
Adaptive Resource Management in Peer-to-Peer Middleware

Thomas Repantis, Yannis Drougas, Vana Kalogeraki∗

Department of Computer Science & Engineering
University of California, Riverside

Riverside, CA 92521
{trep, drougas, vana}@cs.ucr.edu

Abstract

Supporting distributed real-time applications in large-
scale and heterogeneous distributed environments has at-
tracted much attention recently. However, the decentral-
ized and dynamic characteristics of the systems present a
number of challenges in managing the processor and net-
working resources and scheduling the application execu-
tion across multiple peers. In this paper, we address these
problems with a novel resource management architecture
for scheduling soft real-time applications in overlay net-
works. Key to our approach is that nodes maintain a partial
view of resource availability of their peers in local profiles,
keep track of the urgency of the requests and balance appli-
cation execution across multiple nodes. Our techniques are
entirely decentralized and use only local knowledge consid-
ering unpredictable latencies and changing resource avail-
ability.

1. Introduction

Distributed applications (such as multimedia, telecom-
munications, business enterprises and tele-medicine) are in-
creasingly being deployed in large-scale and heterogeneous
environments. These applications demand multiple end-to-
end quality of service (QoS) guarantees, such as predictable
latency and jitter, reliability, and scalability. Hosting these
applications on wide-area environments with unpredictable
latencies and changing resource availability, requires sys-
tems that are easy to manage and able to adapt to dynamic
changes in the utilization or availability of the resources.

Distributed object middleware has received a lot of at-
tention in the past for providing a common programming
abstraction that enables applications to interoperate inde-
pendently of their programming languages, computing plat-
forms and networking protocols. Middleware has evolved

∗ This research has been supported by NSF Award 0330481.

in the last few years to provide a mature, extensive and
portable infrastructure, standard protocols and key funda-
mental services.

Although current middleware provide necessary mecha-
nisms to meet the end-to-end QoS requirements of the ap-
plications, they are not sufficient by themselves to manage
large-scale distributed real-time systems [23]. This limita-
tion is due to (a) inadequacy of a central manager to obtain
an accurate global view of the applications and the current
resource usage in the system, (b) the distributed nature of
the applications that execute across multiple processors, (c)
unpredictability in the arrival times of the application exe-
cution, (d) sharing of heterogeneous computer resources by
many applications, and (e) multiple QoS requirements that
need to be satisfied simultaneously and traded-off.

In our view, the new emerging Peer-to-Peer (P2P) model
[14] has inherent advantages including scalability, decen-
tralization and ease of use. The P2P paradigm offers the
opportunity to harness the computational power available
at the edges of the Internet for providing and using dis-
tributed services, in a large scale and in a decentralized fash-
ion. The P2P model represents the natural evolution of the
client-server model that was primarily used in small-scale
distributed environments, to accommodate large numbers
of applications and users. The most distinct characteristic
of the P2P model is that there is symmetric communication
between the peers; each peer has both a client and a server
role. P2P systems achieve scalability by enabling direct and
real-time communication among a large number of applica-
tions and resources located in geographically distributed ar-
eas. They provide decentralization by enabling the making
of local decisions, without the need for a global manager.
These characteristics however make them extremely diffi-
cult to manage, and therefore it is difficult to provide QoS
guarantees to the applications.

An example of a distributed application is media stream-
ing and transcoding. This application requires the transfer
of multimedia data from the sources to the receiver. The
audio and video streams may need to be customized such

as transcoded to different formats or presentations (e.g.,
lower resolution) to bring the data to different devices or
to meet the particular QoS requirements of the individual
users. Transcoding allows for adaptation to specific spatial
and chroma resolution requirements of the receiver, such as
those that may be imposed by energy-constrained mobile
devices. These pose end-to-end soft real-time and QoS re-
quirements on data transmission, including fast and reliable
transfer, and substantial throughput. To support the QoS de-
mands of the distributed applications, we need a resource
management system that is adaptive, flexible and scalable.

