CS 164 Programming Project — Winter 2005

I. Introduction

The IEEE 802.15.3 standardl1] defines the data link layer functions for wireless personal area
networks (WPANs), called piconets. A piconet is a group of devices located within a few feet of
each other that communicate over a shared high-bandwidth, short-range radio channel. Piconets
are intended to replace the clutter of wires in wearable computers (i.e., replacing the serial cable
that connects your PDA talking to your cell phone) or home entertainment systems (i.e.,
replacing the USB, firewire, DVI, or similar cables for connecting your DVD player to your HDTV).
One device in the piconet, called the piconet controller or PNC, serves as its "master” and is
responsible for controlling the operation of the piconet. All other devices are “slaves”, which must
ask for permission from the PNC before they can send any data (except the request message, of
course!).

In this project, you must implement a simplified version of the 802.15.3 data link layer protocol.
You create an application program that represents the operation of one device in the piconet
(either the PNC or a slave device), and test your program by running experiments where multiple
copies of your program communicate by passing messages (represented as character strings)
among themselves through Unix sockets. The format of each message is similar to the format of
the corresponding frame transmitted in the 802.15.3 network. To simulate the broadcast nature
of the wireless channel, each “slave” application program must establish a separate socket
connection with the “master” application program, and the “master” sends a copy of each
message (either locally generated by the master, or incoming from slave /) to all slaves (except

.
II. Superframes

All frame transmissions in the piconet follow a strict schedule defined by the PNC. This schedule
follows a repeating pattern called a superframe. A real piconet allows variable-length frames, so
the schedule includes the number of microseconds allocated to each frame. However, to simplify
the problem we will assume that the transmission time for every frame is some fixed constant
called txTime, and we will allocate one “slot” (of duration equal to one txTime) on the channel
to the transmission of each frame. Thus, each superframe consists of a set of consecutive slots,
as shown in the following diagram.

> Superframe = 6 >

o— Contention=2 —@» Response Data 1 Data 2
Beacon § | | | | Beacon i+

The first slot of every superframe is always a beacon frame sent by the PNC. The beacon frames
are used by the PNC to support two different functions: (a) to inform all “alien” devices of the
existence of a functioning piconet in this neighborhood, and (b) to tell all of its associated
“slaves” of the schedule for using the channel during the remainder of this superframe. The
contention period begins one txTime after the start of the beacon frame and includes one or
more slots. The slaves can use these contention slots to send unscheduled control frames to the
PNC (e.g., requests to join the piconet, or to receive time allocations in future superframes for
transmitting data frames). The next slot after the contention period is a one-slot response
period reserved for the PNC, where it sends responses to all requests received during the
contention period. Each of the remaining slots is allocated to a data stream by the PNC, based

on time allocation requests it received during previous superframes.

In a real piconet, the transmission time for each frame is much too short (i.e., several
microseconds) for you to watch the execution of the protocol as members of the piconet attempt
to exchange control messages and transmit data. Furthermore, since the protocol operation is
defined in terms of timers and message transfer events among multiple simultaneously-executing
programs (each of which may be running on a different host), you can’t use a symbolic debugger
to slow things down by stepping through the code one statement at a time. Therefore, in this
assignment you will artificially slow down the execution speed of your program by
accepting txTime as a command line option. Assume that txTime represents the transmission
time for a frame in milliseconds, and that its default value is 1000 (or one second). Note that,
smaller values for txTime are useful for reducing the execution time for a big experiment, and
large values will make it easier to keep track of the order of events while you are debugging.

We will also ignore the effects of propagation delay, so you can assume that a frame that is
transmitted by one device at time t (in units of txTime) will also be received by all other devices
at the same time t. Because we have defined txTime to be very large compared to the actual
transmission time for a frame, this assumption means that you can ignore the distinction
between the starting time and ending time for a given frame transmission. In other words,
suppose the PNC starts transmitting a beacon frame at time t. In this case, a slave wishing to
transmit a request during the first contention slot should begin transmitting its control frame at
time (t+1), which is equivalent to sleeping for one txTime between receiving the beacon frame
and sending the control frame.

III. Frame Format

In this project, we will represent each frame as a variable-length character-string that shows
how the actual (i.e., binary) frame format might be displayed by some symbolic protocol-
debugging tool. For example, if the actual frame contains a 3-bit type field, then your program
should represent that field as a character string of length 3, where each bit is represented as the
character “0” or the character “1”. We will also simplify the message format in comparison to
section 7.2 of the IEEE 802.15.3 standard by skipping certain parts of the frame header, and
replacing the CRC error check field (which is hard to compute in software) by a fixed-format
end-of-frame sentinel, as described below. (For transparency, we will use character stuffing to
prevent data in other fields within the frame from being misinterpreted as the end-of-frame
sentinel.) For concreteness, we will show some examples of frames in the following discussion.

