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Abstract

Stream processing systems have become important, as

applications like media broadcasting, sensor network mon-

itoring and on-line data analysis increasingly rely on real-

time stream processing. Such systems are often challenged

by the bursty nature of the applications. In this paper,

we present BARRE (Burst Accommodation through Rate

REconfiguration), a system to address the problem of bursty

data streams in distributed stream processing systems.

Upon the emergence of a burst, BARRE dynamically re-

serves resources dispersed across the nodes of a distributed

stream processing system, based on the requirements of

each application as well as the resources available on

the nodes. Our experimental results over our Synergy

distributed stream processing system demonstrate the ef-

ficiency of our approach.

1. Introduction

During the recent years, numerous applications that gen-

erate and process continuous streaming data have emerged.

Examples include network traffic monitoring, financial

data analysis, multimedia delivery and sensor streaming in

which sensor data are processed and analyzed in real-time

[1], [2]. In a typical stream processing application, streams

of data are processed concurrently and asynchronously by

one or more processing components. Examples of pro-

cessing components include filtering operations aggregation

operators, or more complex operations, such as top-K

querying and video transcoding.

A number of stream processing systems have been pro-

posed in the literature, including Aurora [3], STREAM [1],

TelegraphCQ [2] and the Cougar project [4]. These systems

have primarily focused on designing new operators and

new query languages, as well as building high-performance

stream processing engines operating in a single node.

Recent efforts have proposed distributed stream process-

ing infrastructures and have investigated composition and

placement algorithms. The majority of these (including

our previous work [5], [6], [7]) focus on composition and
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placement techniques making the assumption that resource

availability and application rate requirements are constant.

However, a significant number of distributed stream pro-

cessing applications, although they typically operate under

constant data rates, can suddenly experience a burst. The

burst can be the result of increasing traffic volume due to a

DoS attack in the example of a network traffic monitoring

application, or a large number of alarm messages being

generated when there is a time-critical event (such as a

fire, chemical spill or an earthquake) in a sensor network

field. In these settings, it is important that no data is lost

and that time-critical events are processed and analyzed in

a timely manner.

Accommodating such bursty data streams brings signifi-

cant challenges to the design of distributed stream process-

ing systems: First, bursty data streams are characterized by

large volumes, variable and unpredictable rates. In these

cases it is very difficult to determine a priori when a

burst will occur. Second, computational and communication

resources are shared by multiple concurrent and competing

applications, thus, the occurrence of a burst can affect the

performance of existing applications in the system. Third, a

distributed stream processing system consists of a number

of nodes geographically distributed, where the functionality

of a processing component is offered only by a subset of

the nodes of the system. Thus, meeting the real-time re-

quirements of the distributed stream processing applications

can entail considerable strain on both communication and

processing resources.

A common way to deal with such overload situations

is to apply admission control that decides at the time of

request whether the new application should be accepted

or to perform resource reservation that a priori commits

resources to applications to address bursts [8]. However,

these techniques result in under-utilization of the system

and significant waste of resources when bursts do not

occur. Furthermore, blindly reserving resources without

considering the actual needs of the applications has limited

advantage. Another solution to this problem is to perform

QoS degradation [9] to adapt to changing resource condi-

tions or application demands. However, this is a reactive

strategy where a burst is treated only after it has occurred,

and thus could lead to significant data loss. A third strategy



is to predict overloads based on historical data about each

application [10]. However, in many occasions, such data is

not available.

In this paper, we present BARRE (Burst Accommodation

through Rate REconfiguration), our system to accommo-

date bursts of data streams in distributed stream processing

systems. The question we want to answer is the following:

“Can we accommodate a burst without having to reserve

resources a priori? How should we react to a burst

when it occurs?” Our approach is as follows: BARRE

works in two phases: (1) An offline phase during which

the system proactively generates a number of possible

rate allocation assignments based on the requirements of

the applications as well as the resource availability on

the nodes. During this phase, the system determines the

rates of the data streams of the application components

and allocates resources dispersed across the nodes of the

system. (2) An online phase where the system monitors the

resource usage and application behavior. Upon the onset of

a burst, the system uses the pre-calculated rate allocation

plans in order to modify the input rates of individual

components to accommodate the burst in a timely manner.