In this paper we propose an adaptive resource manage-
ment system for large-scale distributed real-time systems.
We propose two mechanisms to meet the end-to-end soft
real-time and QoS requirements of the distributed appli-
cations. These mechanisms are decentralized, adaptive and
use only local information. First, we propose service graphs
that allow the making of local decisions by capturing ap-
plication behavior, object dependencies, communication la-
tencies and resource overheads, therefore significantly im-
proving scalability. Second, we propose dynamic and adap-
tive load balancing algorithms that exploit underutilized re-
sources and examine the execution times and resource re-
quirements of the applications to meet their end-to-end soft
real-time and QoS requirements, and therefore significantly
improving their performance.

The fundamental difficulty in large-scale distributed
real-time systems comes from the decentralized na-
ture of the systems, where no peer can have a global view
of the system making it difficult to schedule and load bal-
ance distributed applications. Furthermore, the dynamic
character of the system, where nodes may connect, dis-
connect or fail unexpectedly imposes challenges in pro-
viding real-time guarantees. The problem is complicated
further by the heterogeneity of the peers, in terms of pro-
cessing power, network connectivity, and available soft-
ware. In such an environment, a static application alloca-
tion –no matter how clever it might be– will not suffice.
More specifically, this paper makes the following contribu-
tions:

• We propose a decentralized resource management ar-
chitecture for a large-scale real-time distributed sys-
tem. The system builds application service graphs and
a resource graph to meet application QoS require-
ments.

• We propose a load balancing algorithm based on the
notion of fairness. The algorithm ensures that the
load among the peers is fairly balanced. Our pro-
posed schemes scale well with respect to the num-
ber of peers and work effectively in a heterogeneous
and dynamic environment.

2. System Architecture

We model a large-scale distributed system as an overlay
network of peers grouped into domains according to their
topological proximity, and Resource Managers are selected
among regular peers to act as leaders of the domain. Hence,
a domain is structured as a single Resource Manager for
the domain and Connection Managers, Profilers and Sched-
ulers for each of the processors in the domain. Each Re-
source Manager is connected to all the processors of its do-
main directly. The Resource Manager has a global view of
the domain in terms of the applications in the domain and
the utilization of the system resources. The responsibility
of the Resource Manager is to distribute the application ob-
jects on the processors to meet the application QoS require-
ments. The Resource Manager is also responsible for col-
lecting load information of all the peers of the domain, used
to allocate objects to the less loaded peers in the domain.

The Connection Manager is responsible for managing
the peer connections; that is, establishing or destroying con-
nections of the processor to other peers. The number of con-
nections is typically limited by the resources at the peer. The
Profiler on the processor is responsible for measuring the
current processor and network load of the peer and monitor-
ing the computation and communication times of the appli-
cations as they execute. The Profiler measurements will be
propagated to the Resource Manager of the domain to con-
struct the application service graphs and the resource graph
of the domain. The Local Scheduler of every peer deter-
mines the execution sequence of the applications at the peer
based on the scheduling algorithm implemented in the sys-
tem. Our scheduling algorithm is based on the Least Laxity
Scheduling (LLS) algorithm [4] that exploits the deadlines
of the applications and the actual computation and execu-
tion times on the processors to determine an efficient sched-
ule for the applications in the system. This allows us to cap-
ture timing delays as the applications execute across multi-
ple processors and adjust their execution order.

3. Information Base

Our system maintains current information at three differ-
ent levels. On a domain-level, Resource Managers maintain
current resource utilization about all the nodes in their do-
main and end-to-end application information, collected at
run-time. On a system-level, Resource Managers maintain
summarized information about the other domains, updated
lazily using a gossiping protocol. On a peer-level, nodes
maintain local resource loads and local application execu-
tion and communication times.

3.1. Resource Manager Data Structures

Every Resource Manager maintains the following infor-
mation for its domain:

1. A unique identifier RM for the Resource Manager of
the domain.

2. The identifiers of the processors Pi in the domain; each
processor is characterized by a unique ID (such as the
pair < IPi, porti > or a randomly generated number).

3. The current processor load li for all processors i, ex-
pressed as the product of processing power with cur-
rent utilization.

4. The currently used network bandwidth bwi for all pro-
cessors i.

5. The application objects Oij located on processor i. For
example, for a transcoding application, these would be
media objects and their characteristics are also stored
as meta-data (hash value, bitrate, resolution, codec).

6. The services Sij each processor can offer. For exam-
ple, for a transcoding application, these would be the
transcoding services available in each processor.

