similar t onpedddodgppletscdhatiate avaitingaon dthferudependemdieabeausty t r e
under various resouramnstraints. In our experiments, both MLS stored on the array using the same electrodes that might otherwise
andPathschedulefound optimal schedules for PCR. be used to perform operation€onsequently the number of

droplets being stored on a DMFB is inversely proportional to the
amount of useful work that can be done. Thus, it is itambto

schedule operations with a goal tanimize the amount of time

and number ofliroplets being stored.

Lastly, an 1/0O port can only process one dispense or output
operation ala giventime-step and a dispse operation must be
bound to aeservoir that contains the approprifitéd type.

For mixing and dilution operations, larger modules achieve faster
runtimes, but consume more area, reducing the availability of
resources for other concurrenpemations. Su and Chakrabarty

[10] developed a genetic algorithm that performs scheduling,
module selection, and placement concurrently. The runtime of this



O, 0,0 0 000!
ERCHEECE
O O O OIOZONO

OGS FE
~ OO

(=)

—
QD

@)
QLQRRLRE

(@ e=)e(el=)

ORORORO

@ &
O

(b)

Figure 4. (a) A protein assay with 8 m@ths; (b) A PCR mixing assay
with 4 paths. Input arrows not attached to a node on both sides
represent a dispenseperation (nodes omittedfor clarity ).
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Figure 5. (a) A non-path scheduler may attempt to process all paths
simultaneously, forcing twomodules to be used as storage; (b) Path
scheduler first schedules paths 1, 2 and 3, and uses only anedule

to store droplets

As asimple example, consider thprotein assageen inFigure
4(a), typically used as a benchmark for DMFB3][9]. Eight

paths can be identifieéh this assay; path 1 starts with two

dispenseswhile paths 27 originate from onealispensenodeand
one split operationfrom another path. All paths iRigure 4(a)

end with an outpubperation although this is not the general case

as seen in assays with mix/merge operatidiigufe 4(b)). It is

important to note that therder of paths here is natecessarily
unique. Pattl could be chosen to go down the right side, instead

of the left, if all pathsfrom the root split to each output nodee

the samdength.Once the paths aidentified the order in which

they are processed is important,sk®wnin the next paragraph

and in Sectior3.3.

As seen inFigure 5(a), a scheduler that attempts to schedule
single operations a@&-time may attempto schedule along all eight

paths simultaneouslfe.g. listscheduling with a priority faction

favoring nodes withongerpatts to an outpytsuch that there are

eight droplets in the system that need to be procegsstming

the DMFB has enough room for four wonkodules that can be

used toprocessone operation or store up to four dropléts.

0 i

1), this schedule forces two workodules to be used

1, 2 and 3, only onenoduleis requiredfor storage geeFigure

olelelolelole
OO
ololeloleloe

_ OO ST

&

Figure 6. The independentpath priorities for (a) a protein assay with
high fan-out and (b) a PCR assay with high fasin.
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Node Legend
& @ o
o @ % @ % Duration in
@ @ ° ; @ 4 Time-Steps
/2 IPP/CPP
Shortest Critical Path First
TS0 151 152 153 154 TS5 156
DM: n;cles - Process D2
. |~ Store |—Process ~|
GM: D2 Process M1 52
Longest Critical Path First
TS0 TS1 TS2 753 1S4 | TS5 TS6
. |~ Process | |~Process
DM: L e Process D2 [ D1
GM: Process M1 e storep1 ]

Figure 7. Two schedules for a set of two simple DAGs. The DMFB, in
this case, has one generahodule (GM) and one detectmodule (DM).
Path leaders S1 and M1 both have equal IPPs; if CPP is used as .
second, tiebreaking priority, overall runtimes can be reduced if

paths with smaller CPPs are chosen first

5(b)). This approach effectively prevents droplets from being split
i split
reducing the number of droplets being stored in the syatemin

unt i
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ne

turn, increasing worknoduleutilization.

