
Load Balancing Techniques for Distributed Stream Processing Applications
in Overlay Environments

Yannis Drougas, Thomas Repantis, Vana Kalogeraki
Department of Computer Science & Engineering

University of California, Riverside
Riverside CA, 92521, USA

{drougas,trep,vana}@cs.ucr.edu

Abstract

Service overlays that support distributed stream pro-
cessing applications are increasingly being deployed in
wide-area environments. The inherent heterogeneous,
dynamic and large-scale nature of these systems makes
it difficult to meet the Quality of Service (QoS) require-
ments of the distributed stream processing applications.
In this paper we address the load balancing problem for
distributed stream processing applications and present
a decentralized and adaptive algorithm that allows the
composition of distributed stream processing applica-
tions on the fly across a large-scale system, while sat-
isfying their QoS demands. The algorithm fairly dis-
tributes the load on the resources and adapts dynami-
cally to changes in the resource utilization or the QoS
requirements of the applications. Our experimental re-
sults demonstrate the scalability, efficiency and perfor-
mance of our approach.

1 Introduction

Advances in processing and communication tech-
nologies have resulted in the development oflarge-scale
service overlays(or Peer-to-Peeroverlays). The new
emerging Peer-to-Peer (P2P) model has become a very
powerful paradigm for developing Internet-scale sys-
tems and sharing resources (i.e., CPU cycles, memory,
storage space, network bandwidth) over large scale ge-
ographical areas. Peer-to-Peer overlays are logical net-
works of many nodes (peers), constructed on top of het-
erogeneous operating systems and networks. Such over-
lays are flexible and deployable approaches that allow
users to perform distributed operations without modify-

ing the underlying physical network. These have found
popular applications in a number of domains including
file sharing, content distribution, multimedia streaming,
multicast and distributed games.

In the last few years, a new class ofdistributed stream
processing applicationshave emerged in domains such
as network traffic monitoring, financial, healthcare, sen-
sor data acquisition and multimedia [3, 1, 9, 14]. In dis-
tributed stream processing applications, data produced
by heterogeneous, autonomous and large numbers of
globally-distributed data sources are composed dynami-
cally to generate results of interest. These offer scalabil-
ity and availability advantages by harnessing distributed
processing elements in a cost-effective way. More ad-
vantages of distributed stream processing applications
include their ability for customized delivery, for adap-
tation to different loads, and for resiliency to node fail-
ures. Distributed stream processing can also be applied
to multimedia streams, to eliminate the need for a dedi-
cated server with a high bandwidth connection and offer
media services that can be composed on demand [11].

Several characteristics make the provisioning of real-
time and QoS support to distributed stream processing
applications on large-scale service overlays a challeng-
ing problem. First, overlay nodes are typically het-
erogenous in terms of processor capacity, network in-
bound/outbound bandwidth, and software. Second, ap-
plications have multiple QoS demands including high
throughput, small delay and jitter. Third, applications
are composed at run-time, without a priori notification,
posing stringent resource requirements on processor cy-
cles and available network bandwidth along the stream-
ing paths. As a result, the quality of the services may
vary with time in an unpredictable way.

Current research does not focus on deciding the lo-
cations of the services when composing a distributed

stream processing application dynamically to satisfy the
end-to-end application QoS demands. This is a difficult
problem in large-scale distributed environments, where
well-established centralized solutions [15] cannot be ap-
plied directly. However, resource allocation becomes
an important factor that affects the scalability of service
overlays and the performance of the applications when
deployed on a shared and heterogeneous infrastructure.

In this paper we address the load balancing problem
in large-scale service overlays. We propose an adaptive
and scalable load balancing technique for fair allocation
of resources in large-scale service overlays, so that the
QoS demands of distributed stream processing applica-
tions are satisfied. We present multimedia streaming and
transcoding as a service example, but our techniques ap-
ply to any large-scale distributed application. Our ap-
proach allows composition of distributed stream pro-
cessing applications dynamically, to satisfy their end-to-
end QoS demands with high probability.
Our Contributions: (1) We demonstrate a decentral-
ized and fair resource allocation algorithm that dis-
tributes the processing and communication load fairly
among the nodes of a large-scale system while meeting
application end-to-end QoS demands. To react to dy-
namic changes in the resource utilization or the applica-
tion behavior, quality adaptation mechanisms are used
to trade off quality level with resource usage. (2) We
present experimental results, using a distributed media
streaming and transcoding application over a large-scale
overlay, to demonstrate the performance, efficiency and
scalability of our techniques.