7. The application service graphs that represents the ap-
plications currently executing and the resource graph
that shows the domain’s resources and their usage.

In addition, each Resource Manager maintains summa-
rized information for other domains, propagated to it by its
Resource Manager peers. More specifically, it stores:

1. A list of other domains Dk in the system, along with
the identifiers of the corresponding Resource Man-
agers RMk.

2. A summary of the available application objects
SumOk and the available services SumSk in
each domain. The summaries can be obtained us-
ing Bloom Filters [19].

3.2. Peer Data Structures

The Profiler on each processor i maintains the following
information:

1. The data objects Oi allocated locally, e.g. the media
files it has stored.

2. The services Si it can offer, e.g. the transcoders avail-
able in this processor.

3. The current processor load li.

4. The currently used network bandwidth bwi.

5. The current dependencies between this processor and
other peers, meaning which peers are currently receiv-
ing services by this peer or offering services to this
peer.

3.3. Application Service Graph

A distributed application consists of a number of appli-
cation tasks. We model an application task as a sequence of
invocations of objects and services distributed across multi-
ple processors. The execution of the application is triggered
by users and multiple tasks invoked by different users can
be executed concurrently in the system.

We use an application service graph Gs to represent the
objects and services invoked by the application tasks, and
the corresponding resource requirements, as shown in Fig-
ure 1(B). In general, a distributed application might require
a sequence of service invocations across multiple peers be-
fore the result can be delivered to the peer receiving the ser-
vice. The vertices of the service graph represent objects or
services of the system, while the edges represent connec-
tions between the peers, which have been established for
receiving the services.

The Resource Manager keeps the following information
for each application task t:

• Deadlinet: the time interval, starting at task initiation
within which the task should complete, specified by
the end user.

• Importancet: a metric that represents the relative im-
portance of the application, specified by the end user.

• Execution timet: the estimated amount of time from
initiation to completion of application task t. The exe-
cution time is computed as the sum of the processing
times of the objects and services on the processors and
their communication times as they are invoked by the
tasks. Note that the execution time of a distributed ap-
plication also depends on the number of applications
in the system and the load on the resources. Our goal
is to maximize the number of applications that meet
their deadlines.

3.4. Resource Graph

The Resource Manager also maintains a resource graph
Gr for its domain D, as shown in Figure 1(A). Gr is a di-
rected graph. Each vertex v of Gr represents an application
state, while each edge e represents a service, accompanied
by its current load.

The aim of the resource graph Gr is to identify the ser-
vices available at the peers and assign those services to the
requesting applications. The resulting assignment should
meet the application deadline and fulfill its resource require-
ments. Let Ein be the set of Gr’s edges ending to v and Eout

be the set of Gr’s edges beginning from v. The application
has the option to follow any of the edges e ∈ Eout begin-
ning from v, leading to the invocation of a different service.

To decide which service to invoke, enough CPU and band-
width must be available for the execution of the service.
Thus, given an initial state xinit, we can determine the dif-
ferent allocation states we can end up to, by traversing Gr.
Using the resource graph allows us to formulate the prob-
lem as a search problem and directly apply well-studied al-
gorithms [22] in order to solve our problem.

4. System Operation

4.1. Overlay Construction

The peers are divided in geographical domains. The only
parameter determining the domain size is the maximum
number of processing peers a Resource Manager can man-
age, depending on its own capabilities. As described in this
section, once a Resource Manager reaches the maximum
number of peers it can manage, a new domain is created.
Thus, the network is unstructured and self-organizing.

A peer must demonstrate that it has sufficient resources
and stability before it can qualify for becoming a Resource
Manager for its domain. If a peer meets the qualifications,
it may become a Resource Manager, depending on the net-
work topology and the needs in the domain it belongs to.
The requirements for becoming a Resource Manager are:
i) Sufficient bandwidth, ii) Sufficient processing power, iii)
Sufficient uptime. According to how affluent a peer is in
those resources, it is assigned a score, that determines its
position in the list of peers in the domain that are eligible
for becoming Resource Managers. The first peer in the list
serves as backup Resource Manager, keeping an up-to-date
copy of all the information the Resource Manager stores.
This is achieved by receiving periodic updates from the pri-
mary Resource Manager.