3.3 Priority Function

Path scheduler uses two priorities to efficiently produce schedules
that minimize the amount of time a droplet spends in the system.
To keep droplets from entering the syst@ia a dispense or spl
till as late as possible, path scheduler sets the first primfridach
nodeto the number oindependent pathsvhich is thecumulative
boet i

number

of

dropl e

being made until necesyar

Each nodehas asecond prioritycalled thecritical-path priority
(CPP) which is computedhs thelength of the longest patffin
time-steps)from itself to an output noel As seen inFigure 7, if
c : / the IPP of two candidate nodeS1 and M1)are the sam€), the
for storage. However, if operations are first scheduled along pathspath with the lowelCPP (S1, CPP =3) may result in a shorter

overall runtime. Since there is only one detenbdulg one of the

ts

of a

ng

output

Figure 6 shows thendependenpath priorities (IPPs)for assays
with high farrout and farin (the protein/PCR assays frdfigure

4). RecallFigure 5 with the paths and IPPs froRigure 4(a) and
Figure 6(a), respectivelyjn mind. The first node on each path is
known as thepath leader. If the scheduler first schedules path 1,
leaders from paths 2, 3 andbBcomecandidates for scheduling
According to thdPPsin Figure 6(a), path leaderg, 3 and 5 have
priorities of 1, 2 and 4, respectivelidy choosing the lowest
priority, path 2 is processed next, preventalglitionalsplits from

op ¢



droplets fromsplit-node S1 must be stored in the genemablule
until the other detect finisheJaking the shortest critical path
results in lesstorage timg1 timestep vs. 2 timesteps inFigure
7), which provides more opportunityo increase overalsystem
utilization.

3.4 Algorithm

The pseudocodeof the p#h scheduler algorithms given in
Figure 8. Before the scheduling procebegins all nodes inthe

sequencing graph are assigned first and second priorities ag

described in Section3.3 and the candidate operations are
determined.The initial candidateoperations are those whose
parents arenly dispense operations.

Lines 635 describe the main scheduling process that repeats until

all candidate nodes have been schedulatks 79 first select the
candidate node, grath leader with the lowes priority value(the

lowest IPP first, and in the event of an IPP tie, the lowest CPP),

reset the scheduling tirstep and initialize an empty path.

Lines 1024 attempt to allocate resources for an entire path of
operations starting with the path leadérosen inLine 7, and
ending with an output or merge operati@eeFigure 4). Lines

11-13 attempt to find the earliest gap in time where the current

node "Y can fit, given the available resources. If a gap is foiind
means there is a resource of ty@¢generalor specialpurpose)
available from timestepo to0  "EQ 06 1 & pail¥raquired input
reservoirs are availablend that there are sufficient resources to
store any incoming droplets frof#®parent nodes, if necessaty.

a gap is not found ihines 1113, it means the current patannot
be scheduledit the momenbecause of some resource conflict
(e.g. there is not enough room to store a droplet bom of @
parens (in path0) to "Y ; the path is discardeahd any resources
being temporarily reserved to schedule pagrerelinquished In
this case Pathschedulemill try to schedule the path again later,
but will first returnto Line 6 and attempt to schedule another path

In the event that a gap feund for"Y the starting timestep and
resourcetype aretemporarilysaved andYis added to theurrent
path 0 (Lines 1416); however,"Yis not marked as scheduled.
Once“Yhas been added to pszhLines 2122 select the next node
to consider adding to the patiom “@children. If the newYis an
output or unscheduled mixing operation, tipath0 is acomplete
path,is ready to be officially scheduled and can break from the
path-constructing loop of Lines 10-24; otherwise the loop
continues and path scheduler attempts to find a gap for thévhew

Finally, in Lines 2634, each operation in the schedulable path
is marked as scheddend the resourcaemporarilyreservedn
Line 15 to schedule each ofath 0@ operations are officially
reserved irLine 29. Also, any unscheduled childresf the nodes
in path0 are added to the candidate operationgadls leaders

1 Given sequencing gragb=(V, E)

2 Given resource constragy G AT A

3 Assign priorities for all nodes™ ®h! 0 based on IPP and CPP

4 Find candidate operatios 0 N cd4 U BUA El #iGdom v 0
5

6 Repeat{

7 Select'YP'YDO OET "®E QOETIOEI@UN Y

8 Time-stept=1

9 Pathd 1

10 Repeat{

11 Attempt to find earliest timstepd and moduletype 'Q/E( ")

12 v 06 i OAER OOMADO 01 6 "EO6I GO 4
13 while holding Equations (2) and (3)

14 if (Attempt found a gap foB)

15 3 A8 o &l ®h 3 A8 Qi "YoRQ

16 Add"YO D

17 else// Gap could not be found, S not schedulable now

18 3 A8 Do dOER OA

19 end if

20

21 Select new

22 "YP X0 QID@E T TOE OO E T W EHOVYEY v "EEXNa Qi
23 }untl (4 UBPR {EG . $"8 Qo a Q@EAT OA

24 / 24U0PR 1 O0ODIODId Qo ha EAT A
25

26 if (0d Q6 HOa@OYA

27 for(Jnn 0 )

28 3AE @6 a BDOA

29 Reserve resources for path

30 for ( DO HEXNG Qiz'de §)

31 Add &to candidate operatiofig

32 end for

33 end for

34 endif

35%tuntil (@ AAT A B DM DERER AIDT M A

Figure 8. Pseudocode for the Bth-scheduler algorithm

4., EXPERIMENTAL RESULTS

We implemented our algorithm, as well as two versions of
modifiedlist scheduling in C++; all tests were run on al64
Windows 7 machine with 4GB of RAMyndan Intel Core i7 CPU
operating at 2.8GHz.

