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Abstract— Over the past few years, Peer-to-Peer (P2P) systems
have become very popular for constructing overlay networks of
many nodes (peers) that allow users geographically distributed
to share data and resources. One non-trivial question is how
to distribute the data in a fair and fully decentralized manner
among the peers. This is important because it can improve
resource usage, minimize network latencies and reduce the
volume of unnecessary traffic incurred in large-scale P2P systems.
In this paper we present a technique for fair resource allocation
in unstructured Peer-to-Peer systems. Our technique uses the
Fairness Index of a distribution as a measure of fairness and
shows how to optimize the fairness of the distribution using
only local decisions. Load balancing is achieved by replicating
documents across multiple nodes in the system. Our experimental
results demonstrate that our technique is scalable, has low
overhead and achieves good load balance even under skewed
demand.

I. I NTRODUCTION

In the recent years, the Peer-to-Peer (P2P) computing model
is emerging as a powerful paradigm for developing large-
scale distributed systems. This has found popular applications
in content sharing [16], multicast [7], distributed object-
location [20], [19], [21] and information retrieval [22]. P2P
networks create virtual (logical) networks of many peers that
allow users geographically distributed in wide-area networks
to access large amounts of data, without the need for central-
ized control. Additional features include their ability for self-
organization, resiliency to node failures and no need for dedi-
cated servers. These features, however, bring new challenges.
The challenge ishow can you implement a fair resource
allocation scheme to distribute the data in an unstructured
peer-to-peer system to balance the load, and achieve this
in a fully decentralized manner?The combination of large
data repositories, the geographic distribution of the users and
the dynamic and heterogeneous nature of the P2P systems
demands careful distribution of the data across the system and
orchestration of the utilization of the system resources.

The importance of these problems have been recognized
by recent P2P systems [5] such as Pastry [19], Oceanstore
[13], Chord [21] and CAN [20] (typically referred to as
StructuredOverlays) which are organized in such a way that
objects are located at specific nodes in the network and nodes
maintain some state information, to enable efficient retrieval
of the objects. These sacrifice atomicity by mapping objects

to particular nodes and assume that all nodes are equal in
terms of resources, which can lead to bottlenecks and hot-
spots. In Unstructuredoverlay networks [14], [10], on the
other hand, objects can be located at random nodes, and nodes
are able to join the system at random times and depart without
a priori notification. Recent efforts have shown that a self-
organizing unstructured overlay protocol maintains an efficient
and connected topology when the underlying network fails,
performance changes, or nodes join and leave the network
dynamically [9]. Having a global view in unstructured overlays
however, is impractical; thus choosing the right resource
allocation protocol is non-trivial.

In this paper we present a fair resource allocation algorithm
for unstructured P2P overlays. Our algorithm is based on
the concept of fairness and uses theFairness Index[8] of a
distribution to measure ”how equally” the objects are allocated
to the peers. The allocation of the objects is driven by decisions
made by the individual peers based on information they have
stored locally. An important consideration for our technique
is to have a system that requires only local computation. Due
to the large-scale of the P2P system, having global knowledge
of the state of each node of such a network is practically
impossible. Local computations improve efficiency, and allow
the system to scale well and to react to changes quickly.
Furthermore, the technique must handle (1) varying object
loads, (2) different node capacities and (3) continuous insertion
and deletion of the objects. In the paper we show how to
optimize the fairness of the distribution in our system using
only local decisions. We also present experimental resultsof
our proposed technique. We investigate the fairness of the load
distribution, the degree of replication and the reduction in the
number of hops as a function of the popularity and the number
of object requests in the system. The overhead of our approach
is small because we piggy-back load measurement information
in the messages. Thus, there is no need for generating addi-
tional load measurement messages in the system.

This paper is organized as follows. Section II discusses the
problem we consider and our approach. Simulation results are
presented in Section III. Section IV discusses related work,
while Section V concludes the paper.



II. A PPROACHOVERVIEW

We consider an unstructured P2P system ofN nodes in
which the nodes are typically user-machines. The communi-
cation link between two nodesp andq is characterized by the
bandwidth available to it aspband(q). (Note that the incoming
and outgoing bandwidth of the node may be different). This
leads to a limit on the number of connections a peer can
maintain. We denote this number of connections that a peer is
maintaining bypconn.