III.a. Overall Frame Structure

For this assignment, every frame will consist of exactly these three parts:

1) The frame header, which consists of the following fields from beginning to end:

a) A three-bit frame type, which must be one of the following four values. (Please note that
the values in Table 39 of the IEEE standard are shown with the first bit on the right.
Beware!)

i) beacon frame, represented by type-string "000”, which is sent only by the PNC;

ii) immediate ACK frame, represented by type-string “"100”, which is returned by the
receiver of another frame type, if requested by the sender;

iiil) command frame, represented by type-string “"110”, which is sent by a slave to the
PNC during the contention period to request a future time slot allocation for sending a
data frame; and

iv) data frame, represented by type-string "001”, which is sent by one node to any other
node during a reserved time slot.

b) A one-bit ACK policy, indicating that receiver should not send any ACK for this frame (if
its value is “0”) or is expected to send an immediate ACK (if its value is “1”).

c) The numeric piconet ID, a decimal number represented as a two-character string
between “00” and “99”.

d) The destination ID, either a decimal number represented as a two-character string
between “00” and “99”, or the reserved broadcast address of “FF".

e) The source ID, a decimal number represented as a two-character string between “00” and
\\99".

f) The stream ID for this particular session between the given source and destination, a
decimal number represented as a two-character string between “00” and “99”.

2) The payload, which is a variable-length character string with a maximum length of 32,
whose meaning depends on the frame type.

3) The end-of-frame sentinel (substituting for the CRC), which is the fixed four-character
string “2005”. To support data transparency, the sender and receiver will use character
stuffing to prevent this string from appearing by accident in some other location within the
frame. Thus, whenever the transmitter sees the string “"200” anywhere within the frame, it
inserts the character “6” after the second zero. For example, stuffing the string “2005”
converts it to “20065”, and stuffing “2006"” converts it to “20066".

For example, the string "001123456789abcdef2005” (shown with the beginning on the left-hand
side) would be decoded as the following frame format:

type = “001”, which indicates a data frame

ACK policy = “1”, so an immediate ACK is expected from the receiver,

Piconet ID = 32, (remember that the string is being displayed with the beginning on the
left, but the low-order digit of a number is always shown on the right)

Destination ID = 54
Source ID = 76
Stream Number = 98
Payload = “abcdef”

End-of-frame sentinel "2005"”

III.b. Beacon Frames

The PNC broadcasts a beacon frame at the beginning of each superframe. Note that the ACK
policy field in the frame header is always zero and the destination ID is always “FF” for beacon
frames. The payload of each beacon frame is divided into two parts:

a) Advertisement of global synchronization parameters associated with this piconet. For
this assignment, we will include the following entries:

i) The superframe duration (in units of txTime), from the start of this beacon frame to
the start of the next beacon frame. We will use a decimal number between 1 and 15,
represented as a two-character string between “10” and “51”. (Don't forget the
convention we're using in this document for the display of strings!)

ii) The length of the contention period (in units of txTime). We will use a single
decimal digit, and fix the value to “1” unless you implement the extra credit option
described below. In that case, values between “2” and “8"” are allowed.

b) A sequence of information elements. For this assignment, the only type of information
element we consider is a channel time allocation of one slot granted by the PNC to each
active stream during the current superframe. Thus, the contents of each information
element consists of only the following items:

i) The destination ID, either a decimal number represented as a two-character string
between “"00” and “99”.

ii) The source ID, a decimal number represented as a two-character string between “00”
and “99”.

iiil) The stream ID for this particular session between the given source and destination, a
decimal number represented as a two-character string between “00” and “99”.

iv) The starting time offset (in units of txTime) for this allocation.

Note that all of these times are calculated relative to the start of the beacon frame, and that the
PNC allocates channel time consecutively, starting from the end of the contention and response
period.

For example, the payload for the beacon frame in the diagram shown above might be the string
“501123456420064665” (shown with the beginning on the left), which we could decode to find
the following list of parameters:

Superframe duration = 06

Contention period = 2

First destination ID = 21

First source ID = 43

First stream number = 65

First starting offset = 4

Second destination ID = 02

Second source ID = 40 (notice that the string has a stuff bit in the middle of this field)

Second stream number = 66

Second starting offset = 5

III.c. Immediate ACK Frames

The immediate ACK does not contain any payload field. Instead, it contains only a frame header
followed directly by the end-of-frame sentinel. The frame header is the same as the incoming
data frame, except the ACK policy is changed from “1” to “0”, and the values of the
destination ID and source ID fields are swapped.