2 System Model

2.1 Peer-to-Peer Network Model

Service overlay networks are logical networks of
nodes (peers) constructed on top of the physical net-
work, in which the nodes are linked through virtual con-
nections (figure 1). Each peerp is identified by the IP
address of the physical node it resides and the port it is
listening to. Each node keeps a small number of connec-
tions to other peers; the number of connections is typi-
cally limited by the network bandwidth at the peer. The
peers of a node can be randomly selected, defined a pri-
ori based on some optimization criteria (such as round-
trip delays), or dynamically established and revised in
response to the node interactions or changes in the pro-
cessing and networking conditions [8].

Each peerp offers the set of servicesSp and is con-
strained by the CPU speedcyclestotal,p and the lim-

Figure 1. Our large-scale service overlay architecture.

ited amount of bandwidthbpstotal,p of the node. The
communication link between any two nodesp andq is
bandpq, where

∑
q bandpq ≤ bpstotal,p. This leads to a

limit on the number of connections a node can maintain
to other peers. We denote the number of connections as
connp. To compute the load of peerp, we consider both
its processing load and network bandwidth. Thus, we
compute the load of peerp as the weighted sum of its
current processing and communication load, as follows:
lp = wc · cpup + wb · bandp, wherecpup =

cyclesused,p

cyclestotal,p

andbandp =
bpsused,p

bpstotal,p
are the portions of the processing

power and bandwidth currently being used atp. To give
higher weight to the scarcest of the two resources (pro-
cessing power or bandwidth), we define the weights as
follows: wc = min(1,max(0, 0.5 + cpup − bandp))
and wb = min(1,max(0, 0.5 + bandp − cpup)). The
weightswc andwb take values between 0 and 1 and have
a sum of 1; thus, the weighted loadloadp of every peer
p is between 0 and 1.

We assume that peers are organized in groups and in
section 4 we show that balancing the load among the
peers of each group performs comparably to balancing
the load among all peers of the network. Peers can
be grouped according to their geographical proximity,
their network proximity, semantically, or even randomly.
The organization of the network topology is outside the
scope of this paper and several solutions have already
been proposed [14, 17]. Similar to those, we assume
that peers are grouped using some criterion and one or
more peers in each group are responsible for resource
allocation, as discussed in Section 3.

2

2.2 Application Service Graph

Distributed stream processing applications are mod-
eled as sequences of invocations of services, which are
executed in multiple nodes in the overlay network. We
use a directed acyclic graph, which we callapplication
service graph, to map a distributed application to the
overlay network. The vertices of the application service
graph represent the services being invoked at a set of
peers to accomplish the application execution, while the
edges represent connections between those peers. An
edge connects two verticesvi andvj iff the output of the
service corresponding tovi is the input for the service
corresponding tovj .

Services describe and encode functionalities that are
performed at peers. Each servicesi has a name, code,
input parameters and output parameters. In order for a
sequence of servicessi, sj to be invoked for the execu-
tion of a task, the output of servicesi should be directed
to the input of servicesj , provided that they have the
same parameters. Thensi andsj can be composed to
form tasksi˙sj . This composition mechanism can be
used to build more complex systems and behaviors.

The application service graph is the outcome of the
resource allocation algorithm, when an application ex-
ecution request arrives. It is composed dynamically at
run-time based on the application QoS requirements and
the availability of the system resources and stored in all
peers participating in the particular application.

The QoS of a service can be approximated usingm

discrete levelsQ : {q1, . . . , qm}. The resource require-
ments of a servicesi that provides a quality levelqj are
{ci(qj), bi(qj)}, whereci and bi are the processor cy-
cle and bandwidth requirements, respectively. Usually
a higher QoS level means higher requirements in CPU
cycles and bandwidth. The resource requirements can
be approximately derived from the QoS requirements of
the user using for example profiling [16].

3 Adaptive QoS-Aware Resource Alloca-
tion

The operation of our QoS-aware resource allocation
approach consists of two steps: i) Selecting peers with
available resources that offer the requested services to
compose the application service graph, so that the QoS
demands of the application are satisfied and fair alloca-
tion on the system resources on those peers is achieved
(3.1). ii) Monitoring the resource usage and application
behavior at run-time and dynamically adjusting the qual-
ity levels of the tasks, to improve their latencies or to re-

act to changes in the behavior of the applications or the
utilization of the system resources (3.2).