For a given peeru, let Du be the set of documents that
are stored inu. Without loss of generality, we assume that
each documentd is characterized by a sequence of keywords,
and lets(d) be the set of keywords ind. The query method to
searching for documents in our system isK-random walks.K-
random walks are shown to be a scalable solution, achieving
linear increase in the number of messages propagated in the
network. We note here, that although our system uses theK-
random walks searching technique, other search algorithms
could also be used in our system. We consider the loadlpi

of
object i to be the total volume of data (in bytes) transmitted
by p (to peers requestingi) in order to obtain objecti. At any
given time, we define the loadlp of peerp as the sum of the
loads

∑
i lpi

due to all the objects stored onp at that time.
Each nodep is characterized by its neighborhoodpneigh

which is defined to be the set of nodes consisting ofp as
well as the nodes that are up toh hops away fromp. For
example, in Figure 1, forh = 1, the neighborhoodpneigh

of nodep is {p, q1, q2, q3, q4}. Nodep keeps anestimatefor
the loadpq,l of each peerq in its neighborhood. It collects
load information about the nodes in its neighborhood only.
These are obtained through resource utilization feedbacks
propagated through queries and other system messages. Note
that the accuracy of the load estimates (1) increases when the
frequency of collecting the load information increases and(2)
decreases as the number of hops between the peers increases.
This information is later used by the load balancing algorithm.
The architecture of our system, including resource utilization
information obtained by the peers, is shown in Figure 1.

A. Fairness Index

We use theFairness Indexmetric to measure ”how equal”
are the loads of the peers [8]. The fairness index of a load
distribution l̄ is defined to be:

F(l̄) =
(
∑

p∈N lp)
2

|N | ·
∑

p∈N l2p
(1)

whereN is the set of nodes in the P2P system. This measure-
ment allows us to compare the load distributions of the nodes
by comparing their fairness indexes. The fairness index value
ranges between values0 and1. Given the above equation, one
can verify that the higher the value of the fairness index, the
more uniform (fair) the distribution is. A totally fair system
has a fairness index of1, while a totally unfair system has
an index value of0. For example, when calculating the load
fairness among a set of nodesN , a value of0.1 indicates the

Fig. 1. The model of our system

system to be fair to only10% of the nodes inN and unfair to
90% of them. The boundness of fairness index makes it ideal
for the absolute evaluation of a load distribution’s uniformity.

The Fairness Index has the important property that it is
population size and metric independent, it can be applied to
any number of nodes and the unit of measurement does not
matter. An additional feature of the Fairness Index is that it is
not necessary that it will monotonically increase of decrease
when the load of a single node increases or decreases. Rather,
it increases when the load approaches a specific valuelbest and
decreases when the load diverges fromlbest. In addition to that,
fairness index is a continuous quantity, reasonably modified
when the loads of some of the nodes change. No matter how
small a change of a load is, it is going to affect the fairness
index of the load distribution. For example, the fairness of
a distribution decreases when the load of a single element
diverges from the valuelbest that results in the maximum
fairness index (assuming that the rest of the loads do not
change), while it increases in the opposite case.

Finding the optimal distribution of the load to the peers is
NP-complete. However, recent work shows that, in the cen-
tralized context (that is, when a node knows all the individual
loads and the resource availability of all the nodes), a greedy
algorithm can give good results [17].

B. Computing the Fairness for a Distributed Environment

The challenge in our scheme is to achieve a fair load
distribution using only local information and making only
local decisions at the nodes. To do that, nodes compute the
load distributionF(l̄) and the average loadavgl̄ in their
neighborhoods using load measurements they received from
the peers in their neighborhoods. These measurements are ap-
pended at the end of queries and other system messages, thus,
eliminating the overhead of generating additional messages.
The calculations are performed according to the following
formulas:

F(l̄) =
(
∑

q∈pneigh
lq)

2

|pneig| ·
∑

q∈pneigh
l2q

(2)

avgl̄ =

∑
q∈pneigh

lq

|pneig|
(3)



Thus, nodep uses the load estimates of each nodeq in
pneigh to compute the load fairnessFl̄ and the average load
avgl̄ of its neighborhoodpneigh. If the neighborhood fairness
is low (lower than a thresholdτneigh) and node’sp load
is higher than the average load of the neighborhood, this
indicates thatp may be overloaded. Thus, nodep tries to
reduce its load by selecting an itemi to replicate to another
node. The idea behind this, is thatp should now receive less
requests fori. The itemi is the one with the highest number
of per node requests.

