

Fast Online Synthesis of Generally Programmable **Digital Microfluidic Biochips Dan Grissom and Philip Brisk** University of California, Riverside (UCR)

Digital Microfluidic Technology

Digital Microfluidic Biochips (DMFBs) are an emerging "lab-on-a-chip (LoC)" technology that perform biochemical reactions by operating on fluidic droplets on the scale of nano-liters.

Applications:

- Clinical pathology
- Point of care diagnostics
- Drug discovery
- Proteomics, DNA, PCR, etc.

Key advantages:

- Reduced cost
- Reduced reagent and sample sizes
- Increased throughput and efficiency
- Increased sensitivity and accuracy

Fast Synthesis

Scheduling : List Scheduling

-Greedy constructive algorithm -Non-iterative

-Limit number of droplets to prevent scheduling deadlock -Resource availability based on knowledge of placer/binder -Storage/module limited to number of I/O cells (2 in this case)

							1	1					
1	IR	IR	IR	IR	IR		IR	IR	IR	IR	IR		1
2	IR				IR		IR				IR		2
3	IR	Sp \)	Sp)IR		IF(D 1)) (IR		3
4	IR				IR		IR	K		$\overline{\mathbf{A}}$	IR		4
5	IR	IR	IR	IR	IR		IR		IR		IR		5
6													6
7	IR	IR	IR	IR	IR		IR		IR		IR		7
8	IR				IR		IR		Q		IR		8
9	IR	Sp Sp)	Sp)IR		IF(Sp))((Sp	R		9
10	IR				IR		IR	R		R	IR		10
11	IR	IR	IR	IR	IR		IR	IR	IR	IR	IR		11
12													12

0	1	2	3	4	5	6	7	8	9	10	11	12
1	IR	IR	IR	IR	IR		IR	IR	IR	IR	IR	
2	IR				IR		IR				IR	
3	IR	Sp \	$\overline{)}$	Sp 2	IR		IF <mark>(</mark>	D 1) (Sp	IR	
4	IR				IR		IR	X			IR	
5	IR	IR	IR	IR	IR		IR		IR	IR	IR	
6								X				
7	IR	IR	IR	IR	IR		IR		IR	IR	IR	
8	IR				IR		IR		Q		IR	
9	IF	Sp Sp) (Sp)IR		IF <mark>(</mark>	Sp 5		Sp 6)IR	
10	IR				IR		IR	R	Q	Q	IR	
11	IR	IR	IR	IR	IR		IR	IR	IR	IR	IR	
12												

Microfluidic Synthesis

If we limit the number of droplets and leave an empty spot (left), we can help prevent scheduling deadlock (right)

Placement: Module Binding

-Fixed binding instead of free placement -Greedy left-edge algorithm -Non-iterative

-Modules placed at fixed locations -Space left between modules guarantees a route

Routing: Simplified Maze Router (Roy)

Route to TS 35

-Based on Roy's Soukup Maze Router -Routes generated from source to destination in one pass

-Routes are compacted after computation

-Stalls added to beginning or middle of routes

Module Topology & Synchronization

Area Usage

Good

Best

Offline Assay Compilation

Performance

-Modules arranged regularly -Operations limited to chambers -Space left between modules for sufficient routing

clear path to its destination

Good

Best

Online Assay Interpretation

Area Usage

Performance

-Routes deadlock free because of fixed placer -Module spacing guarantees valid path -Module I/O cells prevent droplet deadlock

ľ		\triangleleft	\triangleleft	4	\triangleleft		·'-	12	\triangleleft	\triangleleft	\sim	~		
10		Ś	Q	9_ 6	Q		15_	13	Ś	Q	Q	Q		
11				9_ 5			15_	14			11_	7		
12		11_	171_	18 <u>81 4</u>	1151_	1141_	115_	181_	m_	101_9	911_1	B		
13	IR	1ík_	¹⁹ R	9 _⊒ 3	IR	IR	15_	16 _R	IR	IR	IR	IR	IR	
14	IR	1 <mark>₩</mark> 2	21612	20 <u>52</u> :	21612	瞴	1155_	17 _R	M1	0 1 1	0 1 91	0 1 91	01R	
15	IR	1612	8 9 M2	9 _M 1	0M2	0IR		IR	M1	0 1 1	0 1 91	0 1 1	01R	
16	IR	M2	0M2	9 <u>_0</u>	0M2	0IR		IR	M1	0 1 1	0 1 91	0 1 91	01R	
17	IR	IR	IR	IR	IR	IR		IR	IR	IR	IR	IR	IR	
18														