The goal of reconfiguration is to make provisions for future

bursts. This is in contrast to other dynamic reconfiguration

schemes [11], [12], that seek to optimize a given utility,

expressed as a weighted sum of the application input rates.

By calculating the plans in advance, the advantage is that

the system can react to the burst in a timely manner. This is

in contrast to existing solutions that either reserve resources

a priori or perform dynamic reconfiguration reactively. Our

experimental results over our distributed stream processing

system Synergy [13] demonstrate the efficiency and benefits

of our approach.

2. System Architecture and Model

2.1. System Architecture

We have built our scheme in our distributed stream

processing system called Synergy [13] (Figure 1). Syn-

ergy consists of multiple nodes, connected in an overlay

network. Each node in the overlay offers one or more

services to the system. A service is a function that defines

the processing of a finite amount of input data. Examples of

processing are aggregation of sensor readings, data filtering

or video transcoding. A stream processing application is

executed collaboratively by peers of the system that invoke

the appropriate services. The instantiation of a service on

a node is called a component. A component is a running

instance of a service. A component operates on individual

chunks of data, named data units. Examples of data units

are sequences of picture or audio frames (for example, in

a multimedia application), or sets of measured values (for
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Figure 1. The architecture of a distributed stream

processing system.

example, in a sensor data analysis application). The size

of a data unit depends on the application. Upon reception

of a data unit by a node, the data unit is inserted in the

scheduler’s queue waiting to be processed. To execute a

data unit, the appropriate component is invoked.

The user submits a request for a set of applications

{appq}, 1 ≤ q ≤ Q to one of the nodes in the system, along

with their respective initial rate requirements rq. Each

application is described as a sequence of services that need

to be invoked. The initial rate requirement rq for an appli-

cation represents the delivery rate of data units requested

by the application. An example of an application requested

by the user is shown in Figure 2(a). When submitting a

request, the user expects from the system to instantiate the

appropriate components on the system in order to perform

the processing required by each application, at the rate

required by the application.

Each invoked component ci is characterized by its re-

source requirements uci

j for each resource j it uses (e.g.

CPU or bandwidth) and its selectivity selci . The selectivity

represents the ratio of output rate to input rate for the

component. The rate requirements and the selectivity of

a component are characteristics of the service run by the

component. These can be provided by the user prior to

application execution or acquired through profiling at run-

time. Note that the execution of a service for an application

can be assigned to more than one components with each

component being responsible for a subset of the data that

will be processed by the component. An example of a

service being executed by multiple components is shown
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in Figure 2(b).

2.2. Problem Formulation

Let us assume a request for a set of applications sub-

mitted to our system. Our goal is to determine the rate

assignment of the components invoked by each application

appq so that the application rate requirement rq is met. If

necessary, more than one components can be instantiated

for each service requested.
To satisfy the node and link capacity constraints, for each

resource j (1 ≤ j ≤ J) the sum of resource j’s usage of the

components running on a node n should be no more than

the availability An
j of resource j on n. This is expressed

as follows:

∀n ∈ N ,
∑

ci∈n

rci
· uci

j ≤ An
j , 1 ≤ j ≤ J (1)

where rci
and uci

j represent the assigned rate and resource

needs for component ci respectively. Additional constraints

that need to be taken into account are the flow conservation

constraints. Such constraints represent the relation between

the input and the output rates of a component, defined by

the selectivity of the component. The selectivity selci of a

component ci represents the average ratio of the number of

output data units to the number of input data units of ci.

The selectivity of each component depends on the service

run by the component. Let D(ci) be the set of downstream

components of component ci. Then the flow conservation

constraints are represented as:

∀ci,
∑

cj∈D(ci)

rcj
= selci · rci

(2)

Given the above constraints, the composition algorithm

must come up with a rate assignment that will prove most

beneficial on the event of a sudden burst. In other words,

the resulting assignment must be such that the minimum

number of data units will be missed upon an event of a

sudden burst of one or more of the applications.

Assume we have Q applications. Consider the Q-

dimensional Euclidean space R
Q
+, where each dimension

represents the input rate of the corresponding application.