An important observation is that the item with the highest
number of per node requests is not necessarily the most
popular item ofp. However, this is the item that will produce
the largest reduction in the number of requests propagated
to nodep. For example, let us examine the case in Figure
1. Consider itemsi1 and i2, both stored in nodep. Let us
assume thatp has received5 requests fori1 by neighborq1

and1 by neighborq2. Also, thati2 has been requested3 times
by neighborq3 and4 times by neighborq4. The total number
of requests fori1 is 5 + 1 = 6, while for i2, it is 3 + 4 = 7.
However, the maximum number of per-neighbor requests is5
for i1 (the number of requests made fori1 by q1) and 4 for
i2 (the number of requests made fori2 by q4). Thus, among
these two items,i1 will be preferred to be replicated. This is
because, when selectingi1, we will selectq1 as the receiver of
the replicated item (sinceq1 has made the most requests for
i1). Doing this,p is expected to be relieved fromk1 requests
(the requests that would be made fromq1 for i1), in the future.
On the other hand, ifi2 was chosen for replication, the best
would be to replicate it toq4. Then, p would be relieved
from k2 requests (the requests fori2, made fromq4). But,
the statistics make us estimate thatk2 < k1. So, replicating
i1, rather thani2 seems more promising.

Given the above observation, the item to be replicated is
selected based on its popularity. The goal for nodep is to
reduce its load by replicating objecti to one of its immediate
peers. Thus, the best candidate to host the new replica is that
immediate peerq that has propagated the maximum number
of requests for objecti to p. The replication attempt is made
by p by sending areplication requestto nodeq (message (1)
in Figure 1).

To decide whether to accept or reject a replication request,
node q estimates the effect in its load after the addition of
the new object. The loadlq on nodeq will increase after
replicating objecti, sinceq will also have to reply to requests
for i, in addition to the requests it is already receiving for
the items it already stores. Furthermore, note that some of the
already existing items ofq may need to be deleted in order
to make space for objecti. The deleted items are the least
popular items ofq. In order for the user of a particular node
to prevent any data loss, he must backup it. Thus, the disk
space offered by each node is “dedicated” to the system, as
a user cannot control the long term persistence of the data in
that space. Eventually, unpopular data could be removed from
the system in favor of popular ones. Nodeq evaluates its load
against the high load threshold and the loadlp of p. If the

allocation is acceptable, it is actually performed. However, if
the request is not accepted by nodeq, nodep will select the
object with the second highest number of per node requests
and a new node to host this object. Nodeq1 informs p about
its decision by sending it a reply message (message (2) in
Figure 1).

One could argue that a heavy loaded node could migrate,
rather than replicate the items that contribute most to its load.
But, these items are also the most popular ones. By removing
them, the number of hops to locate the items could increase.
Furthermore, to avoid ”ping-pong situations” in which popular
items continuously migrate among the nodes in the network
we associate anum migration attribute with each object and
(1) prefer to migrate a previously non-migrated object to an
already migrated one and (2) restrict the maximum number of
times an object can migrate.

III. PERFORMANCEEVALUATION

To evaluate the fairness of the system we ran experiments
on the Neurogrid Simulator1. A P2P network was generated
as a random graph of 1000 nodes. All links were assumed
to have the same bandwidth. Each node had 6 connections on
average. The average node capacity was50KB, while the sum
of the size of all the items was about20MB. The threshold
τneigh was set to0.45. The neighborhood sizeh was set to1.
For the experiments we used the World Cup ’98 dataset which
consists of all the requests made to the 1998 World Cup Web
site between April 26 - July 26, 1998 [1].

