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Abstract— Over the past few years, Peer-to-Peer (P2P) systemsto particular nodes and assume that all nodes are equal in
have become very popular for constructing overlay networks of terms of resources, which can lead to bottlenecks and hot-
many nodes (peers) that allow users geographically distributed spots. InUnstructuredoverlay networks [14], [10], on the
to share data and resources. One non-trivial question is how . ’ ’
to distribute the data in a fair and fully decentralized manner other hand,_o_bjects can be located at rf’;mdom nodes, and_ nodes
among the peers. This is important because it can improve are able to join the system at random times and depart without
resource usage, minimize network latencies and reduce the a priori notification. Recent efforts have shown that a self-
volume of unnecessary traffic incurred in large-scale P2P systems grganizing unstructured overlay protocol maintains arcieffit
In this paper we present a technique for fair resource allocation and connected topology when the underlying network fails,

in unstructured Peer-to-Peer systems. Our technique uses the £ h des ioi di th twork
Fairness Index of a distribution as a measure of faimess and PEMOrMance changes, or nodes join and leave the networ

shows how to optimize the faimess of the distribution using dynamically [9]. Having a global view in unstructured owsr$
only local decisions. Load balancing is achieved by replicating however, is impractical; thus choosing the right resource
documents across multiple nodes in the system. Our experimental gllocation protocol is non-trivial.

results demonstrate that our technique is scalable, has low
overhead and achieves good load balance even under skewed

demand. In this paper we present a fair resource allocation algarith

for unstructured P2P overlays. Our algorithm is based on
|. INTRODUCTION the concept of fairness and uses farness IndexX8] of a

In the recent years, the Peer-to-Peer (P2P) computing modestribution to measure "how equally” the objects are alted
is emerging as a powerful paradigm for developing largée the peers. The allocation of the objects is driven by dietss
scale distributed systems. This has found popular apjgitat made by the individual peers based on information they have
in content sharing [16], multicast [7], distributed objectstored locally. An important consideration for our techusq
location [20], [19], [21] and information retrieval [22].2P is to have a system that requires only local computation. Due
networks create virtual (logical) networks of many peet thto the large-scale of the P2P system, having global knoweedg
allow users geographically distributed in wide-area nekwo of the state of each node of such a network is practically
to access large amounts of data, without the need for centigipossible. Local computations improve efficiency, andwll
ized control. Additional features include their abilityrfeelf- the system to scale well and to react to changes quickly.
organization, resiliency to node failures and no need fali-de Furthermore, the techniqgue must handle (1) varying object
cated servers. These features, however, bring new chablendpads, (2) different node capacities and (3) continuousriien
The challenge ishow can you implement a fair resourceand deletion of the objects. In the paper we show how to
allocation scheme to distribute the data in an unstructuregptimize the fairness of the distribution in our system gsin
peer-to-peer system to balance the load, and achieve thisly local decisions. We also present experimental resilts
in a fully decentralized mannerfThe combination of large our proposed technique. We investigate the fairness obthe |
data repositories, the geographic distribution of thesisexd distribution, the degree of replication and the reductiothie
the dynamic and heterogeneous nature of the P2P systermamber of hops as a function of the popularity and the number
demands careful distribution of the data across the systein ®f object requests in the system. The overhead of our apiproac
orchestration of the utilization of the system resources. is small because we piggy-back load measurement informatio

The importance of these problems have been recognizadthe messages. Thus, there is no need for generating addi-
by recent P2P systems [5] such as Pastry [19], Oceanstbomal load measurement messages in the system.
[13], Chord [21] and CAN [20] (typically referred to as
StructuredOverlays) which are organized in such a way that This paper is organized as follows. Section Il discusses the
objects are located at specific nodes in the network and nogesblem we consider and our approach. Simulation resuits ar
maintain some state information, to enable efficient resie presented in Section Ill. Section IV discusses related work
of the objects. These sacrifice atomicity by mapping objeatghile Section V concludes the paper.



