
Fast Best-Match Shape Searching in Rotation Invariant Metric Spaces

Dragomir Yankov, Eamonn Keogh, Li Wei, Xiaopeng Xi
University of California, Riverside CA 92507, USA

{dyankov, eamonn, wli, xxi}@cs.ucr.edu

Wendy Hodges
University of Texas of the Permian Basin, Texas 79762, USA

hodges w@utpb.edu

Abstract

Object recognition and content-based image retrieval sys-

tems rely heavily on the accurate and efficient identification

of shapes. A fundamental requirement in the shape anal-

ysis process is that shape similarities should be computed

invariantly to basic geometric transformations, e.g. scaling,

shifting, and most importantly, rotations. And while scale

and shift invariance are easily achievable through a suitable

shape representation, rotation invariance is much harder to

deal with.

In this work we explore the metric properties of the ro-

tation invariant distance measures and propose an algorithm

for fast similarity search in the shape space. The algorithm

can be utilized in a number of important data mining tasks

such as shape clustering and classification, or for discovering

of motifs and discords in image collections. The technique

is demonstrated to introduce a dramatic speed-up over the

current approaches, and is guaranteed to introduce no false

dismissals.

1 Introduction

Object recognition and content-based image retrieval
systems are highly dependent on the accurate and
efficient identification of shapes. A few areas, among
others, where shape analysis is of significant importance
are anthropology, biology, medicine etc. For example,
shapes are considered by anthropologists in building
evolutionary theories or by archaeologists for dating
artifacts [6]. Using images from underwater cameras,
biologists study the silhouette of fish to determine
seasonal migrations, as well as the health of the species,
which is indicative for the quality of the water they
inhabit [10]. In medicine, many diseases are identified
by the pathological shape of certain cells observed from
microscope images.

Despite of its importance, however, shape identifica-
tion is often discarded as computationally inefficient. In
this work, looking for a more optimal recognition pro-

cess, we develop an effective and efficient best-match
searching algorithm for two-dimensional shapes. The
actual matching process involves two distinct, yet mu-
tually dependant steps. Firstly, a suitable representa-
tion is selected by mapping the shapes to elements of a
certain space (see Figure 1). And secondly, a suitable
distance measure is defined over the elements of that
space. Here, what is meant by suitable, is usually a
combination that is invariant to scale, shift or rotation
transformations and is also robust in the presence of
noise. Unlike scale and shift invariance, which are eas-
ily achievable on the representation level, the rotational
invariance is much harder to deal with [5]. In general,
more accurate representations, i.e. representations that
require a lot of features, result in low efficiency when
all possible rotations need to be considered. Selecting
a less accurate representation, on the other hand, leads
to a relatively poor discrimination ability across mul-
tiple domains [7]. Therefore, most existing approaches
look for a tradeoff between the accuracy of the selected
representation and the computational complexity of the
rotationally invariant searching.

Figure 1: Shapes can be converted to “time series”. The
distance from every point on the profile to the center is
measured and treated as the Y-axis of the time series

Here, we show that one can use some of the more
accurate representations, e.g. obtain a feature vector
(time series) from all shape boundary points as in
Figure 1, and still construct a highly efficient matching
algorithm. A key point in the proposed technique is
that provided certain (reasonable) conditions are met,
a rotation invariant distance between the feature vectors
defines a metric over the feature space. This observation
suggests that a simple, yet highly efficient pruning
criterion is applicable. Namely, the triangle inequality.

2 Rotation Invariant Matching

We begin by formally defining the rotation invariant
matching problem. Let Ω = {Ci} be the space of
all time series of length n (i.e. Ci = (c1, c2, . . . , cn)),
extracted from shapes with an arbitrary method1. The
shape matching problem searches for the most similar
element to a given query Q ∈ Ω within a subset Ω̂ ⊂ Ω
of m time series (i.e. Ω̂ = {C1, C2, . . . , Cm}). As we
are interested in large data collections, usually we have
m � n.

