
Mapping Reads to Reference 
Genome 



• DNA carries genetic information 

• DNA is a double helix of two complementary 
strands formed by four nucleotides (bases): 

  Adenine, Cytosine, Guanine and Thymine 
2 of 31 



• Gene expression is the process by which DNA is 
transcribed into mRNA (eventually translated into 
proteins) 

• Mechanisms controlling gene expression are not 
fully understood yet 
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• New-generation sequencing technology allows 
fast and inexpensive DNA sequencing 

• Helps biologists to study cellular processes  
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Example: Identify Transcription Factors binding sites 
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Example: Identify Transcription Factors binding sites 

 

Cell diagram adapted from LadyOfHats' Animal Cell diagram. Wikipedia. 
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Example: Identify Transcription Factors binding sites 



reads 

Example: Identify Transcription Factors binding sites 
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Reference genome 



• Mapping DNA reads back to a reference 
genome is the first step in the data analysis 

• Mapping short sequenced reads back to a 
reference genome is a string search problem: 
given a text and a query, find all (approximate) 
occurrences of the query in the text 
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Group Work 
• Assume that a human reference genome is 

given (a string of 3 billion characters long) 

• Assume that you need to map 1 million 50bp 
reads to the genome 

• Come up with a method to map fast the reads 
to the genome 
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Problem statement: 

Given a string S of length n and a short string P 
of length m (n >> m), find all locations where P 
occurs in S 



• To speed up mapping, search space is reduced by 
focusing only on those regions of genome that share 
the same seed(s) with a read 

• A seed, or k-mer (q-gram), is a substring of a read of 
length k 

• Common data structures to index the data (genome) 
and speed-up the search:  

  hash tables 
  suffix trees  
  suffix arrays  
  Burrows-Wheeler transform (BWT) with   

 Ferragina-Manzini (FM) index 

Methods for Mapping Short Reads 
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Hash Indexing 

• Hash all genome k-mers into a hash table using seeds 
of fixed length k as hash keys, and corresponding 
genomic positions as values 

• Use the k-mers in a read as hash keys to retrieve 
locations that are potential hits 

• Align the entire read to the potential locations and 
count the number of mismatches 
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Hash Indexing 
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Hash Indexing 

Disadvantages: 

1. The longer seeds, the more space demanding 

2. The shorter seeds, the more time consuming 
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Group Work 

1. Build a hash table for the following sequence 
using seeds of length 2 and 3 

 

 

2. Map read TATG to the given sequence using 
the seed TA (TAT) and your hash tables. How 
many different alignments did you have to 
make? 
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Mapping  

1. Reads are generated from both 
strands of DNA 

2. Reads are always sequenced 
from 5’ to 3’ 

3. Mapping is performed to         
only (+) strand of DNA 

4. Map reverse-complement of a 
read: ATTGC, rc: GCAAT 
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C   T   G  G   C 



Mapping 

Output format 

Read_ID   Read   Chromosome   Position   Strand 

 

1 CTGGC    1 1 + 

2 ATTGC     1 4 - 
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Encoding of Reads 
A = 00 
C = 01 
G = 10 
T = 11 
ATTGC = 0011111001 
 
Advantages: 
1. Each character takes 2 bits instead of 8 bits 
2. Retrieval of all positions where a seed occurs 

takes O(1) time (use encoding of a seed as an 
index  for a hash table’s bin) 
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Suffix Array 

• Find all circular shifts of the reference genome 
• Lexicographically sort the circular shifts 
• All circular shifts that start with the same substring are 

consecutive 
• Record the starting indices of the circular shifts 
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Suffix Array 

For a given string S, Pos[i] = j, such that 
S[j…n] is a prefix of row i in M 

 
To find a given pattern W of length m, 

we know that all rows having W as a 
prefix in M are contiguous; hence, 
positions of P in S are stored in 
contiguous range [L, R] in the suffix 
array Pos 
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Suffix Array 
10 8 1 3 5 9 7 2 4 6 



Suffix Array 
10 8 1 3 5 9 7 2 4 6 

Time to find all occurrences of W in S 
is O(|W|log(n)), where n = |S| 
Space to store a suffix array is 4n 
 
The authors also proposed algorithm 
with time O(|W| + log(n))  



Input Format 
Reference genome is usually given as a set of 

files, each file per chromosome.  