4.1 Implementation

Our Pathschedule(PS)was implementeds described ifrigure

8. We reimplemented modifiedist scheduling as described in

ref. [7] as faithfully as possible. In their work, Su aDdakrabarty

describe anurgencypr i ority function which
priority to fithe weight ofentheir
fisort][ s] them in decreasing orde
paths are addressed first. We ir
patho to be cal cul astepsdnd ¢compuiehe nur
similarly to the CPP, described in Sectio®.3 Our re
implementation of modifiedist scheduling NLS_DEQ

processes nodes with higher priorities first.

The edge between the path node and the new candidate operatioe alsoimplemented another version of modifikst scheduling

added inLine 31 represerg a dropletthat must be stored
indefinitely and accounted forto properly determineesource

with abetterperformingpriority function. By setting theriorities
to our CPP and then sorting them in decreasing order, it causes the

availability since it has been scheduled to be created, but may notscheduler to process a DAG similar to what is seefigure

be used for awhileThus, when an operation is added to the
candidate list irLine 31, the coresponding edgis added to a list
of droplets being indefinitely stordtom theirp a r esoheduled
ending timestep When path scheduler is finding a gap for
operations inLines 1113, it considers all droplets being stored
indefinitely at that pointWhen an operation inally scheduled

in Lines 2829, any edges/droplets connected to that node that are

being indefinitely stored areemoved from the indefinite storage

list and the finite period that the droplet must be stored for, if any,

is accountedor in the syster@s available resources

5(a), whichis inefficient in terms of utilization. Thus, to be fair to
list scheduling, we implemead a new version of modifietist
scheduling MLS_INQ which uses CPP for operation priorities,
but sorts the mdes in increasing order so nodes witdwer
priorities areprocessedirst.

4.2 Benchmarks
We used a set of three standard benchm#@&®R, irvitro anda
protein assajg]. Figure 4 displaysthe protein and PCR DAGs



Table 1. Results ofExperiment 1. Lower is better for all metrics.

Level 1

Protein Assay (118 operations/DAG)
LEVEI 2 # Time-steps (175 = 1s) Scheduling Time (ms) Avg # Storage Modules/TS
#DAGS MLSiDEC. MLS_INC PS MLSﬁDEC. MLS_INC PS MLS_DEC MLSﬁINC- Ps
Level 3 1| 218 197 186 a 2 1 135 0.79 0.64
2 599 342 333 12 5 2 2.50 0.80 0.71
3 990 498 480 20 8 4 2.67 0.83 0.74
4 Fail 643 627 Fail 12 5 Fail 0.83 0.76
5 Fail 799 774 Fail 16 8 Fail 0.85 0.77
6 Fail 944 921 Fail 20 13 Fail 0.84 0.77
7 Fail 1100 1068 Fail 25 14 Fail 0.85 0.78
- 8 Fail 1245 1215 Fail 30 18 Fail 0.85 0.78
9 Fail 1401 1362 Fail 40 22 Fail 0.85 0.79
10 Fail 1546 1509 Fail 50 29 Fail 0.85 0.79

-~ PCR Assay (16 opearations/DAG)
¢ DAGS # Time-steps (1TS = 1s) Scheduling Time (ms) Avg # Storage Modules/TS
Y MLS_DEC | MLS_INC PS MLS_DEC| MLS_INC PS MLS_DEC MLS_INC PS
1 a a a9 0 0 (1] 0.00 0.00 0.00
N 2 15 15 15 0 0 (1] 0.38 0.19 0.19
3 24 21 21 0 0 o 1.20 0.27 0.27
4 36 27 27 1 1 0 1.46 0.32 0.32
5 45 33 33 2 2 0 1.57 0.35 0.35
6 57 39 39 4 2 (1] 1.66 0.38 0.38
7 66 45 45 5 3 0 1.70 039 0.39

i 8| 78 51 8 6 1.75 0.40 X

Figure 9. DAG for Experiment 2; i levels results in 2output droplets. o 5 3 9 5 2 17 B Ejf
) 10 99 63 63 12 8 o 1.80 0.42 0.42