Il. APPROACHOVERVIEW P omd—2000 T Toad=2000
g2 load=800 (1) replicate i1?, ql ) Ioad—_1800
We consider an unstructured P2P systemMofnodes in 3 load=0__ __:._:(—2-)_;,85/”0 a2 load=800
which the nodes are typically user-machines. The communi- TR - p . q2 o2 load=800
cation link between two nodgsandgq is characterized by the ~ [p 10ad=1800 o o= 1800 P 2000
bandwidth available to it ag,...4(¢). (Note that the incoming o2 looiza00 [q4 FE Toad=900 1 a7 gad 1000 7 load=1000
and outgoing bandwidth of the node may be different). This 45 load—200 a3
leads to a limit on the number of connections a peer can qs a6 7 7 oea=10m
maintain. We denote this number of connections that a peer is [45load=600 48 a9 62 l0ad=800
maintaining bypeonn.- gg :g:g;ésoo 98 load=0 g9 load=200 33 :3232200
For a given peew, let D, be the set of documents that g5 load=600 [ |95 026730
are stored inu. Without loss of generality, we assume that 92 1020-2001 a7 load=1000

each documentd is characterized by a sequence of keywords,
and lets(d) be the set of keywords id. The query method to
searching for documents in our systenkisrandom walks K -
random walks are shown to be a scalable solution, achieviggstem to be fair to only0% of the nodes inV and unfair to
linear increase in the number of messages propagated in 4b&; of them. The boundness of fairness index makes it ideal
network. We note here, that although our system usedithe for the absolute evaluation of a load distribution’s unifiaty.
random walks searching technique, other search algorithmsThe Fairness Index has the important property that it is
could also be used in our system. We consider the lpadf population size and metric independent, it can be applied to
objecti to be the total volume of data (in bytes) transmitteeiny number of nodes and the unit of measurement does not
by p (to peers requesting in order to obtain object. At any matter. An additional feature of the Fairness Index is thit i
given time, we define the loald of peerp as the sum of the not necessary that it will monotonically increase of deseea
loads) , I,, due to all the objects stored gnat that time.  when the load of a single node increases or decreases. Rather
Each nodep is characterized by its neighborhogd.;,, it increases when the load approaches a specific Valyeand
which is defined to be the set of nodes consistingpaiis decreases when the load diverges fiigry,. In addition to that,
well as the nodes that are up tohops away fromp. For fairness index is a continuous quantity, reasonably matlifie
example, in Figure 1, forh = 1, the neighborhood,.;;»,  when the loads of some of the nodes change. No matter how
of nodep is {p, ¢1, 42,43, q4}. Nodep keeps arestimatefor small a change of a load is, it is going to affect the fairness
the loadp,,; of each peer in its neighborhood. It collects index of the load distribution. For example, the fairness of
load information about the nodes in its neighborhood only. distribution decreases when the load of a single element
These are obtained through resource utilization feedbaakgerges from the valué,.,; that results in the maximum
propagated through queries and other system messages. Kait@ess index (assuming that the rest of the loads do not
that the accuracy of the load estimates (1) increases when ¢hange), while it increases in the opposite case.
frequency of collecting the load information increases @)d  Finding the optimal distribution of the load to the peers is
decreases as the number of hops between the peers increatessomplete. However, recent work shows that, in the cen-
This information is later used by the load balancing aldponit tralized context (that is, when a node knows all the indigidu
The architecture of our system, including resource utiira loads and the resource availability of all the nodes), adyee
information obtained by the peers, is shown in Figure 1. algorithm can give good results [17].

Fig. 1. The model of our system

A. Fairness Index B. Computing the Fairness for a Distributed Environment

We use theFaimess Indexmetric to measure "how equal” The challenge in our scheme is to achieve a fair load
are the loads of the peers [8]. The fairness index of a loglitribution using only local information and making only

distribution! is defined to be: local decisions at the nodes. To do that, nodes compute the
load distribution 7(I) and the average loadvg; in their