The protocol used for connecting to the network is analo-
gous to the ultrapeer negotiation utilized in Gnutella 0.6 [8].
When a new peer joins the network, it connects to the Re-
source Manager of its geographical domain, or to a ran-
dom peer who redirects it to the Resource Manager. If the
Resource Manager has available bandwidth and processing
power, it accepts the processor in its domain, and adds it
to the list of potential Resource Managers, if it qualifies. If
the Resource Manager has reached the maximum number
of processors it can support, it accepts the newcomer as a
new Resource Manager if it qualifies, otherwise it redirects
it to a Resource Manager of another domain. Peers may dis-
connect from the system either intentionally or due to a fail-
ure. When a processor disconnects, the Resource Manager
of its domain will sense the withdrawn connection and up-
date the available data objects and services in the system to
include the change. The resource graph is also updated, by
removing the edges that were referring to the services of-
fered by the particular peer. If the service graph included

Figure 1. Example of a Resource Graph (A)
and of one Service Graph (B) produced by it.

the peer in question as one of its vertices, this means that an
application task has been interrupted. The Resource Man-
ager must then not only remove the vertex from the service
graph, but also find a peer to substitute it. This is done fol-
lowing the task allocation algorithm described later.

When a Resource Manager disconnects, the backup Re-
source Manager senses the withdrawn connection. It then
takes over as a Resource Manager, using its backup copy of
the Resource Manager information. It also selects the next
available processor from the list of processors that qualify
for becoming Resource Managers and uses it as a backup
Resource Manager, providing it with copies of the resource
management information.

4.2. Load Balancing Strategy

Each Resource Manager is responsible for composing
the application service graph Gs, so that the QoS require-
ments of the application will be met. In addition, the Re-
source Manager needs to make sure that the load among the
peers of its domain is fairly balanced. In order to evaluate
how fair a particular load distribution is, the Resource Man-
ager employs the Fairness Index metric [9].

The Fairness Index of the load distribution l̄ among the
peers of a domain D is defined as:

F(l̄PD
) =

(
∑

p∈PD
lp)

2

|PD | ·
∑

p∈PD
l2p

(1)

where PD is the set of peers in D and lp represents the load
of peer p. Essentially, the fairness index is an absolute in-
dex that can quantify the uniformity of the load distribu-
tion l̄PD

across PD . The Fairness Index value ranges be-
tween values 0 and 1. Given the above equation, one can
verify that the higher the value of the Fairness Index, the
more uniform (fair) the distribution is. A totally fair sys-

Processor

Query

(A) (C)

Processor

(B)

Processor

Processor

Processor Source

Processor

Processor

Receiver

Processor Processor

Processor

Processor

Processor

Processor

Manager
Resource

Manager Manager
Resource

Transcoder

Transcoder
Processor

Resource

Transcoder

Processor

Processor

�
�
�

�
�
�

���
���
���

�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

�
�
�

�
�
�

Figure 2. Example of application task assignment: (A) A peer submits a query to the Resource Man-
ager. (B) The Resource Manager assigns the task to peers. (C) Transcoded media streaming begins.

tem has a Fairness Index of 1, while a totally unfair system
has an index value of 0. A value of 0.1 indicates the sys-
tem to be fair to only 10% of the users and unfair to 90%
of the users. Thus, the Resource Manager can easily com-
pare the fairness of two different states of D by just com-
paring the Fairness Index of l̄PD

.

Other useful properties of the Fairness Index are that it
does not depend on the size, nor the scale of the load distri-
bution. For our system, this means that the Resource Man-
ager can have a clear picture of how fair the load distribu-
tion is across the peers. For example, when the fairness is
low, the Resource Manager could take some action, such as
use the same service from another peer.

An additional feature of the Fairness Index is that it does
not necessarily monotonically increase of decrease when
the load lp of a single peer p increases or decreases. As-
suming that the load on the rest of the peers in PD remains
the same, l̄PD

increases when the load approaches a spe-
cific value lbest (where l̄PD

is maximized) and decreased
when the load diverges from lbest. Intuitively, this tells us
that there is no fair (with high Fairness Index) load distribu-
tion where some of the peers are overloaded or underloaded
compared to the rest of the peers in D.

