
Mapping Reads to Reference
Genome

• DNA carries genetic information

• DNA is a double helix of two complementary
strands formed by four nucleotides (bases):

 Adenine, Cytosine, Guanine and Thymine
2 of 31

• Gene expression is the process by which DNA is
transcribed into mRNA (eventually translated into
proteins)

• Mechanisms controlling gene expression are not
fully understood yet
 3 of 31

• New-generation sequencing technology allows
fast and inexpensive DNA sequencing

• Helps biologists to study cellular processes

4 of 31

Example: Identify Transcription Factors binding sites

Slide 5 of 31

Slide 6 of 31

Example: Identify Transcription Factors binding sites

Cell diagram adapted from LadyOfHats' Animal Cell diagram. Wikipedia.

Slide 7 of 31

Example: Identify Transcription Factors binding sites

reads

Example: Identify Transcription Factors binding sites

Slide 8 of 31

Reference genome

• Mapping DNA reads back to a reference
genome is the first step in the data analysis

• Mapping short sequenced reads back to a
reference genome is a string search problem:
given a text and a query, find all (approximate)
occurrences of the query in the text

9 of 31

Group Work
• Assume that a human reference genome is

given (a string of 3 billion characters long)

• Assume that you need to map 1 million 50bp
reads to the genome

• Come up with a method to map fast the reads
to the genome

Slide 10 of 31

Problem statement:

Given a string S of length n and a short string P
of length m (n >> m), find all locations where P
occurs in S

• To speed up mapping, search space is reduced by
focusing only on those regions of genome that share
the same seed(s) with a read

• A seed, or k-mer (q-gram), is a substring of a read of
length k

• Common data structures to index the data (genome)
and speed-up the search:

 hash tables
 suffix trees
 suffix arrays
 Burrows-Wheeler transform (BWT) with

 Ferragina-Manzini (FM) index

Methods for Mapping Short Reads

11 of 31

Hash Indexing

• Hash all genome k-mers into a hash table using seeds
of fixed length k as hash keys, and corresponding
genomic positions as values

• Use the k-mers in a read as hash keys to retrieve
locations that are potential hits

• Align the entire read to the potential locations and
count the number of mismatches

12 of 31

Hash Indexing

Slide 13 of 31

Hash Indexing

Disadvantages:

1. The longer seeds, the more space demanding

2. The shorter seeds, the more time consuming

Slide 14 of 31

Group Work

1. Build a hash table for the following sequence
using seeds of length 2 and 3

2. Map read TATG to the given sequence using
the seed TA (TAT) and your hash tables. How
many different alignments did you have to
make?

Slide 15 of 31

Mapping

1. Reads are generated from both
strands of DNA

2. Reads are always sequenced
from 5’ to 3’

3. Mapping is performed to
only (+) strand of DNA

4. Map reverse-complement of a
read: ATTGC, rc: GCAAT

Slide 16 of 31

G C A A T
C T G G C

Mapping

Output format

Read_ID Read Chromosome Position Strand

1 CTGGC 1 1 +

2 ATTGC 1 4 -

Slide 17 of 31

Encoding of Reads
A = 00
C = 01
G = 10
T = 11
ATTGC = 0011111001

Advantages:
1. Each character takes 2 bits instead of 8 bits
2. Retrieval of all positions where a seed occurs

takes O(1) time (use encoding of a seed as an
index for a hash table’s bin)

Slide 18 of 31

Suffix Array

• Find all circular shifts of the reference genome
• Lexicographically sort the circular shifts
• All circular shifts that start with the same substring are

consecutive
• Record the starting indices of the circular shifts

19 of 31

Suffix Array

For a given string S, Pos[i] = j, such that
S[j…n] is a prefix of row i in M

To find a given pattern W of length m,

we know that all rows having W as a
prefix in M are contiguous; hence,
positions of P in S are stored in
contiguous range [L, R] in the suffix
array Pos

10 8 1 3 5 9 7 2 4 6

Suffix Array
10 8 1 3 5 9 7 2 4 6

Suffix Array
10 8 1 3 5 9 7 2 4 6

Time to find all occurrences of W in S
is O(|W|log(n)), where n = |S|
Space to store a suffix array is 4n

The authors also proposed algorithm
with time O(|W| + log(n))

Input Format
Reference genome is usually given as a set of

files, each file per chromosome.