The similarity between Q and an arbitrary time
series Ci ∈ Ω̂ is measured in terms of a preselected
distance function d(Q,Ci) (e.g. the Euclidean distance),
defined over the entire space Ω. If the time series
are aligned correctly, then the distance function, if
suitable in general, will usually provide a good measure
of similarity. However, if the shapes are not rotation
aligned, then the corresponding time series will be
misaligned too and the distance measure might produce
extremely poor results. To overcome this problem we
need to hold one shape fixed, rotate the other, and
record the minimum distance to all possible rotations.

In terms of the selected representation, every con-
tinuous rotation of a shape can be approximated by a
circular shift of its vector Ci, where a circular shift is
defined as Cj

i = (cj , cj+1, . . . , c1, c2, . . .). We further
denote with Ci the n by n rotation matrix which has
as rows all possible circular shifts of Ci. The rotation
invariant distance (rd) can now be defined as:

rd(Ci, Q) = min
1≤j≤n

d(Cj
i , Q)(2.1)

The time complexity for computing the most similar
shape to the query using the above rotational distance
is O(mnk), where O(k) is the complexity of computing
the distance function d. For example, if d is any of the
Lp-norms, the complexity of the nearest neighbor search
using rd as distance measure becomes O(mn2). When
online processing of large number of queries is required

1The presented approach uses, but is not limited to, a centroid

based-contour representation [2] (see Figure 1). Other time series
representations are discussed for example in [4] and [9].

or when the data set is very large, this running time is
simply untenable.

3 Best-Match Shape Searching

As pointed out, searching for the most similar shape
to a given query in the data set Ω̂ can easily become
intractable as its size increases. Here we demonstrate
a simple property of the rotation invariant distance
that allows one to perform highly efficient best-match
searches, regardless of the size of the data set. Namely,
that the rotation invariant distance rd(Ci, Q) defines a
pseudo-metric over the space Ω.

3.1 Metric Properties Of The Rotation Dis-
tance The distance function d(Ci, Cj) is said to be
a metric over the space Ω, if for arbitrary elements
Ci, Cj , Ck ∈ Ω it satisfies the following three proper-
ties:

- Positivity : d(Ci, Cj) ≥ 0, with equality iff Ci = Cj

- Symmetry : d(Ci, Cj) = d(Cj , Ci)

- Triangle inequality : d(Ci, Cj)+d(Ck, Cj)≥d(Ci, Ck)

When only the second and the third of the above prop-
erties are satisfied, d(Ci, Cj) is said to define a pseudo-
metric. Showing that a distance function satisfies the
triangle inequality is of particular importance when
working with large data sets, as it can significantly de-
crease the searching time by excluding from considera-
tion many of the data set elements. A number of tech-
niques that utilize the triangle inequality have been pro-
posed over the years, e.g. [1, 3], as well as some popular
indexing structures as the Vantage Point trees [11]. Here
we show that, provided the inner distance satisfies the
triangle inequality, the rotation distance satisfies it too.

Proposition 3.1. If the inner distance d(Ci, Cj) is a
pseudo-metric over the space of the shape time series
Ω, then the rotation invariant distance rd(Ci, Cj) also
defines a pseudo-metric over Ω.

Proof. Without loss of generality, assume that Cr0
i is

the rotation of Ci that has a minimal inner distance
to Cj , i.e. rd(Ci, Cj) = d(Cr0

i , Cj). Similarly, let
rd(Ck, Cj) = d(Cr1

k , Cj) and rd(Ci, Ck) = d(Cr2
i , Ck).

Symmetry : We first note that the alignment (Cr0
i , Cj),

where the first time series is rotated, corresponds to
an alignment (Ci, C

x
j), where the second time series is

rotated. And as d is symmetric we have rd(Ci, Cj) =
d(Cr0

i , Cj) = d(Ci, C
x
j) = d(Cx

j , Ci). This, together
with definition 2.1, implies rd(Cj , Ci) ≤ d(Cx

j , Ci) =
rd(Ci, Cj). Analogously, we can show that rd(Ci, Cj) ≤
rd(Cj , Ci). Hence, rd(Ci, Cj) = rd(Cj , Ci).