Each combination of input rates can be represented by

a point in R
Q
+. The component requirements and node

capacities define a feasible region in this space. Thus, the

feasible region is the set of all points (application input

rates combinations) that nodes in the given distributed

stream processing system can accommodate without any

data unit being dropped. The form of linear constraints (1)

and (2) suggest that in the general case of Q applications,

the feasible region is a convex polytope [14].

Example 1. Let us consider a simple example with two

applications, shown in Figure 3. The figure shows the com-

ponents invoked by the applications along with the corre-

sponding times needed to process a single data unit. The

feasible region is shown in Figure 4. In this example, the

input rates of the applications are determined by the capacity

constraints of each node.

Next, we present the notion of dominance between two

application input rate combinations. Given two application

input rate combinations represented by points p1 and p2

in the feasible region, point p2 dominates p1 (p2 < p1)

if and only if: (1) The input rates represented by p2 are

greater than or equal to the corresponding input rates in p1

(p2(q) ≥ p1(q), 1 ≤ q ≤ Q). (2) There is at least one input

rate such that p2(l) > p1(l). For example, points p3, p4

and p5 in Figure 5 are some of the points that dominate

point p. However, points p1 and p2 do not dominate p.

When a point p dominates a point p′, this indicates that

the input rate combination represented by p is “preferred”

compared to the application input rate combination repre-

sented by p′. This is because when p < p′ is true, then (1)



 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25

R
a
te

 o
f 
a
p
p
lic

a
ti
o
n
 2

 (
A

D
U

s
 /
 m

s
e
c
)

Rate of application 1 (ADUs / msec)

Feasible Region

dest1 capacity constraint

dest2 capacity constraint

Capacity constraints of nodes A and B

Figure 4. The feasible region for an example of two

applications.

 0

 0.05

 0.1

 0.15

 0.2

 0  0.05  0.1  0.15  0.2  0.25

R
a
te

 o
f 
a
p
p
lic

a
ti
o
n
 2

 (
A

D
U

s
 /
 m

s
e
c
)

Rate of application 1 (ADUs / msec)

p1

p2

p3

p4

p5p

Figure 5. Some pareto points on the feasible region.

at least one of the application input rates represented by

p is larger than the corresponding input rate for the same

application represented in p′ and (2) no application input

rate in p is smaller than the corresponding application input

rate in p′. Thus, if we have such a case to choose, it would

be more beneficial to select the application rates that result

to p.

For a point p in the feasible region, if there is no point

p′ within the feasible region such that p′ < p, then p is a

pareto point [15]. For example, points p1, p2, p3, p4 and

p5 in Figure 5 are pareto points.

It can be easily understood that if there is a feasible

solution for an input rate combination represented by a

point p, then the input rate combinations represented by

points dominated by p are also feasible. In addition, a

component rate assignment calculated for p will also work

for the dominated input rate combinations, since the rates

of the components will be smaller than or equal to what

was planned. Since the feasible region of our problem is

convex, the pareto points lie on its boundary. Thus, for each

point p in the feasible region (but not on its boundary), there

is a pareto point p′ on the boundary of the feasible region,

that dominates p.

Let Cq be the set of components serving application q.

If the input rate rq of application q increases, the rate rci

of each component ci ∈ Cq will increase as well. Let us

assume that the input rate of application q increases by δq.

Then, the amount of increase of rci
will be proportional to

the fraction of the substream data being processed by ci.

Thus, rci
is expected to be increased by δq ·

rci

rq
. In order

for our distributed stream processing system to be able to

sustain such an increase, Equation (3) must hold for each

node n ∈ N of the system:

∑

ci∈n

rci
· uci

j +
∑

ci∈n∩Cq

δq ·
rci

rq

· uci

j ≤ An
j (3)

where 1 ≤ j ≤ J . The first sum in Equation (3) represents

the current resource requirements of component ci running

on node n. The second sum represents the additional

resource requirements due to the increase on the input rate

of the application. By assuming a change δq to the rate of

each application appq, constraint (3) can be extended to

the case where multiple bursts can occur simultaneously:

∀n ∈ N ,

Q
∑

q=1

∑

ci∈n∩Cq

rci
·

(

1 +
δq

rq

)

· uci

j ≤ An
j (4)

The larger the amount δq can become without violat-

ing the above equations for any of the nodes, the more

substantial the burst of the corresponding application that

can be sustained by the system without changing the rate

assignment.
The objective of rate assignment is to minimize the

probability of one or more bursts overloading the system.