- (ZpEN lp)? neighborhoods using load measurements they received from

F(l) = m @) the peers in their neighborhoods. These measurements -are ap

pended at the end of queries and other system messages, thus,
where NV is the set of nodes in the P2P system. This measuggminating the overhead of generating additional message
ment allows us to compare the load distributions of the nodgge calculations are performed according to the following
by comparing their fairness indexes. The fairness indeMevalfgrmulas:
ranges between valu@sand1. Given the above equation, one
can verify that the higher the value of the fairness indeg, th _ (X iepmign la)”
more uniform (fair) the distribution is. A totally fair sysn F(l)
has a fairness index df, while a totally unfair system has
an index value of). For example, when calculating the load qupmgh lq
fairness among a set of nod&s a value of0.1 indicates the w9 = (3)
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Thus, nodep uses the load estimates of each nedén allocation is acceptable, it is actually performed. Howegife
Preigh 10 COmMpute the load fairness; and the average loadthe request is not accepted by nagenodep will select the
avgy of its neighborhood,,.;41. If the neighborhood fairness object with the second highest number of per node requests
is low (lower than a threshold,.;,,) and node’sp load and a new node to host this object. Nagleinforms p about
is higher than the average load of the neighborhood, this decision by sending it a reply message (message (2) in
indicates thatp may be overloaded. Thus, nogetries to Figure 1).
reduce its load by selecting an iteirto replicate to another  One could argue that a heavy loaded node could migrate,
node. The idea behind this, is thatshould now receive less rather than replicate the items that contribute most toois!
requests fori. The items is the one with the highest numberBut, these items are also the most popular ones. By removing
of per node requests. them, the number of hops to locate the items could increase.

An important observation is that the item with the highesturthermore, to avoid "ping-pong situations” in which ptau
number of per node requests is not necessarily the m@sims continuously migrate among the nodes in the network
popular item ofp. However, this is the item that will producewe associate aum_migration attribute with each object and
the largest reduction in the number of requests propagai@y prefer to migrate a previously non-migrated object to an
to nodep. For example, let us examine the case in Figutgiready migrated one and (2) restrict the maximum number of
1. Consider items; and iy, both stored in node. Let us times an object can migrate.
assume thap has received requests fori; by neighborg;
and1 by neighborgs. Also, thati, has been request&dimes
by neighborgs and4 times by neighbor,. The total number

of requests fori; is 5+ 1 = 6, while for iz, itis 3+4 =7, To evaluate the fairness of the system we ran experiments
However, the maximum number of per-neighbor requests iSon the Neurogrid Simulatér A P2Pynetwork was er?erated
for iy (the number of requests made figrby ¢;) and 4 for 9 9

2 (the number of requests made fir by ¢4). Thus, among ?sha rar:ﬁom gra[:l))h O(; 1.3310 EOdre]S' '3‘” ::nl;sfswere assumed
these two items;; will be preferred to be replicated. This is 0 have the same bandwlidin. £ach node had b connections on

because, when selecting we will selectq; as the receiver of average. The average node capacity 325 B, while the sum

the replicated item (since, has made the most requests fon the size of all the items was abo2d)M B. The threshold

i1). Doing this, p is expected to be relieved frof requests neigh Was set td.45. The neighborhood SIZE'WaS settol.
(the requests that would be made frgirfor i), in the future. For the experiments we used the World Cup '98 dataset which

On the other hand, if was chosen for replication, the besPonSiStS of all the requests made to the 1998 World Cup Web

would be to replicate it tag,. Then,p would be relieved site be.tween April 26 -.July 26, 1998 [1]
from ko requests (the requests fér, made fromgy). But, To simulate the queries run by the peers, we uz&d 000

the statistics make us estimate that < ;. So, replicating GET requests of that datadeEach request is characterized by
i1, rather thani, seems more promising. the ID of the node that issued it, the time it was sent and the
Given the above observation, the item to be replicated $£€ Of the requested document. We selected a random set of

selected based on its popularity. The goal for ngdis to 2500 documents taken from the set of documents appearing in
reduce its load by replicating objetto one of its immediate these requests. This random set maintained the sameis#htist

peers. Thus, the best candidate to host the new replicatis (RPPerties ke., size and number of requests per document) as
immediate peer that has propagated the maximum numb@f€re in the original World Cup '98 dataset. It represents the
of requests for object to p. The replication attempt is madeSet of documents of the peers. The documents were uniformly

by p by sending aeplication requesto nodeq (message (1) distributed throughout the nodes. Each node initially aored
in Figure 1). 3 or 4 randomly selected documents, and each document
To decide whether to accept or reject a replication reque¥2S replicated into two nodes maximum. The distribution

node ¢ estimates the effect in its load after the addition dff document requests throughout the experiment is shown

the new object. The load, on nodeg will increase after in Figure 2. In this graph, the popularity (the total number
replicating object, sinceq will also have to reply to requestsof requests throughout the experiment) for each document

for i, in addition to the requests it is already receiving fof® shown. The distribution is artificially generated in such

the items it already stores. Furthermore, note that somieof £ W&y that it keeps the properties of the original document
already existing items of may need to be deleted in ordefequests. The figure shows that the document popularity is

to make space for objeat The deleted items are the leas€IP-like, with just a few documents receiving a large numbe

popular items of;. In order for the user of a particular nodeOf requests. Similar request distributions are also olesein

to prevent any data loss, he must backup it. Thus, the diRRPular file-sharing peer-to-peer systems [2].