Triangle inequality : The following holds:

rd(Ci, Cj) + rd(Ck, Cj) = d(Cr0
i , Cj) + d(Cr1

k , Cj)
≥ d(Cr0

i , Cr1
k) ≥ d(Cr2

i , Ck) = rd(Ci, Ck)

The first inequality above is true as d satisfies the
triangle inequality, and the second one follows from
the fact that d(Cr2

i , Ck) is the distance between the
optimal alignment of Ci and Ck, while (Cr0

i , Cr1
k) also

corresponds to an alignment between the same time
series.

3.2 Efficient Best-Match Searching This section
introduces a scheme for fast rotation invariant best-
match searching in the subspace Ω̂. The speed-up in the
scheme results from several levels of pruning different
distance computations:

1. Pruning of rotation distance computations. The
previously derived property allows us to avoid
computing a large percentage of the rd distances
between the query Q and the elements of the data
set Ω̂.

2. Pruning of inner distance computations. As the in-
ner distance d also satisfies the triangle inequality,
for every time series Ci that was not pruned on the
previous level, only part of the inner distances be-
tween Q and the rotated versions of Ci need to be
computed.

3. Pruning of primitive distance operations. Using
a simple technique, called early abandon (to be
described later), one can further speed up the inner
distance computations that were not pruned in the
previous step, by skipping some of the primitive
pairwise computations between the scalar elements
of the compared time series.

All three levels contribute to the speed-up of the nearest
neighbor searches in the rotation invariant space, but it
is the pruning of rotation distance computations that
becomes of particular importance especially as the data
set size grows very large. It is important to note that, as
a pruning criterion is applied only when the distance to
an element is guaranteed to be larger than some already
found distance, the algorithm is guaranteed to make no
false dismissals.

3.2.1 Best-Match Searching Algorithm The
proposed scheme is an adaptation of Burkhard-Keller’s
fast file searching algorithm described in [1]. Here we
assume that all rotation distances from the elements of
Ω̂ to a preselected center point Cr (see Section 3.2.2)
are computed and stored in a sorted list RL. We

Algorithm 1 Rotation invariant best-match search
Preprocessing:
1: Cr ∈ Ω̂ - preselected center

2: RL = {rd(Cr, Ci)} - sorted list, i ∈ [1..m]

3: DLi = {d(C1
i , Cj

i)} - sorted lists, i ∈ [1..m], j ∈ [1..n]

Search:
4: ∀Q: [bm Q, Min Dist] = RI Search(Ω̂, Cr, RL, rd)

procedure [bm, ξ]=RI Search(Cnd, C, L, df)
in: Cnd: candidates; C: center; L: list of distances;

df : distance function

out: bm: best-match; ξ: minimal distance

5: ξ = df(C,Q)
6: bm = C
7: Cnd = Cnd \ C
8: while Cnd 6= ∅ do
9: using the sorted L, select Ci ∈ Cnd such that:

|df(Ci, C)−df(Q,C)| ≤ |df(Cj , C)−df(Q,C)|,
∀Cj ∈ Cnd, i 6= j

10: if df = rd then
11: [bmfake, ξtmp] = RI Search(Ci, C

1
i , DLi, d)

12: else
13: ξtmp = EarlyAbandon(Ci, Q, ξ)
14: end if
15: if ξtmp < ξ then
16: ξ = ξtmp

bm = Ci

17: end if
18: ∀Cl ∈ Cnd ∧ |df(Cl, C)− df(Q,C)| > ξ:

Cnd = Cnd \ Cl

19: end while

also precompute the self-distances between Ci and its
rotations and store them in a sorted n-dimensional
vector DLi, i.e. DLi = {d(C1

i , Cj
i)}, ∀j ∈ [1..n] (Note

that we do not store the n by n Ci matrices, but just
the distance vectors). Maintaining all m self-distance
vectors is necessary for the second level inner distances
pruning and increases twice the memory requirement
for the proposed scheme compared to the simple brute
force search. This linear increase in space complexity
is a reasonable and acceptable overhead, as it refers
to the compact 1D time series representation rather
than the 2D original images. The pseudo-code with a
detailed explanation of the rotation invariant searching
is presented as Algorithm 1. For clarity of presentation
the described algorithm returns only the best-match to
a given query and the optimal distance. An extension
finding the k most similar time series to the query is
straightforward.