Each file is in Fasta format:

Slide 23 of 31

Input Format
Reads are usually given in FASTQ format:

Slide 24 of 31

Read ID
Sequenced Read
Ignore

Quality Info

Homework 1 discussion

Slide 25 of 31

Next Lecture

• Approximate string search

• Smith-Waterman algorithm

• Hash table, suffix array for approximate string
search

Slide 26 of 31

Burrows-Wheeler Transform

• Build Burrows-Wheeler transform (BWT) for the reference genome
• Find positions within BWT corresponding to suffixes whose prefix is

a seed of the read
• Calculate from these positions genomic positions
• Align the entire read to the potential locations and count the

number of mismatches
27 of 31

Hash Indexing Burrows-Wheeler transform

Seed length for a read fixed variable

Time to find genomic
positions for a k-mer

O(1) O(k + Occ ∙ log N)

Time to map entire read of
length P to Occ genomic
positions, where the k-mer
occurs

O(Occ ∙ P) O(Occ ∙ P)

Methods for Mapping Short Reads

• The length of the seed used in hashing is fixed and usually
shorter than the seed for BWT

• Hence, Occ with BWT is smaller than Occ with hash indexing
• We need to check a smaller number of full-length read

alignments with BWT; thus, mapping of short reads with
BWT is more time-efficient

28 of 31

Find positions within BWT corresponding to suffixes
whose prefix is a seed of the read

Given: P, a pattern of length p
BW_Search(P[1,p])
c = P[p], i=p
sp = F[c] + 1, ep = F[c+1]
while sp < ep and i > 1
 c = P[i-1], i = i - 1
 sp = F[c] + Occ(c, 1, sp-1) + 1
 ep = F[c] + Occ(c, 1, ep)
 print sp and ep

Example: BW_Search(ATA)

c = A, i = 3

sp = F[A] + 1 = 2, ep = F[A + 1] = F[C] = 5

i=3: c = T, sp = 6 + 0 + 1 = 7, ep = 6 + 3 = 9

i=2: c = A, sp= 1 + 1 + 1 = 3, ep = 1 + 3 = 4
At each iteration i, sp points to the first row of M prefixed by P[i,p],

and ep points to the last row of M prefixed by P[i,p]

• Mark row of M corresponding to each 3-d genomic
position

• Store explicitly these positions in array GI

• If i-th position in BWT is marked, Occ(1, 1, i) is index for
genomic position in GI (e.g., GI[Occ(1,1,3)]=GI[2]=1)

• If i-th position in BWT is not marked, do LF_mapping
until encounter marked position j, BWT[j] = 1, marked

• Pos(sp) = Number_of_LF_mappings + GI[Occ(1,1,j)]

Calculate Genomic Positions from [sp,ep]

LF_mapping(sp)

 c = get_BWT_char(sp)

 sp = F[c] + Occ(c, 1, sp)

Example: 1. LF_mapping(4)

 c = get_BWT_char(4) = T

 sp = F[T] + Occ(T, 1, 4) = 6 + 2 = 8 (not marked)

2. LF_mapping(8)

 c = get_BWT_char(8) = A

 sp = F[A] + Occ(A, 1, 8) = 1 + 2 = 3 (marked)

Pos(sp) = 2 + 1 = 3 (total of 2 LF_mappings and GI[Occ(1,1,3)])

Why LF_mapping works?

• Why do we identify correctly the genomic
position for unmarked BWT[i]?

• Given row M[i] starting with prefix P, we find
the closest marked preceding genomic
position

• Since the rows of M are the circular shifts of
T$, the last character of i-th row, L[i],
precedes the first character F[i]

• Let L[i] = c and ri be the rank of the row M[i]
among all rows ending with c. Then F[j] = c is
the corresponding character to L[i] in T, where
M[j] is the ri-th row of M starting with c

• Define LF_mapping as

 LF[i] = F[L[i]] + ri

ATATATTAG$

TATATTAG$A

ATATTAG$AT

TATTAG$ATA

ATTAG$ATAT

TTAG$ATATA

TAG$ATATAT

AG$ATATATT

G$ATATATTA

$ATATATTAG

3

1

2

9

8

7

6

5

4

10

M

1

0

0

1

0

1

0

0

0

0