3.1 Resource Allocation

We describe the metric for fair load distribution in
section 3.1.1, the data structure employed by our re-
source allocation algorithm in section 3.1.2 and finally
the algorithm itself in section 3.1.3.

3.1.1 Fairness Index

The objective of the resource allocation algorithm is
to equally distribute the load among the peers of the
large-scale overlay. Because the allocation decisions are
made by individual peers without global knowledge of
the system and the resource loads, we need a metric that
captures well the degree of uniformity of the load dis-
tribution and does not depend on scaling and magnitude
factors. This metric is theFairness Index[13].

Definition 1. Let P = {p1, p2, . . . pn} be a set ofn
peers. Letli ≥ 0 be the load of peeri, 1 ≤ i ≤ n. The
Fairness Index of the load distributionl = {l1, l2, . . . ln}
among the peers inP is defined as:

F(l) =
(
∑n

i=1
li)

2

n ·
∑n

i=1
l2i

(1)

The Fairness Index has some useful properties that make
it an ideal metric to evaluate the fairness of a load distri-
bution. Its values are bounded in the interval(0, 1], and
are proportional to the uniformity of the distribution. It
is population size and metric independent, it can be ap-
plied to any number of nodes and the unit of measure-
ment does not matter. Thus, the Fairness Index can be
applied directly to a large-scale overlay, no matter how
many peers it incorporates or how loaded they are.

3.1.2 Service Composition Graph

Theservice composition graph, allows us to illustrate
all the possible application service compositions in a
group of peers and then select the one that best meets the
objective of the resource allocation algorithm. The ver-
tices of the service composition graph represent specifi-
cations of service inputs or outputs, while the edges rep-
resent services offered by peers in the group. An edge
connects two verticesvi andvj iff there exists a peer that
offers a service that takes input of the form specified by
vi and produces an output of the form specified byvj .

The service composition graph is stored at the peers
of a group that run the resource allocation algorithm and

3

S1

800x600
256Kbps

MPEG−2
640x480
128Kbps

MPEG−4
640x480
128Kbps

MPEG−2
640x480
64Kbps

MPEG−2
640x480
256Kbps

MPEG−2
800x600
128Kbps

Receiver

Source

S1

S5

S2

B)A)

S4

S5

S3

S2

S8S7
S6

S4

MPEG−2

Figure 2. An example of a service composition graph
(A) and of the produced application service graph (B).

Figure 3. Example of a service composition graph.

is used by the resource allocation algorithm (1) to com-
pose new applications, or (2) periodically to improve the
latency of the tasks or to react to processor or resource
faults. It refers just to the services that are available in
one peer group and is therefore of bounded complexity.
It is composed gradually, as peers and services are added
to a group and the new connections are detected.

For example, figure 2(A) shows a service composi-
tion graph for a system that offers transcoding services.
The transcoding quality level and the corresponding re-
source requirements can be tuned by selecting differ-
ent implementations for the transcoding functions. Let
us assume a user is interested in receiving a video in
MPEG-2, 640x480, 128Kbps. Yet, the video is pro-
vided by the source in MPEG-2, 800x600, 256Kbps.
One can see that we can follow three different paths to
go from<MPEG-2, 800x600, 256Kbps> to<MPEG-2,
640x480, 128Kbps>. The choice of which path to use
depends on the current resource conditions. Figure 2(B)
shows an application service graph that could be pro-
duced by this service composition graph.

3.1.3 Resource Allocation Algorithm

The procedure followed by the resource allocation al-
gorithm is the following: First, it finds all paths repre-
senting the desirable application using the service com-
position graph. For each of the paths, it determines
whether the quality of service requirements are met.
Only the paths representing a solution with which these
requirements are met, are considered. Then, the al-
gorithm determines the candidate application service
graphs to construct, by mapping each of the paths to
the overlay network. For each of the application ser-
vice graphs, the resulting Fairness Index is estimated.

Finally, it selects the service graph for which the Fair-
ness Index is maximized.