For every incoming query the search routine
RI Search is invoked with: a best-match candidates

list Cnd initialized as the whole data set Ω̂; the list RL
of the precomputed rotation distances from all data set
elements to the center point; and the type of distance
function set to rd. The distance function is also used to
differentiate between the first and second levels of prun-
ing. RI Search sets the initial best-match element bm
to the center point and the current minimal distance ξ
to the distance between the query and the center. The
iterative search of the candidates list then proceeds in
three steps.

While the list is not empty, a new candidate
is selected (line 9), using the heuristic suggested by
Burkhard and Keller (described below). If the distance
to the new candidate is smaller than the current min-
imal distance, then the best-match so far is updated
to the new candidate (line 16). Finally, the trian-
gle inequality is applied (line 18) to prune all candi-
dates that are guaranteed to be further from the query
than ξ. More precisely, as df = rd or d which both
satisfy the triangle inequality, the following two in-
equalities hold: df(Q,Cl) + df(Q,C) ≥ df(Cl, C) and
df(Q,Cl) + df(Cl, C) ≥ df(Q,C), or in a more compact
form df(Q,Cl) ≥ |df(Cl, C) − df(Q,C)|. Therefore, if
the difference of the already computed df(Cl, C) and
df(Q, C) is larger than the currently minimal distance
ξ, then the distance from the query to the candidate Cl

is guaranteed to be also larger than ξ, and there is no
need to explicitly compute it.

For the first step, the candidate selection, Burkhard
and Keller suggest choosing an element Ci still in the
candidates list, for which the difference |df(Ci, C) −
df(Q,C)| is minimal (line 9). Note that this difference
is a lower bound for the distance df(Q,Ci), thus it is
likely that by choosing the element with the minimal
difference we are also choosing an element that is closer
to the final solution. In the experimental evaluation we
found out that the heuristic is essential for the pruning
capability of the algorithm and its faster convergence to
the solution. As the distance list L is sorted, the first
candidate can be selected in logarithmic time. Suppose
the binary search for a candidate shows that df(Ci, C) <
df(Q,C) < df(Ci+1, C), where i corresponds to the
position of df(Ci, C) in the sorted list L. This means
that the heuristic will return as candidate either Ci or
Ci+1. On subsequent iterations, one does not need to
perform the binary search again but rather select the
candidate that is still in the candidates list and whose
distance to the center is closest to df(Q,C) in either
direction left or right.

When the algorithm is invoked with the rotation
distance rd as distance function, i.e. we are on the
first pruning level, the selected candidate Ci needs to be
rotated n times and the inner distances d(Cj

i , Q), j ∈

[1..n] need to be computed. We can do this again
by applying the RI Search procedure (line 11, second
pruning level), this time with a center C1

i , sorted list
of distances to the center DLi, and the inner distance
d as a distance function. The list of candidates is now
composed of every rotation of Ci, which is simply the
rotation matrix Ci.

When a candidate Cj
i for an inner distance compu-

tation is identified, the actual inner distance d(Q,Cj
i)

can be optimized further by computing it with an early
abandon technique (line 13, third pruning level). The
EarlyAbandon procedure is a simple, yet extremely ef-
ficient technique for speeding up the computations of
a distance function (see Section 4). It can be applied
for an arbitrary Lp-norm and uses the minimal so far
distance ξ. Rather than computing the entire sum
Lp(C,Q) =

∑n
i=1(|ci − qi|p)1/p, EarlyAbandon exists

the computation if at some point it exceeds ξ, and hence
cannot improve on the currently best match.

3.2.2 Center Selection The performance of the al-
gorithm, is highly dependent on the pruning capability
of the selected center Cr. In the original Burkhard-
Keller algorithm, the selection is made at random.
There are two factors that determine how good Cr is,
namely, its position in the subspace Ω̂ with respect to
the other data set points, and its position with respect
to the queries. A suitable center point will have a small
difference |rd(Cj , Cr)−rd(Q,Cr)| for just a few data set
points Cj . Shapiro [8] argues that good centers can be
points, which are further from the center of any cluster
that might be present in the data set. This is so, be-
cause points close to the cluster centers will be in close
proximity to many other points, and for most of those
neighbors the above difference will be small.