This helps in decreasing the number of data units that

will be lost when reconfiguring the system so that it fully

copes with the bursts. The input rate of any of the given

applications can have a burst at any time. We would like

our rate assignment to be able to sustain such an abrupt rate

increase, no matter the application that demonstrates such

behavior. In other words, there is the need that the values

of all δq’s to be as equal as possible. More formally, we

would like:

p′ = p + δ =







r1 + δ1

...

rQ + δq






<







r1 + c
...

rQ + c






= p + δ

eq ⇒

δ =







δ1

...

δQ






<







c
...

c






= δ

eq (5)



where c ≥ 0. δ
eq represents the case where all δq’s have

the same maximum possible value c so that constraints (2)

and (4) are not violated. Constraints (5) express that the

optimal solution should only maximize one or more δq’s

only in the case when this optimization will have no impact

on the rest of the δq’s. In what follows, we will usually

need to refer only to the unit vectors that have the same

direction with δ and δ
eq. We represent those vectors as δ̂

and δ̂
eq respectively. Given the above constraints, and the

current input rates of the applications, we would like a rate

assignment that maximizes:

Q
∑

q=1

δq (6)

It is important to note that for any input rate combination,

maximizing
∑

δq means that we will end up with an input

rate combination on the border of the feasible region.

Example 2. Let us consider the feasible region of Example

1 (Figure 4). Given an input rate combination p = (r1, r2),
maximizing δ1 + δ2 without violating constraints (2), (4)

and (5), would result in a component rate assignment that

is equivalent to the combination of application input rates

p′ = (r1 + δ1, r2 + δ2), as shown in Figure 6.
On the other hand, if a burst results in the application input

rate combination given in Figure 7, we would prefer a plan

that provisions for an application input rate combination

p2 = (r1 + δ1, r2 + δ′2) rather than one that provisions for

p′ = (r1 + δ1, r2 + δ2), since increasing δ2 to δ′2 will have

no impact on δ1.

3. The BARRE Composition Algorithm

In the previous section, we formulated the component

rate allocation problem. In this section, we present the

operation of BARRE (Burst Accommodation through Rate

REconfiguration), our system that addresses the problem

of burst accommodation in Distributed Stream Processing

Systems. BARRE consists of the following components:

(1) An offline application composition method that pre-

calculates a number of rate assignment plans for different

components of the system that can be used to accommodate

bursts. Since equations (4) and (5) are not linear, the rate

assignment problem is a rather time-consuming algorithm

to run whenever reconfiguration was needed. Instead, we

use a linear optimization method (as we show next) to pre-

calculate the appropriate rate allocation. This phase takes

place offline and the goal is to be able to generate and store

some backup rate assignments a priori so that we can react

in a timely manner whenever a burst occurs. (2) An online

phase during which the system monitors the application

incoming rates and the availability of the system resources

to detect bursts. Upon the detection of a burst, our system

needs to respond in a timely manner to address the burst.

BARRE then generates a new plan by combining one or

more of the pre-calculated assignments generated during

the offline application composition phase. Then, it triggers

this plan by adjusting the input rates of the components.

3.1. Feasible Region Determination

In section 2.2 we formulated our optimization problem.

In the following we describe how to pre-select a few

optimal points in the feasible region and the corresponding

component input rate assignments that will be used to

determine the optimal solution whenever a burst happens

at runtime.

A problem that needs to be addressed concerns the

application input rate combinations for which optimal rate

assignment will be pre-calculated. Careful selection of such

combinations is really important. Rate allocation should be

calculated for as few input rate combinations as possible,

since time and memory space overhead of the component

rate allocation mechanism is proportional to the number of

pre-calculated combinations. On the other hand, we need

to make sure that our algorithm will come up with a rate

allocation scheme whenever the input rates are such that

the applications can be accommodated by the system.