Let us assume a service composition graphGc, as
shown in Figure 3. Letvinit be the application composi-
tion request given by the user (i.e., specifications of the
data to be processed) andvsol represent the solution that
satisfies the QoS requirements of the user (i.e., speci-
fications of the output data). Each possible solution to
the resource allocation problem can be represented as a
pathSeqi from vinit to vsol. Essentially the path repre-
sents a service composition sequence where each edge
sk in the path represents the invocation of a service. If
there are multiple possible paths fromvinit to vsol that
satisfy the user’s QoS requirements, our goal is to se-
lect the one for which the fairest distribution of the load
among the peers is achieved. For example, the graph
in Figure 3 shows that there are three possible service
invocation sequences (paths inGc) Seq1 = {s1, s2},
Seq2 = {s6, s9} andSeq3 = {s1, s3, s5, s7}. If any of
the possible service invocation sequences does not meet
the QoS requirements due to processing or bandwidth
limitations, these sequences will be ignored.

For each service invocation sequence , the algorithm
evaluates the Fairness Index for the corresponding ap-
plication service graph. This is achieved by calculating
the contribution to the load on processorp made by the
allocation of servicesj . The service load is derived from
the size and specifications of the service input and out-
put, the mean processing time and bandwidth required
for the invocation of the service, and the quality of ser-
vice requirements set by the user for the service. The
algorithm then selects the sequenceSeqi that results in
the maximum Fairness Index value.

The algorithm identifies the best solution but works
in exponential time, because it evaluates all possible so-

4

Simulation Time 200 seconds
Receiver Buffer Time 2 seconds
Quality Interval Size 3
Media Object Bitrate (200, 250, 300, 350, 400) Kb

Req. Streaming Bitrate (50, 75, 100, 125, 150) Kb
of Total Nodes 1000

of Source Nodes 400
of Transcoder Nodes 80

of Peer Groups (avg.) 10
of Streams 70

of Substreams 232

Table 1. Simulation parameters.

lutions. To improve the running time, (1) we avoid ex-
amining unacceptable solutions, by constantly checking
the QoS, (2) we avoid looping through already examined
outputs, and (3) we return as soon as a Fairness Index
value greater than a thresholdǫ is found.

3.2 Coordinated Quality Adaptation

Our resource allocation algorithm composes services
in such a way that the user QoS demands and their re-
quirements in processor cycles and bandwidth can be ac-
commodated. However, in a dynamic environment the
resource loads of the nodes can vary at run-time, de-
grading the performance of existing tasks. Therefore,
adaptation mechanisms that gracefully adapt to changes
in the resource usage or the needs of the applications
are required. Our approach [5] is to employ a quality
adaptation mechanism, which trades off service quality
level with resource usage. Locally adapting the quality
of a service, might result in quality fluctuations of the
end result. Therefore, we employ coordination of the lo-
cal adaptation decisions based on feedback generated by
the receiver of a composite service. Coordinated quality
adaptation is triggered when the load on a peer or the
latency of a task is too high, or when the user QoS re-
quirements change at run-time. In such cases, reassign-
ment of a task to resources and thus reconstruction of its
application service graph might also be needed and can
take place by running the resource allocation algorithm
again. The cost of the application service graph recom-
position is amortized over many application executions.

4 Experimental Evaluation

4.1 Experimental Setup

To evaluate the performance of our resource alloca-
tion techniques, we implemented in C++ a simulator

for a media streaming and transcoding application over
an overlay network. The underlying network topology
we used was generated with GT-ITM [22], consisted
of 1476 routers, and had an approximate diameter of
750ms. Overlay nodes were randomly attached to differ-
ent routers. Media sources had a connection bandwidth
between 50Kb and 200Kb, while media transcoders had
a connection bandwidth between 400Kb and 2Mb and a
processing capability between 400M and 800M cycles
per second. To take into account the fact that the re-
sources of the system are not dedicated, we randomly
added a fluctuating percentage (up to 20%) of extrane-
ous load in the processors and of cross traffic in the net-
work, throughout the execution of the experiment.

We simulated a transcoding application (bit-
reduction), in which the execution time of an operation
was proportional to the size of a media unit. Data
transformation operations on independent media units
(i.e. groups-of-pictures of MPEG streams) were con-
sidered to be the services that needed to be allocated
to peers. We simulated 10 levels of output quality for
all streams and utilized the same linear utility function
that was proportional to the output quality level. The
resource allocation algorithm was executed each time
an application request arrived in a peer group, while the
local adaptation algorithm was executed every second.