Immediate ACK frames are also unique in terms of when they are transmitted. They are not sent
in the free-for-all contention period, nor are they given a separate allocation of channel time.
Instead, each immediate ACK is transmitted right after the associated data frame before its same
channel time allocation expires.

III.d. Command Frames

The 802.15.3 standard supports numerous commands. In this assignment, we will consider only a
small subset from the complete list. In each case, the payload field consists of a 16-bit command
type (which we will represent as a two-character string of hexadecimal digits), followed by a set
of parameters unique to each command.

The association request frame (command type “00”) is used by an “alien” device that wants to
join a nearby piconet, which it discovers after hearing the associated beacon frames being sent

by its PNC. Note that all other frames except an association request control frame will be rejected
by the PNC until the device successfully joins this piconet. This command has only one
parameter, the timeout value (in units of txTime), which is a decimal number represented as a
two-character string between “01” and “99”. If the PNC cannot detect any activity by the device
during the timeout period, it will automatically drop the device from its list of piconet members.
The PNC replies by sending an association response frame (command type “10”) with two
parameters: an adjusted timeout value (in units of txTime) in case the PNC wants to reduce it to
a smaller value, followed by a one-character reason code (i.e., "0” means the device has
successfully joined the piconet, whereas “"8” means the PNC is rejecting the request).

The disassociation request frame (command type “10”) may be sent by either the PNC or the
device to end its membership in the piconet. The only parameter is a one-character reason code
(i.e., "0” means the timeout expired, “3” means the PNC is shutting down the entire piconet, and
“4" means the device wants to remove itself from the piconet). There is no explicit response
command associated with this type of request. However, the sender can force the receiver to
return an immediate ACK frame if desired, by setting the ACK policy to “1” in the frame header
for this command.

The channel time request frame (command type “21") is sent by a “slave” that wants
permission to send one or more data frames that belong to a particular stream. In this
assignment, we consider only requests for sending asynchronous data, so there is no need to
consider the more complex features of the 802.15.3 protocol for handling periodic scheduling of
data that belongs to a stream of time-sensitive data (e.g., real time voice or video, say).
However, we will include the concept of stream IDs anyway, since the concept may be helpful for
designing your PNC scheduler. Thus, for this assignment we will modify the channel time request
command to use the following list of parameters after the command type field:

1) Number of streams for which this frame is requesting additional channel time, which
is a decimal number represented as a single character between “1” and “4”,

2) A request block for each of those streams mentioned above:

a) A one-digit request number, which is a temporary stream ID controlled by the
slave to allow it to separate the responses it receives for multiple simultaneous
requests with an unassigned stream ID.

b) Its stream ID, which is a two-character string that contains either the special
reserved unassigned value “EF” if this is the first request being made for a new
stream, or the previously-assigned two-digit humber between “00” and “99” for an
existing stream.

c) The total number of data frames requested for this stream at this time, which is a
decimal number represented as a single character between “1” and “9”.

The PNC sends a separate channel time response frame (command type “31"”) for each request
block. The response has three parameters:

1) The one-digit request number copied from the request block.

2) The associated stream ID, which could have been previously assigned, or newly
assigned through this response frame. If the request is rejected, the stream ID is set to
the unassigned value.

A two-digit reason code, to indicate whether the request was successful (reason code set to
“0") or unsuccessful (reason code set to “217).

III.e. Data Frames

The entire payload field of each data frames is just application data. No parameters are required.
IV. Piconet Formation

An application running on some device may decide to instruct its 802.15.3 compatible network
interface to either create a new piconet (and thus, as its first member, to act as its PNC, at least
initially), or to join an existing piconet. Your program must support the same two choices by
accepting the command line options “-master” or “-slave”. In addition, the option “-ID nn” tells
the program its two-digit ID, while the options “-localport x”, “-remote_IP y”, and “-remoteport
z” allow it to establish the necessary socket connection(s) to establish the piconet. Finally, each
slave uses the option “-f file” to find the name of a text file that contains a sequence of activities
it must perform during this experiment. Each activity is represented by one line in the file, which
contains the following information:

= Since the first activity is always joining the piconet, the first line is just the time at which the slave sends its
association request message.
= The remaining activities are all data transfers leaving this slave, each of which includes the following items:
= The starting time (in units of #x7ime) for this data transfer
= The piconet ID for the receiver of this data transfer
= The name of the file that contains the data being sent.

Note that your program can assume that whoever set up the experiment has correctly filled in all
the necessary information. In particular, if the activity is to sent a particular data file to ID x at
time t, then the device x will be connected to the piconet at time t.

[1] 1EEE standards documents are downloadable for free if you answer a few simple questions.
For more info, see their website: http://standards.ieee.org/getieee802/index.html