BARRE determines the feasible region by taking ad-

vantage of its shape. Specifically, BARRE identifies the

vertices of the feasible region that are also pareto points.

In what follows, we will call such points index points.

For example, let us consider the feasible region shown in

Figure 5. As mentioned previously, the pareto points of the

feasible region shown in the figure are all the points that

lie on the straight line that stretches from point p1 to point

p5. Points p1, p2, p3, p4 and p5 are some of the pareto

points for the particular problem. However, points p1 and

p5 are the only pareto points that are also edges of the

feasible region. Thus, they are the only index points when

considering the particular feasible region. Like all points in

the feasible region, an index point represents an application

input rate combination. For each index point, BARRE

calculates an appropriate component rate assignment that

results in the respective application input rate combination.

These component rate assignments will be used to construct

the appropriate component rate allocation on the event of a

burst. In addition, each index point keeps a list to at most

Q facets [16]. A facet in a Q-dimensional feasible region

is a (Q−1)-dimensional face of the region. In other words,

a facet is one of the sides of the feasible region.

Next, we describe the methods we use to identify the

index points and the related component rate assignments.
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3.2. Identifying the Index Points

Find the maximum possible rate for each application.

This step is equivalent to the max-flow problem. It is solved

by constructing a linear problem. For each application

appq, 1 ≤ q ≤ Q, we seek to maximize:

∑

ci∈S(appq)

rci
(7)

where S(appq) are the input rates to the input components

(the components that instantiate the first service of the

application). This sum is equal to the total input rate of

the application. To find its maximum, we maximize the

above equation subject to the capacity constraints given in

Equation (1) and the selectivity and flow conservation con-

straints given in Equation (2). By solving this problem for

each application, we determine an appropriate component

rate allocation plan for the respective point in the feasible

region (as well as the point itself).

Finding the mid point. The set of points P created on

the previous step are the vertices of a (Q−1)-simplex. We

find the mid (average) point p0 for this simplex, as well as

the normal (perpendicular) vector to the simplex, d0 [17].

Maximize the mid point. For the given p0 and d0,

consider the line that starts from p0 and moves towards d0.

Find the point that maximizes
∑

rq on that line, subject to

constraints (1) and (2). If this results in a point p1 = p0, no

further action is needed, since the aforementioned simplex

is a facet of the feasible region. On the other hand, if a

point p1 < p0 is found, there are two options:

1) If there is at least a point p ∈ P for which p1 < p,

then p1 will replace p in all associated simplexes.

2) Otherwise, a set of Q new simplexes are created each

with all but one of the points of the original simplex,

which is replaced by p1. Each of those simplexes is

then examined using the previous steps.

p1

p2

p1

p2
p3

p1

p2

mid

(a) (b) (c)

Figure 8. Finding the index points.

Example 3. Consider the case in Figure 8(a), with Q = 2
and the maximum rates for applications 1 and 2 found,

resulting in points p1 and p2. Then, we consider their mid

point, from which we obtain index point p3, as shown on

Figures 8(b) and 8(c).

Finally, we end up with a set of triplets of the form

< p, sol(p),F(p) >, where p represents an index point,

sol(p) represents the corresponding optimal component

input rate allocation, while F(p) is the set of facets that

p belongs to. For each index point p, let proj(p) be p’s

projection to δ̂
eq. Each triplet < p, sol(p),F(p) > is then

indexed by proj(p) on a spatial index [18]. This way, an

Index Point Database is formed, which is utilized during

runtime.

Note that the pre-calculation algorithm inserts into the

Index Point Database not only the index points, but also

some additional points, that happen to be the mid-points of

facets at one point or another. As this does not affect the

correctness of our solution, in the following we will use

the term “index points” to refer to the set of points in the

Index Point Database.

Using the Index Point Database, we partition the feasible

region into two or more regions. Each region is the set of

points {p}, the distance of the projections of which from the

projection of an index point pi is smaller than the distance

of their projection from the projection of any other index

point.
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Example 4. The index points for the feasible region of

Figure 4 are points p1, p2 and p3 in Figure 9. Point p in

that figure represents the current application input rates of

the system. The index points partition the feasible region in

three regions. Point p is in p3’s region. This is because, as

shown in Figure 9, proj(p) is closer to proj(p3) than to

proj(p1) or proj(p2).