The Fairness Index is a continuous quantity, modified
when the loads of some of the peers change. No matter how
small a change of a load is, it is going to affect the Fair-
ness Index of the load distribution. For example, the fair-
ness of a distribution decreases when the load of a single el-
ement diverges from the value lbest that results in the maxi-
mum Fairness Index (assuming that the rest of the loads do
not change), while it increases in the opposite case.

The advantage of the Fairness Index metric is that it cap-
tures the load of a peer compared to the load of other peers
in the domain. If the load of all the peers in the domain is
high, this indicates an overloaded system where the addi-
tion of another application will increase the execution times
of the existing applications and may cause them to miss

their deadlines. In these cases, the Resource Manager will
forward the application request to other Resource Manager
peers.

Finding the optimal distribution of the load to the peers
is known to be NP-complete. However, recent work shows
that, in a centralized context (that is, when a peer knows all
the individual loads and the resource availability of all the
peers), a greedy algorithm can give good results [17].

4.3. Task Allocation Algorithm

An example of the operation of our system is shown in
Figure 2. The system provides on-demand application task
execution, where a user at a peer submits a query to the re-
source manager of its domain, for a task t, specifying its
name (idt) and QoS requirements (such as deadlinet). In
order for the application task to be completed several ob-
jects and services may need to be employed. For example,
in a transcoding application a peer might ask for a media
object by name, also specifying a set of acceptable bitrates,
resolutions and codecs. Several transcoding services might
need to be employed before the media can be delivered in
one of the requested formats.

The Resource Manager will then try to allocate resources
for t in such a way that these requirements are met and the
fairness of the load distribution is maximized. The system
will only try to allocate services for the new task, avoiding
to move services that accommodate already running tasks.

The Resource Manager uses the resource graph
to search for configurations in the domain that sat-
isfy the requested service. The Resource Manager uses the
Breadth-First-Search (BFS) algorithm to search for services
(edges) connecting the initial and final requested applica-
tion states (vertices), vinit and vsol. It prunes the possible
solutions using the requested QoS requirements q. It cal-
culates which paths satisfy the deadline by utilizing the
current load information. Among the allocations that sat-

algorithm ALLOCATIONALGORITHM

input: a task T , a requirement set q

output: a task execution sequence Seq, a load fairness f

Let vinit be the vertex of Gr representing the original state
Let vsol be the vertex of Gr representing the required output state
Let Seq, eseq be two empty task execution sequences
Set fmax ← 0

Let queue be a queue containing a single element vinit

Let queueseq be a queue containing a single
empty task execution sequence

while queue is not empty do
Set v equal to the first element of queue

Set eseq equal to the first execution task sequence of queueseq

if v has not been visited before and
execution task sequence eseq fulfills requirements in q then
if v = vsol then

Let f be the load fairness of the peer load distribution
after the task sequence eseq is assigned to the peers

if f > fmax then
Set Seq ← eseq

Set fmax ← f

end if
else for each edge e from v to another vertex v′ of Gr do

Add v′ to the end of queue

Add e to the end of eseq

Add eseq to the end of queueseq

end if
end if
Remove the first elements of queue and queueseq

end while
return {Seq, fmax}

end algorithm

Figure 3. The task allocation algorithm.

isfy the QoS requirements, the algorithm returns the one
that results to the maximum fairness of the load distribu-
tion among the peers. If no allocation that satisfies the given
QoS exists, the algorithm reports that. The complete algo-
rithm is shown in Figure 3.

After the Resource Manager has solved the search prob-
lem described, and determined the service graph for that
particular session, it initiates the actual task allocation.
In particular, graph composition messages are sent to the
nodes that will participate in the streaming graph, allow-
ing them to establish the appropriate connections. Then, the
distributed application can begin.