In our implementation, rather than randomly se-
lecting the center, we use subsampling. For the purpose,
the preprocessing step (line 1, Algorithm 1) is modified
as follows. A small training and validation subsets, are
randomly selected from Ω̂. The center Cr is set to the
point from the training subset that has the best prun-
ing capability for the queries from the validation set.
The subsampling implicitly takes into consideration the
specific data distribution, which leads to better prun-
ing ability and smaller variance as compared to random
center selection.

The above preprocessing is performed only for the
first pruning level. For the second pruning level we al-
ways use as centers the original series, i.e. C1

i . Still,
as seen from the evaluation in Section 4, the vari-
ance in the performance is very small, which suggests
that any rotation Cj

i is an equally suitable center. An
intuition of the phenomenon is provided by the ob-

servation that for Lp-norms the following equality is
true: d(Cj1

i , C
(j1+k)mod(n)
i) = d(Cj2

i , C
(j2+k)mod(n)
i),

j1, j2, k ∈ [1..n]. The fact implies that every rotation
Cj

i is distributed in the same way among the rest of the
rotations of Ci.

4 Experimental Evaluation

The performance of the RI Search algorithm is evalu-
ated, utilizing the Euclidean distance as inner metric.
The speed-up introduced by the presented approach is
discussed for two publicly available shape data sets, each
exhibiting different properties as density of the avail-
able clusters and separability between them. To illus-
trate the contribution of the individual pruning levels, a
break-up of the improvement into components has also
been provided. All experiments represent averages over
50 randomly drawn queries, that are subsequently re-
moved from the data sets.

ARROWHEADS Data Set. The data set represents
a large collection of arrowheads with various shapes and
sizes. Figure 2 depicts some representative classes from
the data.

Figure 2: Arrowheads data set. Representative examples.

We have further augmented the data set with new
images by scaling, deforming and rotating some of the
original shapes. The overall size of the resulting data
set is 15000 samples. After extracting the time series
from the shapes, we resample them to n = 250 time
points, which for this data set seems to preserve the
accurate representation. Prior to storing, all resampled
time series have further been normalized to have a mean
zero and standard deviation one.

The percentage improvement of our approach over
the BruteForce search in terms of performed primitive
distance computations is illustrated on Figure 3, left.
The performance of simply applying the EarlyAbandon
technique is also included for comparison.

There are several important aspects to observe in
the result. Increasing the space density, i.e. introduc-
ing more samples in the data set, increases the pruning
power of the algorithm. The effect is expected as with
more elements the chance of finding a sample that is
very close to the query is higher. Such samples mini-

Figure 3: Arrowheads. Improvement over BruteForce
search. Left : Expected percentage of primitive operations
to be performed. Right : Expected running time.

mize significantly the cut-off threshold ξ, and a lot of
the remaining elements start failing the triangle inequal-
ity test. For the largest data set the RI Search algo-
rithm performs twenty times less operations than simply
applying EarlyAbandon (0.19% vs 3.88% operations).
For all data set sizes of 500 elements and above the
RI Search algorithm performs less than 1% of the op-
erations performed by the exhaustive BruteForce search
algorithm.

The time improvement does not correlate exactly
to the operations improvement because of the overhead
for searching the sorted candidates and distances lists.
Overall, the proposed algorithm is from four (m = 32)
to more than fifty (m = 15000) times faster than the
BruteForce search (see Figure 3 right).

It is important to understand how much each prun-
ing component contributes for the final operations im-
provement introduced by the algorithm. Fewer compu-
tations of the rotation distance imply accessing fewer
shapes, which is essential especially when indexing is
applied. And fewer inner distances to be considered sug-
gest less memory accesses to different elements. Table 1
gives a break-up for RI Search into levels of pruning.