4. Online Dynamic Component Rate Assign-

ment

Let us assume a distributed stream processing system

that is running Q applications, the input rates of which can

be represented by a point p in the Q-sized Euclidean space.

Upon the emergence of one or more bursts, the new input

rates of the applications are represented by a new point p′.

Our objective is to determine the appropriate component

input rate allocation plan for p′, that will maximize
∑

δq,

with respect to the constraints presented in section 2.2. Our

method is based on the following observations:

• The optimal component input rate allocation for any

point p in the feasible region will be the same as the

one for a point p′ on one of the facets of the feasible

region. For example, the optimal component input rate

allocation for point p in Figure 6 is the same with the

one for point p′.

• The optimal component input rate allocation for any

point on the edge of the feasible region is the result of

a linear optimization operation. Additionally, a point

p that lies on a facet of the feasible region, can be

expressed as a linear combination of the edges of the

facet p1, p2, . . . pQ, i.e., p = a1 ·p1+a2 ·p2+ . . .+aQ ·
pQ, where 0 ≤ aq ≤ 1, 1 ≤ q ≤ Q and

∑Q

q=1 aq = 1.

Thus, the optimal component allocation for p is the

linear combination of the respective solutions of p1,

p2, . . ., pQ.

Given a new application input rate combination repre-

sented by point p while the system is running, the steps to

find the optimal component input rate assignment sol(p)
are the following:

Find the index point closest to p′. We seek to find

the index point pi which is closer to p′ than any other

index point. This is realized by calculating the projection

proj(p) of p on δ̂
eq. Notice that proj(p) = proj(p′). Let

pi be the index point stored in the Index Point Database,

that is closest to p′. The triplet < pi, sol(pi),F(pi) > is

retrieved by making a nearest neighbor query for proj(p)
to the Index Point Database.

Find the appropriate facet of the feasible region. This

is a facet f of the feasible region, on which the optimal

solution p′ = p+δ lies. Facet f is one of the facets having

pi as one of their vertices (f ∈ F(pi)). This step is done

by examining all facets in F(pi), retrieved on the previous

step. There are two cases on this step:

1) Let there be a facet f with edges p1, . . . pQ, for which

p′ can be expressed as a linear combination of its

edges, i.e., p′ = a1 ·p1+. . .+aQ ·pQ, 0 ≤ aq ≤ 1 and
∑Q

q=1 aq = 1. Then p′ lies on facet f and δ = δ
eq,

i.e., δ1 = δ2 = . . . = δQ. This is the case of Figure

6, where p′ = 0.5 · p1 + 0.5 · p2.

2) If pi < p′, the facet that contains p′ was elimi-

nated during the pre-calculation phase and was never

inserted to the Point Index Database. Thus, pi is

selected. This is the case of Figure 7, where p2 is

selected instead of p′, since δ′2 > δ2.

Construct the optimal allocation for point p. The op-

timal allocation sol(p) for point p is the optimal allocation

sol(p′) for point p′. In the case where δ = δ
eq, since

p′ = a1 ·p1 + . . .+aQ ·pQ, it is derived (from the linearity

of the solutions) that sol(p′) = sol(a1) · sol(p1) + . . . +
aQ · sol(pQ). In the case where pi < p′, BARRE selects

sol(pi).

5. Performance Evaluation

We implemented BARRE as part of our Synergy dis-

tributed stream processing system. We present the perfor-

mance of our approach and test its scalability against differ-

ent sizes of bursts and different number of applications. We

compare our approach with several schemes as we describe

next.

5.1. Experimental Setup

BARRE was implemented in about 15000 lines of Java.

Service discovery and statistics collection were imple-

mented using the FreePastry library [19], an open source

. Remember that all of f ’s edges are index points
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Figure 10. Index Point Database creation time.
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Figure 11. Index Point Database size.

implementation of Pastry. Complex matrix operations were

carried out using JAMA [20]. A spatial index implemen-

tation from [21] was used to implement the Index Point

Database. Each of the following results is the average of

5 runs, unless explicitly mentioned otherwise. Also, 90%
confidence intervals are shown in all graphs, except in

cases where these confidence intervals are too small or do

not provide any insight. Each experiment was run with 11

applications, each containing 4 to 6 services.

