
One way of providing concurrency in the server to handle multiple clients at the same
time was calling the fork() function. This week we will emphasize the alternative method
of handling multiple clients simultaneously: select function.

 Select Function:

This function allows a process to specify a list of descriptors (ports), and to instruct the
kernel to wait for any of these specified events to occur; and to wake up the process only
when one or more of these events occur or when a specified amount of time has passed.

As an example, we can call select and tell the kernel to return only when:
• Any of the descriptors in a specified set of sockets are ready for reading
• Any of the descriptors in a specified set of sockets are ready for writing
• Any of the descriptors in a specified set of sockets have an exception condition

pending
• Timeval (a specified limit of time) seconds have elapsed.

To use “select”, we tell the kernel what descriptors we are interested in (for reading,
writing, or an exception condition) and how long to wait. Select() suspends the
program until one of the descriptors in the list becomes ready to perform I/O and
returns an indication of which descriptors are ready. (establishment of a new client
connection, arrival of data, FIN, etc.) Then the program can proceed with I/O on that
descriptor, and the operation does not block until I/O is finished.

Here is the function syntax:

The last argument tells the kernel how long to wait for one of the specified descriptors to
become ready. Timeval structure
specifies the number of seconds
and microseconds.

There are three possibilities:

#include <sys/select.h>
#include <sys/time.h>

int select (int maxFileDescriptorsPlus1, fd_set * readDescriptors, fd_set * writeDescriptors, fd_set *
exceptionDescriptors, struct timeval * timeout);

Returns: - positive count of ready descriptors
- (0) on timeout
- (-1) on error

struct timeval {
long tv_sec; /*seconds*/
long tv_usec; /*microseconds*/

}

i) WAIT FOREVER: Return only when one of the specified descriptors is ready
for I/O. For this, specify the timeout value as a null pointer.

ii) WAIT FOR A FIXED AMOUNT OF TIME: Return when one of the
specified descriptors is ready for I/O; but do not wait beyond the number of
seconds and microseconds specified in the timeval structure pointed to by the
timeout argument.

iii) DO NOT WAIT AT ALL: Return immediately after checking the
descriptors. This is called polling. To specify this, the timeout argument must
point to a timeval structure with timer values = 0.

!!! The wait in the first two scenarios is normally interrupted if the process catches a
signal and returns from the signal handler.

The descriptor sets that select uses are typically array of integers, with each bit in each
integer corresponding to a descriptor. For example, using 32-bit integers, the first element
of the array corresponds to descriptors 0 through 31, the second element of the array
corresponds to descriptors 32 through 63, and so on. All the implementation details are
independent of the application and are implicit in the fd_set data type and in the
following 4 macros:

fd: File descriptors, fdset: File descriptor Set
void FD_ZERO(fd_set * fdset); /*clear all bits in the file descriptor set */
void FD_SET(int fd, fd_set * fdset); /*turn on the bit for fd in fdset */
void FD_CLR(int fd, fd_set * fdset); /*turn off the bit for fd in fdset */
int FD_ISSET(int fd, fd_set * fdset); /* is the bit for fd on in fdset ? */

For example, to define a variable of type fd_set and then turn on the bits for descriptors 1,
4, and 5, we write:

fd_set rset;

FD_ZERO (&rset); /* initialize the set: all bits off —IT IS IMPORTANT TO INITIALIZE THE SET !! */
FD_SET (1, &rset); /*turn on the bit for fd 1 */
FD_SET (4, &rset); /*turn on the bit for fd 4 */
FD_SET (5, &rset); /*turn on the bit for fd 5 */

The argument maxFileDescriptorsPlus1 specifies the number of descriptors to be tested. Its
value is the maximum descriptor to be tested plus one. Hence the descriptors 0, 1, 2,..,
(maxFdplus1)-1 are tested.

select modifies the descriptor sets pointed by the readDescriptors, writeDescriptors,

exceptionDescriptors. When we call the function we specify these parameters and on return
the function notifies us of which descriptors are ready. We use the FD_ISSET macro on
return from select() call in order to test a specific descriptor in an fd_set structure.

Now we can revisit our concurrent TCP server and rewrite this server as a single process
that uses select to handle multiple clients, instead of forking one child per client.

The server has a single listening descriptor.
The server maintains only a read descriptor set as shown below:

It is assumed that the server is started in the foreground; therefore descriptors 0,1,2 are
set to standard input, output, error respectively. So the first available descriptor for the
listening socket is 3. “Client []” is an array of integers and it contains the connected
socket descriptor for each client. All elements in this array are initialized to –1. The only
nonzero entry in the descriptor set is the entry for the listening sockets and the first
argument to select will therefore be 4.

When the first client establishes a connection with our server, the listening descriptor
becomes readable and our server calls accept(). The scenario is shown in the above
figure. The new connected descriptor returned by accept() will be “4” in this example.
From this point on, the server must remember the new connected socket in its client
array, and the connected socket must be added to the descriptor set. The updated
condition is shown below:

[0]

[1]

[2]

[FD_SETSIZE -1]

 -1

 -1
 -1

Client [] :

 -1

 maxfd + 1 = 4

 0 0 0 1
 fd 0 fd 1 fd 2 fd 3

 rset:

[0]

[1]

[2]

[FD_SETSIZE -1]

 4

 -1
 -1

Client [] :

 -1

 maxfd + 1 = 5

 0 0 0 1
 fd 0 fd 1 fd 2 fd 3

 rset: 1
 fd 4

 138.23.169.9:21,
 138.23.130.10:1500

 Connected socket

 Listening socket fork

 client

 server
 (child)

 server

connection 138.23.130.10:1500 ,
 138.23.169.9:21

Some time later when a second client establishes a connection and we have the scenario
as shown in figure below:

And the data structures after the second client establishes communication will look like
this:

When the first client terminates its connection, the server then closes this socket and the
data structures are updated accordingly on the server. The value of client[0] is set to –1
and descriptor 4 in the dsescriptor set is set to 0. Notice that the value of maxfd does not
change.

[0]

[1]

[2]

[FD_SETSIZE -1]

 -1

 -1
 5

Client [] :

 -1

 fork

 138.23.169.9:21,
 138.23.130.11:1501

 fork

 138.23.169.9:21,
 138.23.130.10:1500

 Connected socket

 Listening socket

 client1

 server
 (child1)

 server

connection 138.23.130.10:1500 ,
 138.23.169.9:21

 server
 (child2)

 Connected socket

 client2

connection 138.23.130.11:1501 ,
 138.23.169.9:21

[0]

[1]

[2]

[FD_SETSIZE -1]

 4

 -1
 5

Client [] :

 -1

 maxfd + 1 = 6

 0 0 0 1
 fd 0 fd 1 fd 2 fd 3

 rset: 1
 fd 4

 1
 fd 5

 maxfd + 1 = 6

 0 0 0 1
 fd 0 fd 1 fd 2 fd 3

 rset: 0
 fd 4

 1
 fd 5

In summary, as clients arrive, we record their connected socket descriptor in the first
available entry in the client array (i.e. the first entry with value –1). We also add the
connected socket to the read descriptor set. The variable maxfd (plus 1) is the current
value of the first argument to select. The only limit on the number of clients that this
server can handle is the minimum of the 2 values FD_SETSIZE and the maximum
number if descriptors allowed for this process by the kernel.