To simulate the queries run by the peers, we used280, 000
GET requests of that dataset2. Each request is characterized by
the ID of the node that issued it, the time it was sent and the
size of the requested document. We selected a random set of
2500 documents taken from the set of documents appearing in
these requests. This random set maintained the same statistical
properties (i.e., size and number of requests per document) as
were in the original World Cup ’98 dataset. It represents the
set of documents of the peers. The documents were uniformly
distributed throughout the nodes. Each node initially contained
3 or 4 randomly selected documents, and each document
was replicated into two nodes maximum. The distribution
of document requests throughout the experiment is shown
in Figure 2. In this graph, the popularity (the total number
of requests throughout the experiment) for each document
is shown. The distribution is artificially generated in such
a way that it keeps the properties of the original document
requests. The figure shows that the document popularity is
Zipf-like, with just a few documents receiving a large number
of requests. Similar request distributions are also observed in
popular file-sharing peer-to-peer systems [2].

1http://www.neurogrid.net/php/simulation.php
2The traces actually contained full logs of the communication between the

web servers and clients. We just considered the HTTP GET requests, since
GET requests represent user requests for files.280, 000 is the number of the
GET requests, not the size of the entire log file.
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Fig. 2. The popularity distribution of the documents

A. Simulation Results

Our goal in the fairness allocation algorithm is to make
the load distribution among the nodes as fair as possible.
We define the load on the peers as the amount of network
bandwidth consumed by the documents on the peer. This is
measured by the number of bytes transferred from the node
as a response to queries originated from other nodes in the
system. Replicating a document closer to the users requesting
this document allows us to minimize the imbalance of the
number of bytes sent by each node, to reduce the number of
hops to find the document and thus, fairly distribute the query
load on all the peers.

In computing the fairness index, one important observation
is that a small number of overloaded nodes may cause an
imbalance to the computation of the fairness index. To capture
this fact in the computation of the fairness index we chose
to plot separately the fairness index among the 10% most
overloaded nodes and that among the remaining 90% of
the nodes. Figure 3 shows the fairness index of the load
distribution of the nodes as a function of the number of
queries in the system, for the 10% overloaded peers, the 90%
remaining peers and the total. The figure shows the same trend
for all three graphs. The fairness index substantially improves
as more user queries are submitted to the system. As the
number of queries increases, more replicas are created on the
nodes and thus the load is distributed across the peers. Note
that the overall fairness does not approach a very high value,
although it gradually increases. This happens because of these
two different classes of nodes. However, the figure shows that
the load distribution among these classes is fair.

Figure 4 shows the replication degree of the documents as a
function of their popularity, as computed by the load balancing
algorithm. The initial replication degree for all the documents
was uniform and set to2. The figure shows that as the pop-
ularity of the documents increases, their degree of replication
increases. This indicates that requests for popular documents
will be distributed across many nodes, rather than overloading
only a few of the nodes in the system. Subsequently, this will
increase the fairness index of the load of the system.

Our next observation is that the number of hops needed
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to answer a query for a document decreases. Figure 5 shows
the average number of hops to the closest peer provider of
the document. Our algorithm achieves incremental reduction
in the hop-count and continues to improve as the documents
get replicated in multiple peers. As a result, this reduces the
bandwidth on the communication links (as less messages are
propagated) and also the number of peers that process and
propagate the messages.

IV. RELATED WORK

In this section we briefly describe related work on replica-
tion strategies for load balancing in P2P overlays. The authors
in [11], using offline heuristics, show that the right replica
placement algorithm is greatly influenced by the applications
and the user request patterns. Their algorithms however can
not adapt to changing resource utilization workload. The com-
parison of various load balancing techniques in [18] indicates
that, not careful load information propagation in P2P systems
can result in large overheads and produce stale information.
The authors suggest that dissemination of peer capacity (rather
than load) information should be preferred in order to avoid
instability. Peer capacity however is not enough to capturethe
changing resource availability at the peers as a result of new
objects available at the nodes.
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Next, we discuss related work in load balancing in both
structured and unstructured P2P systems.

a) Structured P2P systems:In [4], CFS, a distributed file
system built on top of Chord [21], is proposed. In CFS, each
server controls the replication degree of each of its items,and
is responsible for its availability and performance. The RaDaR
system [15] organizes network nodes in regions. Each region
contains areplicator node, which disseminates information
about items replicated in nodes of that area. Replicator nodes
are organized in a tree structure which enables nodes located in
different regions to communicate. However, frequent replicator
nodes additions and deletions can affect the performance and
robustness of the tree structure.