We ran the experiments on a distributed stream process-

ing testbed running Synergy in our lab. The experiments

were run on a network of Debian Linux workstations,

consisting of Intel Pentium 4 2.66GHz processors and Intel

Xeon 3.06GHz processors, whose main memory varied

from 1GB to 2GB of RAM. The workstations are intercon-

nected with a 10/100 LAN, running Linux version 2.6.20.

Our system is written entirely in Java. The employed JVM

was Sun 1.6.0. We used the timing function provided by

the JVM. The provided time granularity of 1msec was

adequate for our experiments.

5.2. Experimental Results

BARRE Overhead. Figures 10, 11 and 12 demonstrate

the time needed by BARRER to pre-calculate the rate

assignment plans. Figure 10 shows the time needed for the

construction of the Index Point Database, as a function of

the number of applications in the system. Since adding an

application corresponds to adding another dimension to our

search space, the index creation time increases exponen-

tially. One would expect similar delays to other functions

of the Index Point Database. However, as explained in

Section 3.2, only a limited number of points needs to be

kept in the Index Point Database. The size of the index,

shown in Figure 11, increases linearly with the number of

applications.

This means that upon the occurrence of a burst, there

is only a small number of index points in the database

to choose from. Storing a small number of index points

has a significant advantage during runtime, as shown in

Figure 12. In that figure, the time needed to construct a new

plan when a burst occurs, is shown. What is important is

that the overhead due to combining multiple pre-calculated

plans in order to devise a new one, instead of archiving a

large number of pre-calculated plans, results in a significant

speedup in the operation of the algorithm.

The following experiments demonstrate BARRE’s re-

sponsiveness to bursts. There were 11 applications running

on the system. At a specific time, the rate of all applications

was increased by a certain percentage. The applications

ran with the new rates and returned to their original

rates after some time. We compared our results with (1)

a simple No Bursts Handling algorithm that performs

initial component rate assignment and that is burst-unaware,

(2) a static Reservation method, that performs an initial

component rate assignment in such a way so that 20% of

the resources are reserved for future bursts on each node,

(3) a Dynamic Adaptation algorithm that re-configures the

system dynamically upon the appearance of a burst based

on a linear optimization method (equivalent to the methods

presented in [11], [12]) and (4) an algorithm that performs

both Dynamic Adaptation and Static Reservation.

BARRE Operation. In Figure 13 we demonstrate the

operation of BARRE. The figure shows the number of

missed data units in our system for one of the applications

when the burst intensity is 80%. The vertical axis shows

the total number of data units that were dropped from the

beginning of the experiment as a function of time. The

results for the static methods are similar to the ones for the

dynamic methods, with scaling being the only difference.

They are not presented as they do not offer any insight.

The following can be extracted:
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1) BARRE ends up dropping far fewer data units than

any of the other methods (note the logarithmic scale

of the vertical axis).

2) The only time that BARRE can result in dropped

data units is during reconfiguration, i.e., the time after

the start of a burst and until the system has finished

reconfiguring according to the new plan. Not only is

this time small (about 2.3sec in this example), the

number of data units that are missed are very few as

well, due to BARRE having provisioned for bursts.

3) BARRE employs a “safer” plan to tackle the burst

than the one employed by the simple dynamic ap-

proach. The dynamic approach aims to optimize a

linear objective, regardless of the effects on the load

of the nodes. As a result, some nodes are 100%
utilized during the burst. Thus, they are prone to drop

data units due to unexpected short-term events.

Missed Data Units. The percentage of data units that

were dropped is shown in Figure 14. As shown, BARRE

performs much better than the other methods, resulting in

fewer data units dropped. This results in BARRE being able

to sustain an 80% increase in the rate of the applications

without missing almost any data units. Other solutions can

only sustain up to 20% bursts. At the same time, we can

see that static reservation is not beneficial, as it reserves

resources on nodes that are incapable of accommodating

given bursts. On the other hand, BARRE’s operation can be

perceived as performing dynamic reservation of resources

having in mind the workload imposed by the applications,

not the load of each node individually.