4 . 2 - l Assay An nOtatlons In-vitro Assay (80 operations/DAG)
Each benchmark was meerted toa DAG and fed to the three ¥ DAGS # Time-steps (1TS = 1s) Scheduling Time (ms) Avg # Storage Modules/TS
schedulers.The module libraries from refl8] were used for MIS_DEC MIS.INC __PS__|MLS DFCI MSINC _PS__ MI5.DRC WIS INC %S
N . A 1| 49 44 47 2 1 0 0.68 0.00 0.00
operation timingsFor the PCR assay, a 2x4 mixer (3s) was used 2 19 | a3 85 B 7 2 134 | ooo | 000
for all mixes. The protein DAG wasnnotatedto use the 2x4 j jgg ﬁ; iéi ;; ;j : ;:: ggg 2§§
diluter (5s) and 2x4 mixer (3s) for all dilute and mix operations, sl seo (Mo B 0. . o 266 Moo BEED
respectively.The 2input, 2output dilute operations used in the 6 656 | 236 | 238 | 140 | 63 o | 250 | 000 | 000
- . . . . . 7| 806 273 276 218 88 13 2.66 0.00 0.00
protein assaywere implemented with consecutive mix and split ol o1 | a1z | s | 265 | w9 | w | zes | ooo | om0
operation which took a cumulative time of 3Sor the invitro 9| 165 | 349 | 383 | 36 | 11 | 20 | 270 000 | 000
10( 1174 388 391 442 175 24 2.69 0.00 0.00

benchmark, we used the largesiquencing graplhich assays
four samples with four reagents for a total of 16 mixes/detects. ] )
We used the same mix and detect times as detailed in Table 14.4 Results and Discussion

Example5 of ref.[7]. Three metrics are presentfed evaluation the completion time in
4.2.2 Experiments number of timesteps, the timeequired tocompute the schedule

) . . . and the average number mbdules used for storagéuring each
For the first set of experiments, we used the PCR, protein and in verage nu e us r storageuring

. ; . . time-step. The last metrigepresentsthe scheduled sstorage
vitro DAGs described in SeCt'th'l.aS a base. Then, for each of efficiency, the lower this metric, the higher the DMFB utilization.
the three DAGs, we attempted simultaneously schedule an
increasing number of copies of the same DAG, from 1 to 10, to Table 1 shows the results fordperiment 1. MLS_DEC handles
show how each scheduler performs with increasing workloads. Asstorage poorly, as indicated by its average storage usage; as a
a second experiment, we executed 3 protein DAGs whilging consequence, both MLS_INC and PS outperform it significantly
the number of modulesii() from 2 to 7. In a third set of For the protein assayILS_DEC attempts to schedule alora
experimentswe varied the number of splits performed by the Patts simultaneously, creating an overwhelmingimber of
protein assay, which allowed us to evaluate the quality of Storage drolets; for 3 protein DAGs, it already us@%7 of 4
schedules produced by Pattheduler as assay faotincreases. ~ modules, on average, for storage. Because of its poor storage
In these experiments, we use the protein assay as the source assajndling, it fails to producéeasibleschedulesfor more than3
As seen irFigure 4, any path from theoot splitto an output goes protein DAGs becausal of the modules are allocated for storage
through 3 splits before the final string of 7 operations, resulting in @nd no assay operations are able to praceed

2°=8 output droplets. Thus, we say that the original protein assayThe rest of our discussiois limited to MLS_INC and PS. As

has 3 levels of splits We sweep the number of split |9Y@8m expected PSyields greafgainswith the protein assay, whidhas

1-8, so thatthe number of output dropletsveepsirom 2=2 to high fanout. In overall schedule quality?S savesbetween9-11
2°=256 As seen inFigure 9, the final sevenoperations are  seconds on the first two rumsid 3739 seconds on the last two
appended to the end of egudth after the last level of splits. runs. Furthermore, PS computes schedules 1.94x faster, on
4.3 Resource Constrairts average, than MLS_ING-or the interested read&ypplementary

SectionS1 showsthe scheduled graphs for the protein assay for

For the first and third experiment, we set the number of work MLS_DEC, MLS_INC and PS.

modules to four (i.e) 1); the second experiment variés .

For PCR, all fourmodules are generainodules. Forthe in-vitro Results forthe PCRand invitro assays are given to demonstrate
and proteinbenchmarks all four modules are detecmodules. how PSperforms on assays without famit sinceneither of these
Similar to ref.[5], we assume a detemibdulecan be used for any ~ a@ssays contain a single splor PQR, PS and MLS_INC yield
detect operation. Th€CR and irvitro benchmarks havene identical resultsPSruns faster than MLS_INC, especially when
input for each type of fluid usedyhile the protein benchmark  the number of DAGs increases

usesone input for sample fluids, two inpufsr buffer fluids an For the invitro benchmarkneither PS nor MLS_INC require any

two inputs for reagent fluids storageoperations P S @amputedscheduls are an average of



Table 2. Results of Experiment 2: scheduling the protein assay using
a varying number of modules Lower is better for all metrics.