In Figure 1, an example resource graph and a service
graph for a transcoding application are shown. Let us as-
sume a source that is transmitting 800x600 MPEG-2 video,
at 512 Kbps and a user that wants to view that video in
640x480 MPEG-4, at 64Kbps. Our goal is to find a path
from v1 (which represents the format of the source) to v3.
In this example, we can follow any of the {e1, e2}, {e1, e3}

or {e1, e4, e5, e8}. Our load balancing algorithm will com-
pute which of these paths satisfy the QoS requirements of
the application and result in a fair resource allocation. As-
suming that the sequences of the edges {e1, e2} or {e1, e3}
meet the QoS requirements and result in a fairly loaded ex-
ecution, the Resource Manager will construct the service
graph of Figure 1(B). In the service graph Gs, vertices T1,
T2 and T3 are the transcoders that are represented by edges
e1, e2 and e3 in Gr respectively. Also, while Gr repre-
sents the number of available services and current resource
usage in the system, every produced Gs refers only to a par-
ticular application task execution.

4.4. Resource Utilization Feedback

The Resource Manager of every domain in addition to
maintaining lists of the available objects and services in its
domain, also collects resource utilization feedback from the
processors. For other domains, just summaries of the avail-
able objects and services are kept.

Intra-Domain Propagation. The Profiler of every peer in
a domain monitors current processor and network load, as
well as computation and communication times of the exe-
cuting applications. This information is periodically propa-
gated to the Resource Manager of the domain. Care must be
taken when selecting the period for the load updates propa-
gation. Too frequent updates would cause high network traf-
fic and processing load, while too infrequent updates may
not capture the application requirements adequately. The
application QoS requirements determine the appropriate up-
date frequency.

Inter-Domain Propagation. In addition to information
about its own domain, each Resource Manager maintains
summarized information of the available objects and ser-
vices available in other domains. The summaries of those
have to be updated only when peers join or leave the sys-
tem. Hence, a gossiping protocol (similar for example to
the one used in [29]) should suffice for lazily propagating
changes among the Resource Managers.

4.5. Adaptive Resource Management

During a service session a variety of global and local fac-
tors may affect the performance of the system:

• Changes in the infrastructure. The availability of re-
sources is affected by infrastructure changes. As tran-
sient nodes fail or disconnect from the system, the ex-
ecution of one or more application tasks may be af-
fected. Hence, the service graph may need to be re-
constructed in order to recover from such failures.

• Changes in the number of service sessions. As the
number of concurrent service sessions increase or de-
crease over time, processors need to make adaptive

decisions to balance their load. Moreover, some local
load balancing decisions might increase the execution
times of other existing application tasks.

• Changes in the local resource conditions. In case of lo-
cal resource overload, the performance of an applica-
tion task’s execution degrades as well. Besides the dy-
namic changes in the user requirements, overload con-
ditions could also be caused by extraneous workload
or network traffic.

• Changes in the user requirements. Users may change
QoS requirements dynamically. Specifically, they may
reduce the requested bit-rate or relax their deadlines to
cope with congested networks, or increase the QoS pa-
rameters if they assume resources are abundant.

All the aforementioned factors not only make it hard to
find an optimal initial application task allocation, but can
also result in degrading performance during the application
task execution. This calls for clever initial application task
allocation together with adaptive application task reassign-
ment. Both are carried out by the domain Resource Man-
agers.

When admitting a new application task the resource
manager estimates whether its QoS requirements can be
accommodated by the system’s current resources without
overloading the system. If all peers are too loaded to pro-
vide the requested QoS guarantees, then the task is not ad-
mitted, since it would not reach completion on-time and
would also harm the performance of the currently execut-
ing tasks. Instead, the task query is redirected to a Resource
Manager of another domain. To maximize the probability
that the task will be admitted, the summaries of the avail-
able objects and services in other domains are utilized to di-
rect the query to the appropriate domain.

When the Resource Manager determines that the system
is overloaded (for example if the processor or network load
is constantly above a certain threshold for all peers or if the
applications do not meet their deadlines), some of the cur-
rently running application tasks might be reassigned. The
allocation algorithm described in section 4.3 is run again, or
tasks are redirected to other Resource Managers if all peers
of the domain are overloaded. The new connections can be
established offline, to hide the overhead.

5. Related Work

Traditional peer-to-peer systems, both structured (Dis-
tributed Hash Tables) [27, 18, 21] and unstructured [8], have
focused on data sharing applications. Constructing overlay
networks that enable peers to provide and use distributed
services poses however several challenges that do not arise
in file sharing applications. In [4] we have focused on the
scheduling of tasks in such systems, while in [5] we have

described a completely decentralized media streaming and
transcoding architecture, utilizing local quality adaptation
and feedback-based coordination. The problem of deploy-
ing and managing federated systems has also been dis-
cussed in [6], where agents gather information about the
system state and services and exchange it periodically us-
ing a gossiping protocol.