We compared our adaptive andfair resource alloca-
tion algorithm with thresholdǫ = 0.8 against arandom,
a greedy, and anoptimalallocation algorithm. The ran-
dom algorithm assigned service requests to transcoders
blindly. The greedy algorithm searched among the list
of the transcoders of a peer group to assign a request to
a transcoder that can offer the required bandwidth and
processor cycles and returned the first solution it found.
The optimal algorithm assigned service requests trying
to maximize the fairness of the whole network. Thus, it
assumed a central approach, where global knowledge of
the loads of all the peers in the network is attainable.

4.2 Results and Analysis

4.2.1 QoS under different loads

In the first set of experiments we investigated the be-
havior of the resource allocation algorithms, by analyz-
ing the system’s performance under different loads. We
increased the number of streaming sessions gradually
and were thus able to evaluate the scalability of the dif-
ferent algorithms.
Average End-to-end delay. Figure 4 illustrates the av-
erage end-to-end delay for all the media units of many
streaming sessions. The figure shows that fair resource

5

 1200

 1250

 1300

 1350

 1400

 1450

 1500

 10 20 30 40 50 60 70

A
ve

ra
ge

 E
nd

-t
o-

E
nd

 D
el

ay

Number of Streams

greedy
random

fair
optimal

Figure 4. Average end-to-end delay of the media units
of all streams vs. the number of streams.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 20 30 40 50 60 70

M
ed

ia
 U

ni
ts

 w
ith

 M
is

se
d

D
ea

dl
in

es

Number of Streams

greedy
random

fair
optimal

Figure 5. Media units that have missed their deadlines
vs. the number of streams.

allocation achieves the lowest end-to-end delay, regard-
less of the number of streams in the system. Moreover,
it maintains a bounded delay, proving that it can offer
a scalable solution to the resource allocation problem,
as long as the requested resources can be offered by the
system. Randomly selecting transcoders results in ex-
treme delays as the load of the system increases. Greedy
resource allocation achieves bounded delays as well,
since it takes into account the required resources when
assigning tasks to the transcoders. Yet, even though the
media units arrive with relatively small delays they do
not necessarily meet their deadlines, as will be shown in
figure 5. It is noteworthy that our fair allocation algo-
rithm achieves average end-to-end delays very close to
those that would be achieved by an optimal allocation.

Media units with missed deadlines. Figure 5 shows
the degree to which our fair resource allocation algo-
rithm can help the system meet its QoS guarantees (the
timing deadlines in particular). Inevitably, as the load
becomes more than the system’s resources can handle,
media units will miss their deadlines. Our fair resource
allocation algorithm postpones those negative effects for
as long as possible and even then results in consider-
ably less missed deadlines than all other allocation al-
gorithms. As expected, random resource allocation re-
sults in missed deadlines even for low loads and extreme
numbers of missed deadlines as the load increases. The
number of media units with missed deadlines for the
greedy allocation algorithm shows that just provisioning
for the required resources does not suffice for achiev-
ing QoS guarantees, and that a more intelligent load dis-
tribution mechanism can have better results. The opti-
mal allocation algorithm results in many missed media
units from an unexpectedly low number of streams. This
is to show that distributing the streaming and transcod-
ing load fairly across the system is not as efficient as

doing the streaming and transcoding locally, within the
peer group in which the receiver belongs. This way the
streams can reach their destination faster.

4.2.2 System utilization under different loads

In the second set of experiments we observed param-
eters related to the system utilization. Again, we in-
creased the number of streaming sessions gradually and
focused on the scalability of the different algorithms.
Average fairness. As was explained in section 3, how
uniformly the load is divided among the processing
nodes can affect the efficiency of the system. In fig-
ure 6 we present the average of the fairness indices of
the individual peer groups, as new streams are admit-
ted in the system. The fair resource allocation algo-
rithm always achieves a more even distribution of the
load. As the number of streams is increasing the average
fairness increases as well, since tasks can be assigned
to all transcoders. When the system becomes over-
loaded, greedy resource allocation also results in high
average fairness, since the load is distributed among all
transcoders and the selection of where to place tasks is of
no particular importance anymore. Yet, randomly plac-
ing tasks, without paying attention to the current load
of the nodes, results in low fairness even in those over-
loaded situations. The fairness of the optimal allocation
algorithm is not directly comparable to the rest, since it
compares the load distribution among all nodes of the
system, instead of averaging the fairness indices of the
individual peer groups.
Average load. Figure 7 shows the average of the average
loads of each peer group, only for transcoders that have
been assigned tasks, as new streams are admitted in the
system. This gives us a clear indication of how fairly dis-
tributing the load within a peer group can result in lower
average load in the whole system. To further explain