Evaluation of Synthesis Flow

-Performed comparison against classic offline synthesis flow -Performed experiments on Intel i7 and low-powered Atom processor

-List scheduling produces comparable schedules in much less time than long-running iterative algorithms

-Fixed placement/binding takes more space, but finds solutions much quicker

-Routing is a quick process on

Genetic Scheduling vs. List Scheduling											
Davidaria	G	enetic Schec	luling	List Scheduling							
вепсптагк	i7 (ms)	Atom (ms)	Sched (s)	i7 (ms)	Atom (ms)	Sched (s)					
PCR	395	2,621	12	1	1	12					
InVitro_1	665	4,475	15	0	2	15					
InVitro_2	1,293	8,122	17	0	5	19					
InVitro_3	1,990	13,156	19	1	13	23					
InVitro_4	3,541	22,376	23	1	17	26					
InVitro_5	5,744	39,410	31	2	27	35					
Protein	3,297	22,334	110	3	14	116					

	Placement vs. Binding													
) a m ala ma a ula	Simula	ated Anneali	ing Placer	Module Binder										
Senchmark	i7 (ms)	Atom (ms)	%Cells Used	i7 (ms)	Atom (ms)	%Cells Used								
PCR	16	200	16	0	0	20								
nVitro_1	621	12,843	16	0	0	24								
nVitro_2	105,138	141,177	21	0	0	28								
nVitro_3	72,311	506,767	29	0	0	36								
nVitro_4	19,789	3,317,571	32	0	0	45								
nVitro_5	74,899	1,399,936	36	0	0	48								
Protein	4,867,220	79,531,695	29	0	4	46								

			Simplified Roy R	Routing	5				
	GA Sc	heduling - S	A Placement Flow	List Scheduling - Module Binding Flo					
Benchmark	;7 (ma)	Atom (ma)	# Routing Cycles /	;7 (ma)	Atom (ma)	# Routing Cycles			
	17 (ms)	Atom (ms)	# Sub-problems	17 (ms)	Atom (ms)	# Sub-problems			

Input/output cells on modules of different sizes

both flows; is guaranteed with our online synthesis flow

PCR	0	2	78 / 4	0	6	56 / 4
InVitro_1	0	2	135 / 9	0	3	111/9
InVitro_2	0	4	180 / 11	0	7	167 / 12
InVitro_3	0	10	207 / 15	0	12	209 / 16
InVitro_4	0	7	234 / 15	1	19	299 / 19
InVitro_5	1	9	342 / 22	1	26	351/24
Protein	5	32	1212 / 71	3	76	638 / 45

	GA Scł	nedulin	g - SA I	Placement	t - Simp	. Roy I	Routing	List Scheduling - Module Binding - Simp. Roy Routing										
		Offline Flow								Online Flow								
-Our flow much	Denehmenk	Sche	dule	Placement	Rou	ting	Total	Donohmorik	Schedule		Placement	Rou	ting	Total				
more feasible for	вепсптагк	AT (s)	CT (s)	CT (s)	AT (s)	CT (s)	(AT + CT) (s)	вепсптагк	AT (s)	CT (s)	CT (s)	AT (s)	CT (s)	(AT + CT) (s)				
	PCR	12	3	0	1	0	16	PCR	12	0	0	0	0	12				
online synthesis	InVitro_1	15	4	13	1	0	34	InVitro_1	15	0	0	0	0	15				
hacause of fast	InVitro_2	17	8	141	2	0	168	InVitro_2	19	0	0	0	0	19				
because of last	InVitro_3	19	13	507	2	0	541	InVitro_3	23	0	0	0	0	23				
algorithms	InVitro_4	23	22	3,318	2	0	3,365	InVitro_4	26	0	0	0	0	26				
U	InVitro_5	31	39	1,400	3	0	1,474	InVitro_5	35	0	0	0	0	35				
	Protein	110	22	79,532	12	0	79,676	Protein	116	0	0	1	0	117				

Contact

Dan Grissom (grissomd@cs.ucr.edu) Philip Brisk (philip@cs.ucr.edu) **Computer Science Department, Bourns College of Engineering** University of California, Riverside