Table 1: Percentage of performed operations. Row1 : Per-
centage of computed rotation distances. Row2 : Percentage
of computed distances out of all possible inner distances af-
ter level one was performed. Row3 : Percentage of primitive
operations out of all possible remaining operations after level
two was performed

Pruning Mean(Deviation) of Performed Operations(%)

Level m = 250 m = 1000 m = 15000

1-st 52.1(12.3) 34.1(10.0) 22.7(5.81)
2-nd 19.9(0.85) 15.5(0.79) 9.81(0.31)
3-rd 16.0(0.91) 11.4(0.38) 8.61(0.30)

The table illustrates how powerful the triangle in-
equality is, especially for larger data sets. For exam-

ple, when m = 15000 the algorithm avoids examining
almost 80% of the shapes. The second and the third
pruning levels are presented with respect to the possi-
ble operations after the previous pruning level has been
performed.

Finally, the standard deviation in the performed
operations for each pruning level is also presented in
the table. The small variance in the second pruning
level suggests that all rotated versions of a time series
Ci are equivalent in a certain sense, as the rest of the
rotated series are similarly distributed around them.
Therefore, as discussed in Section 3.2.2, any rotation
Cj

i can be considered an equally suitable choice for an
inner distance center.

SQUID Data Set. The data set contains 1100
images of marine creatures. Figure 4 demonstrates
several samples from the database.

Figure 4: SQUID data set. Representative examples.

The shapes are preprocessed as described for the
Arrowheads data set. For this data set we use the
original shapes without any further transformations.
All extracted time series are resampled to n = 1000
time points. The higher dimensionality suggests a
more sparsely populated space, which is the reason
for the worse expected improvement compared to the
Arrowheads data set (see Figure 5)

Figure 5: SQUID. Improvement over BruteForce search.
Left : Expected percentage of primitive operations to be
performed. Right : Expected running time.

Similarly to the Arrowheads data set, increasing
the number of time series leads to a linear increase in
the pruning capability of the RI Search algorithm. In
terms of running time, for m = 1000 the algorithm is
more than sixteen times faster than BruteForce and

more than six times faster than EarlyAbandon(see
Figure 5, right).

5 Conclusions

In this work we demonstrated that, under certain
conditions, rotation invariant distance measures define
a metric over the shape space, which implies that
searching in this space could be highly optimized. An
algorithm was presented that exploits this observation
and speeds up the best-match shape searching, by
avoiding a large number of distance computations.

We have currently adopted the algorithm in a
hierarchical and a manifold shape clustering approaches,
as well as in subsequent out-of-sample classification
extensions. The efficiency of the best-match searching
algorithm allowed us to scale these tasks to much larger
data collection.

References
[1] W. Burkhard and R. Keller. Some approaches to best-

match file searching. Commun. ACM, 16(4):230–236,
1973.

[2] C. Chang, S. Hwang, and D. Buehrer. A shape recogni-
tion scheme based on relative distances of feature points
from the centroid. Pattern Recognition, 24(11):1053–
1063, 1991.

[3] K. Fukunaga and P. Narendra. A branch-and-bound
algorithm for computing k-nearest neighbors. IEEE
Trans. Comp., 24(7):750–753, 1975.

[4] B. Kartikeyan and A. Sarkar. Shape description by
time series. IEEE Trans. Pattern Anal. Mach. Intell.,
11(9):977–984, 1989.

[5] D. Li and S. Simske. Shape retrieval based on distance
ratio distribution. HP Tech Report. HPL-2002-251,
2002.

[6] M. O’Brien and R. Lyman. Resolving phylogeny: Evo-
lutionary archaeology’s fundamental issue. Essential
Tensions in Archaeological Method and Theory, pages
115–125, 2003.

[7] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin.
Shape distributions. ACM Transactions on Graphics,
21(4):807–832, 2002.

[8] M. Shapiro. The choice of reference points in best-
match file searching. Commun. ACM, 20(5):339–343,
1977.

[9] S. Tabbone, L. Wendling, and J.-P. Salmon. A new
shape descriptor defined on the Radon transform. Com-
put. Vis. Image Underst., 102(1):42–51, 2006.

[10] K. Ueno, X. Xi, E. Keogh, and D. Lee. Anytime
classification using the nearest neighbor algorithm with
applications to stream mining. IEEE International
Conference on Data Mining (ICDM), 2006.

[11] P. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric spaces. In 4th
annual ACM-SIAM Symposium on Discrete algorithms
(SODA), pages 311–321, 1993.