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

A
ve

ra
ge

 F
ai

rn
es

s

Number of Streams

greedy
random

fair
optimal

Figure 6. Average fairness of the load distribution
across all peers, as a function of the number of streams.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

A
ve

ra
ge

 L
oa

d

Number of Streams

greedy
random

fair
optimal

Figure 7. Average load of the system, as a function of
the number of streams.

why the average load will not be equal in all situations,
suffice it to say that a distribution of tasks in transcoders
in peer groups of[(0.4), (0.4, 0.4)] will result in an aver-
age load of 0.4, while a distribution of[(0.8), (0.2, 0.2)]
will result in an average load of 0.5. Keeping the average
load low can be useful, as it will avoid the overloading
of certain peers, while other peers remain underloaded.
If provisioning for emergency situations is needed, cer-
tain nodes can be excluded from the resource allocation
procedure, to always be available. The greedy resource
allocation algorithm results in average load even higher
than the random, since the same nodes are likely to be
allocated more tasks, as long as they can accommodate
them. Again the average load achieved by the optimal
allocation refers to the system as a whole and not to the
average of the average loads of each peer group.

5 Related Work

Allocation of processes, tasks or services has been a
long studied topic in distributed systems [21, 14, 9]. Re-
cent efforts have studied this topic in distributed stream
processing environments. Optimal service composition
is accomplished in [9], using a probing protocol and
coarse-grained global knowledge. In [21] load variance
is minimized by maximizing load correlation. Their ap-
proach consists of a centralized algorithm for initial load
distribution and a pair-wise algorithm for dynamic load
migration. In our work, we assign loads in peer groups
and cope with load imbalance using coordinated adapta-
tion. Furthermore, we distribute the load across multiple
peers, to eliminate overloaded processors.

Multimedia streaming has been studied extensively
in the last few years, mainly from a centralized perspec-
tive and without focusing on dynamic user requirements.
The importance of providing multimedia applications on

overlay networks has only been recognized by recent ef-
forts. These fall in one of the following main categories:
(1) Construction of a service graph that satisfies the re-
quested QoS requirements [11].(2) Layered streaming
techniques [6] which address the problem of bandwidth
heterogeneity by lowering the streaming quality via the
omission of stream layers. (3) Proxy-based service pro-
vision coordination solutions [12] which make use of a
central scheduler. (4) Multicasting mechanisms [2, 18]
for efficient content distribution. However, these solu-
tions fail to support multimedia applications that require
both communication and processing. More importantly,
though, they fail to support multiple media services that
can be composed into customized services.

In our previous work we have investigated fair re-
source allocation for data-sharing applications [7], as
well as different aspects of overlays for distributed appli-
cations In particular, in [4] we have focused on the task
scheduling algorithm, while in [5] we have described a
totally decentralized media streaming and transcoding
architecture. Our current work builds upon [17] and pro-
vides a detailed experimental evaluation.

Similar to our work, in [20] real-time specifications
are added to components, while in [19] the authors
use an informed branch-and-bound algorithm employ-
ing a competence function and forward checking to ex-
pedite its execution. These algorithms are centralized
and meant to be run off-line. We aim for suboptimal re-
source allocation, that however is efficient, balanced and
can be readjusted at run-time, as the systems we consider
are highly dynamic.

The problem of resource allocation with fair quality
levels in the context of real time control systems is con-
sidered in [10]. The goal is to allocate system resources
so that the quality levels of the tasks will be as fairly
distributed as possible. A peer’s load is defined to be

7

its CPU utilization factor, while the quantity to be fairly
distributed is the quality level offered to each of the run-
ning tasks. Our system differs since we try to balance
peer load instead of the offered quality level. Also, we
consider the problem in the context of wide-area, dis-
tributed peer-to-peer overlay networks.

6 Conclusions

In this paper we have proposed a distributed resource
allocation algorithm to deal with challenges of hetero-
geneity and scalability in supporting distributed stream
processing applications in large-scale systems. Our ap-
proach aims for a fair load distribution among the nodes
of the system, while meeting the QoS requirements of
the applications. We employ quality adaptation mech-
anisms to deal with dynamic changes in resource uti-
lization and application behavior The design, imple-
mentation and evaluation of our approach is presented.
We have evaluated our algorithms by simulating a dis-
tributed media streaming and transcoding application.
Our results show that a fair and adaptive load distribu-
tion in a large-scale system can achieve scalability and
maximize the probability of meeting the application re-
quirements.