Data Units Delivered On Time. An important issue

when considering distributed stream processing is whether

the data units are processed in a timely manner, i.e., without

any synchronization problems. The percentage of data units

that were delivered in a timely manner is shown in Figure

15. It is clear that BARRE delivers almost all of the data

units without delays in a timely manner.

Average End-to-End Delay. The average end-to-end

delay of the data units is shown in Figure 16. A side effect

of BARRE is that it decreases the end-to-end delay of the

data units since it removes extraneous load from nodes with

high processing capacity. The simple dynamic adaptation

and the no burst handling methods end up overloading high

capacity nodes so that they optimize the linear metric. On

the other hand, static reservation does not help, since the

amount of resources it reserves on a high capacity node can

be needlessly high. Hence, too many data units are pushed

to less powerful nodes, increasing the load of these nodes

and (as a result) the average delay of each data unit.

6. Related Work

Distributed stream processing system have become in-

creasingly popular in recent years for the development of

distributed applications [13], [22], [23]. Recent efforts have

studied the problem of resource allocation in distributed
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stream processing environments [10], [22]. Most opti-

mal service composition is accomplished in [22], using

a probing protocol and coarse-grained global knowledge.

The objective is to achieve the best load balancing among

the nodes of the system, while keeping the QoS within

requirements of the user. Our work targets maximizing the

QoS of the offered services by fully utilizing the given

resources of the system, with the node resource constraints

of the nodes in mind.

We have previously investigated different aspects of

overlays for distributed applications. In [24] we have

focused on the task scheduling algorithm, while in [25]

we have described a decentralized media streaming and

transcoding architecture. In [13], we considered re-using

components to improve overall efficiency.

In [26], the authors assume a distributed stream process-

ing system similar to ours. They determine the optimal

input and output rates, as well as the optimal CPU utiliza-

tion for each component using a linear quadratic controller.

Their ultimate goal is to maximize a global utility and they

achieve that using Lagrange multipliers. Their methods rely

on feedback from downstream components.

Authors in [27] formulate the problem of distributed

stream processing as a utility optimization problem. They

then apply a well-known network routing algorithm to

allocate resources on stream processing nodes in an optimal

way. Their method achieves optimal allocation of comput-

ing and bandwidth resources, however it needs time. This

makes such methods inappropriate to address bursty input

streams.

In ROD [28], authors consider stream bursts upon stream

composition. They assign operators on a processing nodes

in such a way so that the maximum possible input rate is

supported for each operator. However, they do not consider

distributing the computation for a single operator among

two or more nodes, neither do they provide a means of

dynamic re-configuration of the system in response to rate

fluctuations.
Authors in [11] consider load shedding to avoid over-

loading in distributed stream processing systems. They pro-

pose a solution to optimally place and configure load shed-

ding operators within an already given stream processing

network. Their objective is to maximize the weighted query

throughput. They address bursty traffic by re-configuring

(dropping more or less) the load shedding operators in

times of excessive load. The reconfiguration is based on

redundant computations upon composition. Our solution

avoids load shedding. Instead, we address bursts by assign-

ing the execution of the excessive data units to alternative

processing nodes.
System reconfiguration under the face of bursts is sup-

ported by MPRA [12]. However, the authors assume that

there is a set of applications with more than one acceptable

processing rates. Thus, in the face of bursts, the authors

choose to modify the operation rate of such applications.

Decreasing the processing rate is not allowed by applica-

tions considered in our system model. Our method avoids

quality degradation by reassigning computation to nodes in

response to load bursts.

7. Conclusions

In this paper, we considered the problem of accommo-

dating unpredicted bursts of the data streams in distributed

stream processing systems. We proposed an algorithm that

proactively computes data stream allocations and uses them

at runtime only upon the onset of a burst. Our method

utilizes runtime statistics and the capacity of the nodes in

order to handle sudden bursts in a timely manner. We have

implemented our distributed stream processing burst ac-

commodation technique on our Synergy distributed stream

processing system. Our experimental results demonstrate

the efficiency, scalability and performance of our approach



over techniques such as resource reservation and simple

dynamic system adaptation.
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