space offered by each node is “dedicated” to the system, as

a user cannot control the long term persistence of the data ikhttp://www.neurogrid.net/php/simulation.php

that space. Eventually unpopular data could be removed fro 2The traces actually contained full logs of the communicatietwizen the
the system in favor of ,popular ones. Noglevaluates its load web servers and clients. We just considered the HTTP GETestgusince

) ) GET requests represent user requests for 188, 000 is the number of the
against the high load threshold and the Idgdof p. If the GET requests, not the size of the entire log file.

Ill. PERFORMANCEEVALUATION
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Our goal in the fairness allocation algorithm is to make .
the load distribution among the nodes as fair as possible. , *° o
We define the load on the peers as the amount of network & Q&“i .
bandwidth consumed by the documents on the peer. This is s T : o
measured by the number of bytes transferred from the node :g 150 X
as a response to queries originated from other nodes in the = .
system. Replicating a document closer to the users reqgesti » :Xf .
this document allows us to minimize the imbalance of the 50 2
number of bytes sent by each node, to reduce the number of o B S . )
hops to find the document and thus, fairly distribute the yuer 500 1000 1500 ZIOOO 2500 3000 3500
Popularity

load on all the peers.
In computing the fairness index, one important observatidig. 4. The replication degree vs. the popularity of each docu-
is that a small number of overloaded nodes may cause BNt
imbalance to the computation of the fairness index. To e¢aptu
this fact in the computation of the fairness index we chose
to plot separately the fairness index among the 10% mdgtanswer a query for a document decreases. Figure 5 shows
overloaded nodes and that among the remaining 90% B¢ average number of hops to the closest peer provider of
the nodes. Figure 3 shows the fairness index of the lo#te document. Our algorithm achieves incremental reductio
distribution of the nodes as a function of the number df the hop-count and continues to improve as the documents
queries in the system, for the 10% overloaded peers, the 9994 replicated in multiple peers. As a result, this redutes t
remaining peers and the total. The figure shows the same tré@g@dwidth on the communication links (as less messages are
for all three graphs. The fairness index substantially oaps Propagated) and also the number of peers that process and
as more user queries are submitted to the system. As fiepagate the messages.
number of queries increases, more replicas are createdeon th
nodes and thus the load is distributed across the peers. Note
that the overall fairness does not approach a very high yalueln this section we briefly describe related work on replica-
although it gradually increases. This happens becauseeséthtion strategies for load balancing in P2P overlays. Theausth
two different classes of nodes. However, the figure showss thia [11], using offline heuristics, show that the right replic
the load distribution among these classes is fair. placement algorithm is greatly influenced by the applicetio
Figure 4 shows the replication degree of the documents aara the user request patterns. Their algorithms however can
function of their popularity, as computed by the load ballagc not adapt to changing resource utilization workload. Tha-co
algorithm. The initial replication degree for all the docembs parison of various load balancing techniques in [18] intdisa
was uniform and set t@. The figure shows that as the popthat, not careful load information propagation in P2P ayste
ularity of the documents increases, their degree of refidica can result in large overheads and produce stale information
increases. This indicates that requests for popular dostsmeThe authors suggest that dissemination of peer capacttyefra
will be distributed across many nodes, rather than oveifgad than load) information should be preferred in order to avoid
only a few of the nodes in the system. Subsequently, this witfistability. Peer capacity however is not enough to captiuee
increase the fairness index of the load of the system. changing resource availability at the peers as a result wf ne
Our next observation is that the number of hops needetjects available at the nodes.

