
Accommodating Bursts in
Distributed Stream

Processing Systems
Yannis Drougas, Vana Kalogeraki
Distributed Real-time Systems Lab
University of California, Riverside

{drougas,vana}@cs.ucr.edu
http://www.cs.ucr.edu/~{drougas,vana}

mailto:drougas@cs.ucr.edu
mailto:drougas@cs.ucr.edu
http://www.cs.ucr.edu/~drougas
http://www.cs.ucr.edu/~drougas

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• Large class of emerging
applications in which data streams
must be processed online

• Example applications include:
– Stock Exchange data filtering
– Traffic Monitoring
– Surveillance
– Sensor network data processing
– Network monitoring

Stream Processing Applications

2

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Distributed Stream Processing Systems

3

High-volume, continuous
input streams

Processed
result streams

On-line processing functions / continuous
query operators implemented on each node:

Clustering Correlation Filtering Aggregation ...

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• Data is produced continuously, in large
volumes and at high rates

• Data has to be processed in a timely
manner, e.g. within a deadline

• Application input rates fluctuate notably
and abruptly

Stream Processing Applications Characteristics

4

Clustering

Filtering

Join

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Previous Work
• The majority of previous work [FIT, MPRA,

Brown@VLDB 2006, Amini@ICDCS 2006,
Xia@ICDCS 2007] has focused on
optimizing a given utility function
– Some solutions [FIT] employ data admission
– Others [MPRA, Brown@VLDB 2006] consider

the optimal placement of tasks on nodes
• The case where load patterns can be

predicted has also been studied [Borealis @
ICDE 2005]

• QoS management [RTStream] is another
solution

5

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Our Problem
• We focus on the problem of addressing

bursts of input data rate
– Devise a plan to thwart the burst
– Provision for future bursts

• Benefits:
– Lost data units due to bursts are minimized
– No QoS degradation or data admission
– No under-utilization, dynamic reservation used

• Challenges:
– Highly dynamic / unpredictable environment
– Multiple limiting resource types
– Plan must be applied on time for the burst

6

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Roadmap
• Motivation and Background
• System Architecture
• Burst Handling Mechanism

– Feasible Region & Index Points
– Application-based Reservation
– Online system adjustment

• Experimental Evaluation
• Conclusion

7

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

System Architecture

8

Overlay network
consisted of processing
nodes. Built over a DHT
(currently, Pastry).

The physical (IP) network.

Application layer:
Execution of stream
processing applications.

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Application Execution
• A stream processing application is

executed collaboratively by peers of the
system that invoke the appropriate
services.

• A service can be instantiated on more than
one nodes.

• A service instantiation on a node is a
component.

9

Application executed on the system

dest

Application submitted by the user

src s

c1

c2

destsrc

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

System Architecture

10

Operating System

Application Execution and Burst Handling

InstantiationMonitoring DiscoveryScheduling

Components

Services

Streams

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• Each component is
characterized by its resource
requirements

• Selectivity is another
component characteristic.

• Each node is characterized
by the availability of its
resources.

System Model

11

uci =





uci
1

uci
2

· · ·
uci

J





An =





An
1

An
2

· · ·
An

J





selci =
average output rate

average input rate

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Roadmap
• Motivation and Background
• System Architecture
• Burst Handling Mechanism

– Feasible Region & Index Points
– Application-based Reservation
– Online system adjustment

• Experimental Evaluation
• Conclusion

12

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Optimization Problem
• Capacity Constraints:

• Flow Conservation Constraints:

• We need to come up with a plan that
satisfies the above constraints and
minimizes the likelihood of missing data
due to bursts.

13

∀n ∈ N ,
∑

ci∈n

rci · u
ci
j ≤ An

j , 1 ≤ j ≤ J

∀ci,
∑

cj∈D(ci)

rcj = selci · rci

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region
• Assume we have Q applications
• The state of the system at any given time

can be described by a point in the Q-
dimensional space

14

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

p

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region
• The feasible region is the set of all points

(application input rates combinations) that
nodes in the given distributed stream
processing system can accommodate
without any data unit being dropped.

• The form of linear constraints suggest that
in the general case of Q applications, the
feasible region is a convex polytope.