In [5] the authors propose a load balancing algorithm,
applicable in dynamic structured P2P systems. The algorithm
employs a set of directory servers. Their responsibility isto
periodically schedule virtual server migrations between system
nodes. The scheduling is based on load data, sent to each
directory server by a random subset of nodes. The goal of
the scheduling is to limit the aggregated load of all the
nodes under a specific threshold. Their experiments illustrate
that the algorithm is able to balance the node utilization,
by moving a relatively small proportion of the load. The
scheme concentrates on structured peer-to-peer systems and
DHTs. The difference from our method is that our technique
is completely decentralized and each node is not required to
have global knowledge of the system. The method presented
in [5] requires that each node has global knowledge of the
system. The goal of our method is to balance the load using
only local computations.

In [3], a peer-to-peer framework for the management of
federated services is presented. The proposed framework im-
plements a publish/subscribe system, where the goal is to offer
services to clients that connect to a small and restricted set of
servers. Each node requires global knowledge of the state of
each of the other nodes in the system. This is impossible in
the type of network we consider.

b) Unstructured P2P systems:In [14], various placement
strategies are compared. The authors observe that a strategy
that places replicas near most active users, performs better

in terms of quality of service than a random or a greedy
placement method. However all the proposed methods suffer
performance degradation, when there is no complete knowl-
edge of the nodes in the network.

In [6], a decentralized distributed system is considered.
Apart from the object replicas, each node also caches limited
information about items replicated in other nodes. This is for
speeding-up the responses to the queries. Each node keeps
track of its load and employs either an active or a passive
replication strategy. The decision is based on whether the
node is considered to be overloaded or not. However, the
evaluation of the load does not take into account the states
of the neighboring nodes. When all the neighbors of a loaded
node are also loaded, trying to unload that node will not help
and can result in oscillations.

In [10], authors examine various replica placement heuris-
tics that are applied in Content Distribution Networks. Their
results demonstrate that popularity based replication performs
better even than a greedy algorithm with global knowledge of
the system. The performance is improved by making the peers
cooperate amongst them. However, if we assume a completely
unstructured dynamic system, the overhead of co-operation
prohibits its use.

The problem of replica placement in Content Distribu-
tion Networks is studied in [16]. Various topology informed
heuristics are compared under different network topologies.
The results suggest that topology information can help in
reducing the user perceived latency. In particular, heuristics
that promote replication in high degree nodes are shown to
result in allocations with 20% higher latencies and network
utilization, compared to centralized greedy approaches. How-
ever, the problem of load balancing is not considered.

Kazaa [12] is another widely used unstructured peer-to-
peer file sharing system. Kazaa is used daily by millions
of users and has very low latency. A two-tier architecture
is used. Nodes in Kazaa are divided intoOrdinary nodes
andSupernodes. Supernodes are typically more powerfull and
better connected than ordinary nodes. Each ordinary node
connects to a Supernode. Supernodes on the other hand, form
an unstructured peer-to-peer network among themselves. In
contrary, our system is completely decentralized and all peers
are equal; there is no set of “powerfull” nodes in the network.

V. CONCLUSIONS ANDFUTURE WORK

In this paper we discussed the problem of fair resource
allocation in Peer-to-Peer systems and presented a technique
that solves this problem in a decentralized manner. Our
technique exploits load measurement information collected
at the neighborhoods of the peers without introducing any
significant overhead in the system; thus making the algorithm
very appealing for large-scale systems. Our simulation results
show that our technique achieves fairness in load balance
distribution at the peers, reduces the number of hops to find
the documents and highly replicates the popular documents
in the system. The evaluation of our method was performed
using requests taken from a web trace. In our future work we



are planning to examine the behavior of our methods under
different request arrival patterns. Specifically, we wouldlike
to investigate what happens when the requests are bursty over
time and arriving in a limited subset of nodes. Furthermore,
we are planning to make experiments with dynamic peer
connections and disconnections.
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