Work has been done to enhance ORBs with load balanc-
ing capabilities, supporting a variety of adaptive and non-
adaptive strategies [3], [16]. In addition, several efforts
have focused on extending middleware architectures with
real-time and QoS capabilities [31], [30], [24]. These have
mainly focused on mechanisms for specifying QoS param-
eters and enforcement of timing constraints for hard real-
time systems using rate monotonic scheduling. Gill et al
[7] proposed a dynamic scheduling strategy which provides
scheduling assurance for critical application tasks while of-
fering the flexibility to optimize the use of scarce resources.

In [12], [11], [2] multiple types of resources are allocated
to the applications. Jensen et al [10] propose soft real-time
scheduling algorithms based on application benefit, with the
goal to maximize the overall system benefit. Stankovic et al
[26] use value-based function based on importance and tim-
ing requirements to schedule application tasks.

Many researchers have realized the need for systems that
can adapt to dynamic, unpredictable changes in the comput-
ing environment [13], [20], [25], [28], [1], [15], [29].All of
them agree that (i) adaptive systems need integrated mon-
itoring, dynamic execution time prediction and schedul-
ing across multiple processors, and (ii) efficient dynamic
scheduling algorithms require knowledge of real-time ap-
plication task information including the application task’s
deadline, reliability and resource requirements.

6. Conclusion

We have described an adaptive resource management ar-
chitecture for large-scale, real-time, peer-to-peer middle-
ware. Our system utilizes resource managers that maintain
service graphs representing the currently executing tasks on
the system and a resource graph representing the available
resources and their current usage. We proposed a load bal-
ancing algorithm to achieve a fair utilization of the system
resources. Our proposed architecture scales well with re-
spect to the number of peers and works effectively in het-
erogeneous and dynamic environments.

References

[1] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu.
Controlware: A middleware architecture for feedback con-
trol of software. In Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS’02),
July 2002.

[2] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A survey of
QoS architectures. Multimedia Systems, 6(3):138–151, 1998.

[3] J. Balasubramanian, D. Schmidt, L. Dowdy, and O. Othman.
Evaluating the performance of middleware load balancing
strategies. In Proceedings of the 8th International IEEE En-
terprise Distributed Object Computing Conference, 2004.

[4] F. Chen and V. Kalogeraki. RUBEN: A technique for
scheduling multimedia applications in overlay networks. In
Proceedings of the IEEE Global Telecommunications Con-
ference 2004 (Globecom’04), November 2004.

[5] F. Chen, T.Repantis, and V. Kalogeraki. Coordinated media
streaming and transcoding in peer-to-peer systems. In Pro-
ceedings of the 19th International Parallel and Distributed
Processing Symposium (IPDPS 2005), April 2005.

[6] F. Cuenca-Acuna and T. Nguyen. Self-managing federated
services. In Proceedings of the 23rd IEEE International Sym-
posium on Reliable Distributed Systems (SRDS 2004), 2004.

[7] C. Gill, D. L. Levine, D. C. Schmidt, and F. Kuhns. The de-
sign and performance of a real-time CORBA scheduling se
rvice. International Journal of Time-Critical Computing Sys-
tems, 23(2):221–264, June 1991.

[8] Gnutella Protocol Development
. http://rfc-gnutella.sourceforge.net/, 2003.

[9] R. K. Jain, D.-M. W. Chiu, and W. R. Have. A quantitive
measure of fairness and discrimination for resource alloca-
tion in shared computer systems. Technical Report DEC-TR-
301, Digital Institution Corporation, Hudson, MA 01749,
September 26 1984.

[10] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven
scheduling model for real-time operating systems. In Pro-
ceedings of the IEEE Sixth Real-Time Systems Symposium,
pages 112–122, San Diego, CA, December 1985.

[11] T. F. Lawrence. Quality of service (QoS) a model for infor-
mation. In Proceedings of the Fourth International Workshop
on Object-Oriented Real-Time Dependable Systems, pages
180–182, Santa Barbara, CA, January 1999.