15

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region - Example

16

src2

src1 dest1s1

s2 dest2

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region - Example

16

src2

src1 dest1s1

s2 dest2

src2

Application 1

Application 2

c4

u = 10 ms

c3

u = 6.67 ms

Node B

dest2

u = 5 ms

src1
c2

u = 6 ms

c1

u = 4 ms

Node A

dest1

u = 4 ms

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region - Example

16

rc1 · 4 + rc2 · 6 ≤ 1
rc3 · 6.67 + rc4 · 10 ≤ 1

rdest1 · 4 ≤ 1
rdest2 · 5 ≤ 1

rdest1 = rc1 + rc3

rdest2 = rc2 + rc4

src2

src1 dest1s1

s2 dest2

src2

Application 1

Application 2

c4

u = 10 ms

c3

u = 6.67 ms

Node B

dest2

u = 5 ms

src1
c2

u = 6 ms

c1

u = 4 ms

Node A

dest1

u = 4 ms

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region - Example

16

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

Feasible Region

dest1 capacity constraint

dest2 capacity constraint

Capacity constraints of nodes A and B

rc1 · 4 + rc2 · 6 ≤ 1
rc3 · 6.67 + rc4 · 10 ≤ 1

rdest1 · 4 ≤ 1
rdest2 · 5 ≤ 1

rdest1 = rc1 + rc3

rdest2 = rc2 + rc4

src2

src1 dest1s1

s2 dest2

src2

Application 1

Application 2

c4

u = 10 ms

c3

u = 6.67 ms

Node B

dest2

u = 5 ms

src1
c2

u = 6 ms

c1

u = 4 ms

Node A

dest1

u = 4 ms

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• A point p1 dominates a point p2 when for
each application q,

• If the current system state is p2, one can
apply the rate allocations calculated for p1

• A Pareto point is not dominated by any
other point in the feasible region

Dominance & Pareto Points

17

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

p1

p2

p3

p4

p5p

p1(q) ≥ p2(q)

• Pareto points represent
optimal solutions:
There is no point that is
“better” than a pareto
point

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• If the input rate of application q increases
by , the input rate of a component of q
will increase by

• In order for a stream processing system to
be able to sustain such an increase, the
following must hold for each node:

Burst Handling

18

δq ci

δq · rci

rq

∑

ci∈n

rci · uci
j +

∑

ci∈n∩Cq

δq · rci

rq
· uci

j ≤ An
j} }

Initial resource
requirements

Additional resource
requirements due to single burst

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• To minimize the amount of dropped data,
we wish to maximize

• If the current input rates are represented
by p, we need to configure the system for:

• We assume each application has equal
probability for a burst to appear. So, ’s
must be as equal as possible:

Optimization Objective

19

p′ = p + δ =




r1 + δ1

· · ·
rQ + δq





δq

p′ !




r1 + c

· · ·
rQ + c



⇒ δ =




δ1

· · ·
δQ



 !




c

· · ·
c





∑
δq

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Optimization Objective - Example

20

The optimal point p’ is the
one for which δ1 = δ2

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

!2

!1

p1

p2
p

p’

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

!2

!1

!2’

p1

p2

p

p’

The optimal point is p2, since
δ′
2 > δ2 ⇒ p2 ! p′

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

BARRE
• Incorporating bursts makes capacity

constraints non-linear.
• Re-calculating the optimal component rate

assignment when a burst appears would
be too slow.

• Instead, our solution:
– Pre-calculates a small number of component

rate assignment plans during an offline phase.
– Monitors application incoming rates and

resource availability during runtime.
– When bursts occur, component rates are

assigned, based on the pre-calculated plans.
21

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Feasible Region Determination
• We need to select some index points and

pre-calculate their optimal rate assignment
• Index points are a subset of Pareto points:

They are the “vertices” of the feasible
region.

• These component rate assignments will
be used to construct the appropriate
component rate allocation on the event of
a burst.

• For each index point, a list of the feasible
region’s sides that are adjacent to the
index point, is kept.

22

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

• Find the maximum rate for each application
– By solving a max-flow problem, under the

capacity and flow conservation constraints
• Consider the resulting points as the

vertices of a side with (Q-1) dimensions
– This is since the Q-th dimension is a linear

combination of the others
• Find the mid-point of the side, as well as

the normal (perpendicular) vector
• Move to the direction of as long as

constraints are satisfied
• Repeat as long mid points can be moved

Identifying the Index Points

23

p0

d0

p0 d0

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Identifying Index Points - Example
• Step 1: Find the maximum possible rate

for each application
– Solve a max-flow problem, with the rates of all

but one applications set to 0.

24

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Identifying Index Points - Example
• Step 2: Find the mid-point of the resulting

plane and see how far it can go
– Solve max-flow by also constraining direction

25

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Identifying Index Points - Example
• Step 3: For each of the resulting sides,

find its mid-point and repeat previous step
– The upper left and lower right points are now

dominated by the newly found index points

26

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Identifying Index Points - Example
• Step 4: This is the resulting feasible region

– The mid-points of the sides cannot improve
without breaking the capacity constraints

• We end up with triplets:

27

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

p1

p3

p2

< p, sol(p),F(p) >

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Storing Index Points
• Index points implicitly split the feasible

region into subregions
– For each subregion, there is one index point p
– That index point is the closest to the optimal

solution for points (application input rate
combinations) in the subregion

• To identify the appropriate index point for
any given application input rate, all points
are projected on plane [1,1, ..., 1]
– This way, the implicit split of the feasible

region is brought out

28

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Storing Index Points
• The closest to proj(p) the projection of p3

is, the closest to the optimal solution.
– Search utilizes an R-tree indexed by the

projections of the index points

29

 0

 0.05

 0.1

 0.15

 0.2

 0 0.05 0.1 0.15 0.2 0.25

Ra
te

 o
f a

pp
lic

at
io

n
2

(A
DU

s
/ m

se
c)