IV. RELATED WORK



3 in terms of quality of service than a random or a greedy
\\\ placement method. However all the proposed methods suffer
performance degradation, when there is no complete knowl-
2 edge of the nodes in the network.
In [6], a decentralized distributed system is considered.
15 o Apart from the object replicas, each node also caches limite
information about items replicated in other nodes. Thisis f
speeding-up the responses to the queries. Each node keeps
05 track of its load and employs either an active or a passive
replication strategy. The decision is based on whether the
0 node is considered to be overloaded or not. However, the
0 50000 100000 150000 200000 250000 300000 . .
Number of Queries evaluation of the load does not take into account the states
of the neighboring nodes. When all the neighbors of a loaded
g. 5. The average number of hops to answer queries node are also loaded, trying to unload that node will not help
and can result in oscillations.
In [10], authors examine various replica placement heuris-
Next, we discuss related work in load balancing in botfics that are applied in Content Distribution Networks. iFhe
structured and unstructured P2P systems. results demonstrate that popularity based replicatiofopes
a) Structured P2P systemin [4], CFS, a distributed file better even than a greedy algorithm with global knowledge of
system built on top of Chord [21], is proposed. In CFS, eaghe system. The performance is improved by making the peers
server controls the replication degree of each of its iteand, cooperate amongst them. However, if we assume a completely
is responsible for its availability and performance. Thé©RB unstructured dynamic system, the overhead of co-operation
system [15] organizes network nodes in regions. Each regiprohibits its use.
contains areplicator node, which disseminates information The problem of replica placement in Content Distribu-
about items replicated in nodes of that area. Replicatoesiodion Networks is studied in [16]. Various topology informed
are organized in a tree structure which enables nodes thaateheuristics are compared under different network topokgie
different regions to communicate. However, frequent ogtir  The results suggest that topology information can help in
nodes additions and deletions can affect the performande asducing the user perceived latency. In particular, htosis
robustness of the tree structure. that promote replication in high degree nodes are shown to
In [5] the authors propose a load balancing algorithngsult in allocations with 20% higher latencies and network
applicable in dynamic structured P2P systems. The algorithutilization, compared to centralized greedy approachesv-H
employs a set of directory servers. Their responsibilityois ever, the problem of load balancing is not considered.
periodically schedule virtual server migrations betwegstem Kazaa [12] is another widely used unstructured peer-to-
nodes. The scheduling is based on load data, sent to epebr file sharing system. Kazaa is used daily by millions
directory server by a random subset of nodes. The goal ¢ff users and has very low latency. A two-tier architecture
the scheduling is to limit the aggregated load of all thg used. Nodes in Kazaa are divided infrdinary nodes
nodes under a specific threshold. Their experiments ilitestr and SupernodesSupernodes are typically more powerfull and
that the algorithm is able to balance the node utilizatiobetter connected than ordinary nodes. Each ordinary node
by moving a relatively small proportion of the load. Theonnects to a Supernode. Supernodes on the other hand, form
scheme concentrates on structured peer-to-peer systemns s unstructured peer-to-peer network among themselves. In
DHTs. The difference from our method is that our technigueontrary, our system is completely decentralized and altpe
is completely decentralized and each node is not requireda@ equal; there is no set of “powerfull” nodes in the network
have global knowledge of the system. The method presented
in [5] requires that each node has global knowledge of the V. CONCLUSIONS ANDFUTURE WORK
system. The goal of our method is to balance the load usingin this paper we discussed the problem of fair resource
only local computations. allocation in Peer-to-Peer systems and presented a temhniq
In [3], a peer-to-peer framework for the management dfiat solves this problem in a decentralized manner. Our
federated services is presented. The proposed frameweork tathnique exploits load measurement information coltkcte
plements a publish/subscribe system, where the goal id¢o ofat the neighborhoods of the peers without introducing any
services to clients that connect to a small and restrictedfse significant overhead in the system; thus making the algorith
servers. Each node requires global knowledge of the statevefy appealing for large-scale systems. Our simulationlt®s
each of the other nodes in the system. This is impossibleshow that our technique achieves fairness in load balance
the type of network we consider. distribution at the peers, reduces the number of hops to find
b) Unstructured P2P system#n [14], various placement the documents and highly replicates the popular documents
strategies are compared. The authors observe that a gtraiagthe system. The evaluation of our method was performed
that places replicas near most active users, performsrbetising requests taken from a web trace. In our future work we
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are planning to examine the behavior of our methods undes] Antony Rowstron and Peter Druschel. Storage managementaching
different request arrival patterns. Specifically, we wolilke

to investigate what happens when the requests are bursty ove
time and arriving in a limited subset of nodes. Furthermorgp]

we

connections and disconnections.
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are planning to make experiments with dynamic peer.
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