[12] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. A.
Hansen. Scalable solution to the multi-resource QoS prob-
lem. In Proceedings IEEE 20th Real-Time Systems Sympo-
sium, pages 315–326, Phoenix, AZ, December 1999.

[13] G. Manimaran and C. R. R. Murthy. An efficient dynamic
scheduling algorithm for multiprocessor real-time systems.
IEEE Transactions on Parallel and Distributed Systems,
9(3):312–319, March 1998.

[14] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,
J. Pruyne, B. Richard, S. Rollins, and Z. Xu. Peer-to-Peer
Computing. Technical report, HP Technical Report, HPL-
2002-57, 2003.

[15] K. Nahrstedt and R. Steinmetz. Resource management in
networked multimedia systems. Computer, 28(5):52–63,
May 1995.

[16] O. Othman and D. Schmidt. Optimizing distributed sys-
tem performance via adaptive middleware load balancing.
In Proceedings of the ACM SIGPLAN Workshop on Opti-
mization of Middleware and Distributed Systems (OM 2001),
2001.

[17] P. Raftopoulou. Fair Resource Allocation in P2P systems:
Theoretical and Experimental Results. Master’s thesis, De-
partment of Electronic and Computer Engineering, Techni-
cal University of Crete, Greece, 2003.

[18] S. Ratnasamy, P. Francis, M. Handley, and R. Karp. A scal-
able content-addressable network. In Proceedings of ACM
SIGCOMM 2001, August 2001.

[19] T. Repantis and V. Kalogeraki. Data dissemination in mo-
bile peer-to-peer networks. In Proceedings of the 6th In-
ternational Conference on Mobile Data Management (MDM
2005), May 2005.

[20] D. I. Rosu, K. Schwan, and R. Jha. On adaptive resource
allocation for complex real-time applications. In Proceed-
ings of the IEEE 18th Real-Time Systems Symposium, pages
320–329, San Francisco, CA, 12 1997.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the IFIP/ACM International Confer-
ence on Distributed Systems Platforms, November 2001.

[22] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, 2nd edition, 2003.

[23] R. Schantz, J. P. Loyall, C. Rodrigues, D. Schmidt, Y. Kris-
namurthy, and I. Pyarali. Flexible and adaptive QoS con-
trol for distributed real-time and embedded middleware. In
ACM/IFIP/USENIX International Middleware Conference,
Rio de Janeiro, Brazil, June 2003.

[24] D. C. Schmidt, D. Levine, and S. Mungee. The design of the
TAO real-time object request broker. Computer Communi-
cations, 21(4):294–324, April 1998.

[25] J. Schonwalder, S. Garg, Y. Huang, A. van Moorsel, and
S. Yajnik. A management interface for distributed fault tol-
erant CORBA services. In Proceedings of the IEEE Third
International Workshop on Systems Management, pages 98–
107, Newport, RI, April 1998.

[26] J. A. Stankovic and K. Ramamritham. The Spring kernel:
A new paradigm for real-time operating systems. Operat-
ing Systems Review, 23(3):54–71, July 1989.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM
2001, August 2001.

[28] J. J. Sydir, S. Chatterjee, and B. Sabata. Providing end-to-
end QoS assurances in a CORBA-based system. In Proceed-
ings of the IEEE 1st International Symposium on Object-
Oriented Real-Time Distributed Computing, pages 53–61,
Kyoto, Japan, 4 1998.

[29] R. van Reness, K. Birman, and W. Vogels. Astrolabe: A ro-
bust and Scalable Technology for Distributed System Mon-
itoring, Management, and Data Mining. ACM Transactions
on Computer Systems, 21(2):164–206, May 2003.

[30] V. F. Wolfe, L. C. DiPippo, R. Ginis, M. Squadrito, S. .
Wohlever, I. Zykh, and R. Johnston. Real-time CORBA. In
Proceedings of the IEEE 3rd Real-Time Technology and Ap-
plicati ons Symposium, pages 148–157, Montreal, Quebec,
Canada, June 1997.

[31] J. Zinky, D. Bakken, and R. Schantz. Architectural support
for quality of service for CORBA objects. Theory and Prac-
tice of Object Systems, 3(1):55–73, 1997.