Rate of application 1 (ADUs / msec)

proj(p1)

proj(p3)
proj(p)

p1

p3

p2p

p’X

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Online Component Rate Assignment
• Upon a burst, the new application input

rates are represented by a point p. We
determine the appropriate component
input rate allocation plan for p, that will
maximize , while respecting the
constraints
– There is a pareto point p’, the optimal solution

of which is the same as the one for p
– Any pareto point can be expressed as a linear

combination of (at most) Q index points
– The optimal solution of a pareto point is thus a

linear combination of the optimal solutions of
(at most) Q index points

30

∑
δq

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Rate Assignment Algorithm
• Given the current system state p:

– Find the index point closest to p
– If is equal to p, return the solution pre-

calculated for
– Otherwise, retrieve the sides of the feasible

region for which is a vertex.
– The optimal point p’ is a linear combination of

the index points of one of these sides:

– The solution is also a linear combination of
their solutions:

31

pi

pi

pi

pi

p′ = a1 · p1 + . . . + aQ · pQ, 0 ≤ aq ≤ 1,
Q∑

q=1

aq = 1

sol(p) = sol(p′) = a1 · sol(p1) + . . . + aQ · sol(pQ)

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Experimental Setup
• Implementation over Synergy
• Used FreePastry for service discovery and

collection of statistics
• 5 repetitions of each experiment
• 10 unique services in the system, 5 services

on a single node
• Each application included 4 to 6 services
• Comparison with:

– A burst-unaware method
– Static Reservation of 20% of node resources
– Simple Dynamic Adaptation, from previous work
– A combination of the above

32

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Index Point Pre-Calculation

33

Exponential Index point calculation time, this is
why index points need to be pre-calculated.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 2 4 6 8 10 12

In
de

x
Po

in
t D

at
ab

as
e

Cr
ea

tio
n

Ti
m

e
(s

ec
)

Number of applications

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Index Point Database Size

34

The size of the Index Point Database increases
linearly with the number of applications.

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

In
de

x
Po

in
t D

at
ab

as
e

Si
ze

Number of applications

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Optimal Point Search Time

35

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10 12

Se
ar

ch
 T

im
e

(m
se

c)

Number of applications

Combining multiple plans speeds up search,
because of the small number of index points.

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

BARRE Operation

36

BARRE avoids missing data units during the burst and
minimizes lost data units in the beginning of the burst.
Also, resulting plan is “safer”, so it prevents future drops

200

100

50

10

5

0
 0 20 40 60 80 100

To
ta

l n
um

be
r o

f m
iss

ed
 d

at
a

un
its

time (sec)

Start of burst (reconfiguration)
End of reconfiguration

End of burst

BARRE
Dynamic Adaptation

Dyn. Adaptation + Reservation

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Missed Data Units

37

0%

5%

10%

15%

20%

25%

0% 20% 40% 60% 80% 100%

Pe
rc

en
ta

ge
 o

f m
iss

ed
 d

at
a

un
its

Burst intensity

BARRE
Dynamic Adaptation

Dynamic Adaptation + Reservation
No Burst Handling

Reservation

BARRE results in fewer data units dropped. It can
sustain up to about 80% (vs. about 20%) application
rate increase without dropping any data unit.

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Data Units Delivered On Time

38

75%

80%

85%

90%

95%

100%

0% 20% 40% 60% 80% 100%

pe
rc

en
ta

ge
 o

f d
el

ive
re

d
da

ta
 u

ni
ts

Burst intensity

BARRE
Dynamic Adaptation

Dynamic Adaptation + Reservation
No Burst Handling

Reservation

Despite splitting the work among many components,
the arrival order of data units is not affected.

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Average Delay

39

 450

 500

 550

 600

 650

 700

0% 20% 40% 60% 80% 100%

Av
er

ag
e

de
la

y
(m

se
c)

Burst intensity

BARRE
Dynamic Adaptation

Dynamic Adaptation + Reservation
No Burst Handling

Reservation

End-to-end delay is also decreased, since nodes
are not overloaded. Other methods overload either
powerful or underpowered nodes.

Yannis Drougas, Vana Kalogeraki Accommodating Bursts in Distributed Stream Processing Systems

Conclusions - Future Work
• We proposed BARRE, a dynamic

reservation scheme to address bursts in a
dynamic stream processing system.
– Reservation is based on application needs

and readjusted according to system dynamics
• BARRE utilizes multiple nodes for each

processing component, splitting the input
rate among them whenever needed

• In our future work, we plan to evaluate
BARRE in a fully dynamic environment
with nodes entering / leaving the system.

40

Thank You!

Yannis Drougas, Vana Kalogeraki
Distributed Real-time Systems Lab
University of California, Riverside

{drougas,vana}@cs.ucr.edu
http://www.cs.ucr.edu/~{drougas,vana}

mailto:drougas@cs.ucr.edu
mailto:drougas@cs.ucr.edu
http://www.cs.ucr.edu/~drougas
http://www.cs.ucr.edu/~drougas