References

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. C. etintemel,
M. Cherniack, J. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik.
The design of the borealis stream processing engine. In
CIDR, Asilomar, CA, USA, January 2005.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-
bandwidth multicast in a cooperative environment.
In 19th Symposium on Operating Systems Principles
(SOSP), NY, USA, October 2003.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. F.
andJ.M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. Shah. Tele-
graphcq: Continuous dataflow processing for an uncer-
tain world. InCIDR, Asilomar, CA, USA, January 2003.

[4] F. Chen and V. Kalogeraki. RUBEN: A technique for
scheduling multimedia applications in overlay networks.
In Global Telecommunications Conference (Globecom),
Dallas, TX, USA, November 2004.

[5] F. Chen, T.Repantis, and V. Kalogeraki. Coordinated
media streaming and transcoding in peer-to-peer sys-
tems. In19th International Parallel and Distributed Pro-
cessing Symposium (IPDPS), Denver, CO, April 2005.

[6] Y. Cui and K. Nahrstedt. Layered peer-to-peer stream-
ing. In NOSSDAV, Monterey, CA, USA, June 2003.

[7] Y. Drougas and V. Kalogeraki. A fair resource alloca-
tion algorithm for peer-to-peer overlays. In8th Global
Internet Symposium, Miami, FL, USA, March 2005.

[8] G. Fry and R. West. Adaptive routing of QoS-
constrained media streams over scalable overlay topolo-
gies. InIEEE RTAS, Toronto, Canada, May 2004.

[9] X. Gu, P. Yu, and K. Nahrstedt. Optimal component
composition for scalable stream processing. In25th In-
ternational Conference on Distributed Computing Sys-
tems (ICDCS), Columbus, OH, USA, June 2005.

[10] F. Harada, T. Ushio, and Y. Nakamoto. Adaptive re-
source allocation control with on-line search for fair QoS
level. In IEEE RTAS, Toronto, Canada, May 2004.

[11] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhar-
gava. PROMISE: Peer-to-peer media streaming using
collectcast. In11th International Conference on Multi-
media, Berkeley, CA, USA, November 2003.

[12] M. Hicks, A. Nagarajan, and R. Renesse. User-specified
adaptive scheduling in a streaming media network. In
OPENARCH, San Francisco, CA, USA, April 2003.

[13] R. K. Jain, D.-M. W. Chiu, and W. R. Have. A quanti-
tive measure of fairness and discrimination for resource
allocation in shared computer systems. Technical Report
DEC-TR-301, Digital Equipment Corporation, 1984.

[14] V. Kumar, B. Cooper, Z. Cai, G. Eisenhauer, and
K. Schwan. Resource-aware distributed stream man-
agement using dynamic overlays. In25th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), Columbus, OH, USA, June 2005.

[15] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and
J. Hansen. A scalable solution to the multi-resource QoS
problem. In20th Real-Time Systems Symposium (RTSS),
Phoenix, AZ, USA, December 1999.

[16] K. Nahrstedt, D. Wichadakul, and D. Xu. Distributed
qos compilation and runtime instantiation. InIWQoS,
Pittsburgh, PA, USA, June 2000.

[17] T. Repantis, Y. Drougas, and V. Kalogeraki. Adaptive
resource management in peer-to-peer middleware. In
13th International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS), Denver, CO, April 2005.

[18] D. Tran, K. Hua, and T. Do. ZIGZAG: An efficient peer-
to-peer scheme for media streaming. InIEEE INFO-
COM 2003, San Francisco, CA, USA, April 2003.

[19] S. Wang, J. Merrick, and K. Shin. Component alloca-
tion with multiple resource constraints for large embed-
ded real-time software design. InIEEE RTAS, Toronto,
Canada, May 2004.

[20] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao. Real-
time component-based systems. InIEEE RTAS, San
Francisco, CA, USA, March 2005.

[21] Y. Xing, S. Zdonik, and J. Hwang. Dynamic load dis-
tribution in the borealis stream processor. In21st Inter-
national Conference on Data Engineering (ICDE 2005),
Tokyo, Japan, April 2005.

[22] E. Zegura, K. Calvert, and S. Bhattacharjee. How to
model an internetwork. InIEEE INFOCOM 1996, San
Francisco, CA, USA, March 1996.

8