Each file is in Fasta format: 
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Input Format 
Reads are usually given in FASTQ format: 
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Read ID 
Sequenced Read 
Ignore 

Quality Info 



Homework 1 discussion 
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Next Lecture 

• Approximate string search 

• Smith-Waterman algorithm 

• Hash table, suffix array for approximate string 
search 
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Burrows-Wheeler Transform 

• Build Burrows-Wheeler transform (BWT) for the reference genome 
• Find positions within BWT corresponding to suffixes whose prefix is 

a seed of the read 
• Calculate from these positions genomic positions 
• Align the entire read to the potential locations and count the 

number of mismatches 
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Hash Indexing Burrows-Wheeler transform 

Seed length for a read fixed variable 

Time to find genomic 
positions for a k-mer  

O(1) O(k + Occ ∙ log N) 

Time to map entire read of 
length P to Occ genomic 
positions, where the k-mer 
occurs 

O(Occ ∙ P) O(Occ ∙ P) 

Methods for Mapping Short Reads 

• The length of the seed used in hashing is fixed and usually 
shorter than the seed for BWT 

• Hence, Occ with BWT is smaller than Occ with hash indexing 
• We need to check a smaller number of full-length read 

alignments with BWT; thus, mapping of short reads with 
BWT is more time-efficient 
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Find positions within BWT corresponding to suffixes 
whose prefix is a seed of the read 

Given: P, a pattern of length p 
BW_Search(P[1,p]) 
c = P[p], i=p 
sp = F[c] + 1, ep = F[c+1] 
while sp < ep and i > 1 
 c = P[i-1], i = i - 1 
 sp = F[c] + Occ(c, 1, sp-1) + 1 
 ep = F[c] + Occ(c, 1, ep) 
 print sp and ep 

Example: BW_Search(ATA) 

c = A, i = 3 

sp = F[A] + 1 = 2, ep = F[A + 1] = F[C] = 5 

i=3: c = T, sp = 6 + 0 + 1 = 7, ep = 6 + 3 = 9 

i=2: c = A, sp= 1 + 1 + 1 = 3, ep = 1 + 3 = 4   
At each iteration i, sp points to the first row of M prefixed by P[i,p], 

and ep points to the last row of M prefixed by P[i,p] 



• Mark row of M corresponding to each 3-d genomic 
position 

• Store explicitly these positions in array GI 

• If i-th position in BWT is marked, Occ(1, 1, i) is index for 
genomic position in GI ( e.g., GI[Occ(1,1,3)]=GI[2]=1 ) 

• If i-th position in BWT is not marked,   do LF_mapping 
until encounter marked position j, BWT[j] = 1, marked 

• Pos(sp) = Number_of_LF_mappings + GI[Occ(1,1,j)] 

Calculate Genomic Positions from [sp,ep] 

LF_mapping(sp) 

 c = get_BWT_char(sp) 

 sp = F[c] + Occ(c, 1, sp) 

Example:  1. LF_mapping(4) 

 c = get_BWT_char(4) = T 

 sp = F[T] + Occ(T, 1, 4) = 6 + 2 = 8 (not marked) 

2. LF_mapping(8) 

 c = get_BWT_char(8) = A 

 sp = F[A] + Occ(A, 1, 8) = 1 + 2 = 3 (marked) 

Pos(sp) = 2 + 1 = 3 (total of 2 LF_mappings and GI[Occ(1,1,3)]) 



Why LF_mapping works? 

• Why do we identify correctly the genomic 
position for unmarked BWT[i]? 

• Given row M[i] starting with prefix P, we find 
the closest marked preceding genomic 
position 

• Since the rows of M are the circular shifts of 
T$, the last character of i-th row, L[i], 
precedes the first character F[i] 

• Let L[i] = c and ri be the rank of the row M[i] 
among all rows ending with c. Then F[j] = c is 
the corresponding character to L[i] in T, where 
M[j] is the ri-th row of M starting with c 

• Define LF_mapping as 

  LF[i] = F[ L[i] ] + ri 
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