Protein Assay - 3 DAGs

#Mods #TS(1TS=1s) Sched Time (ms) | Avg # Stor Mod/TS
MLS_INC PS MLS_INC PS MLS_INC PS
2| Fail 1177 Fail 3 Fail 0.90
3 775 580 9 2 139 0.86
4| 480 407 8 1 1.36 0.78
5 345 305 5 1 1.36 0.70
6| 295 255 6 1 1.88 0.66
7 250 217 7 1 183 0.74
25 60 60 2 1 0.00 0.00

Table 3. Results of Experiment3: varying the number of splits in the
protein assay Lower is better for all metrics.

Protein Split Assay

#split| #TS (1TS=1s) Sched Time (ms) | Avg # Stor Mods/TS
Levels |[MLS_INC| PS |MIS_INC| PS |MIS_INC,  Ps
| 71 72 0 0 0.28 021
2| 106 110 0 0 0.49 043
3| 197 186 2 1 0.79 0.64
4 389 338 5 2 1.07 0.79
5| 757 642 13 4 130 091
6 1590 | 1279 29 14 154 1.03
7| 3456 | 2644 73 24 178 115
8 Fail 5570 Fail 49 Fail 1.29

2.7s sower than MLS_INC Theroot of this small inefficiency is
actually due to inputeservoir conflicts. Aconflict resolution step
was added to PS aritl improvel the resultsfor in-vitro to be
equivalent with MLS_INC; bwever, due tdts inherentguadratic
runtime this step increasethe runtime ofPS significantly (e.g.
from 24ms to 7439ms for in-vitro run #10)and did not yield
improvementsfor protein or PCR schedulesWe describe these
issues in greater detail Bupplementary Section SRastly, we
note that the runtime of PS &5x to 73x faster than MLSINC

in this experiment

Table 2 shows results foExperiment 2, where we varied the
number of work modules while scheduling the protein adSay

2 modules, PS completed a schedule in 1tie-steps while
MLS_INC failed to compute a schedule. For
s t85,e78, 40, d0sanda3B énwtepsshorter
t han ML S _ I N C orespectively Asdtlel nemmber of
modules increase, the schedulesd toconverge since therare
abundant resources for storaged it becomes algorithmically

7, PSo6s

easier to compute latenoptimal schedules.

Table 3reports results for Experiment 3, whichnfirms that PS
generates better schedutean MLS_INCwhenfan-out increases
by reducing staage usagePS loses 14 timestepsfor the first
two levels of splits. However, as the number of splits increase
from three tosevenlevels,PSsaves up t&12s (13m 32s). Due to
poor memory managememiLS_INC fails to produceschedules
beyond sevesplit levelsbecause it reaches a point wherea@lir
modules are usedfor storage.With the constraints detailed in
Section 4.3, PS can theoreticallycompute schedulesp to 12
levels (4096 droplets)We verified this experimentally: PS took
1269ns (1.3s)to compute a schedudg 31h 29m in length

5. CONCLUSION

We have presented a pdihsed scheduling heuristic for digital
microfluidic synthesis. Instead of scheduling ndyenode, as list
scheduler doesRathschedulerschedules pathy-path, reducing

3,4,5,6and

scheduler will be further appreciateden the compiler attempts
to place and routa muchsmaller schedule.

As synthesis moves to an online settisgort runtimes become
increasingly important and assays will likely be scheduled with
specializedscheduling heuristics thaerform well ona particular
assayclass (e.g. multiplexed, high fanutin, etc.).Pathscheduler
excelson and should be usenh assays with high fanut (easily
obtainable info). Even with no epriori information, Path
scheduleris fast enough that &MFB could compute schedules
with path and list scheduler andle the besschedulewith little
penalty.As more fast, higiguality scheduling heuristics emerge,
online synthesis will become a growing possibility, bringing a
number of new features to DMFBs in the areas of dynamic
scheduling, contreflow, fault-tolerance and livdeedback.
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S1. STORAGE REDUCTION GRAPHS
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Figure S1.Scheduled DAGsfor the basic protein assay(timing information was removed for clarity). These graphs have not been bound (placed),
and thus, each black storage node represents a droplet being stored #olength of time, possibly in a number of differentmodules



