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Abstract

We present a method to index objects moving on the
plane in order to efficiently answer range queries about
their position in the future. This problem is motivated by
real-life applications, like predicting future congestion ar-
eas in a highway system, or allocating more bandwidth
for areas where high concetration of mobile phones is im-
minent. We consider the problem in the external memory
model of computation and present a dynamic technique. An
experimental evaluation is included that shows the applica-
bility of our method.

1. Introduction

Location-aware applications, such as traffic monitoring,
intelligent navigation, and mobile communications man-
agement, cannot be efficiently supported by traditional
database management systems. The assumption that data
stored in the database remain constant, unless explicitly up-
dated, supports a model where updates are issued in discrete
steps. The aforementioned applications deal with continu-
ously changing data, i.e. objects’ location. Inevitably, a
DBMS receiving requests of that kind at every unit of time
would exhibit tremendous update overhead.

An attractive solution to tackle the problem is to use
a function of time f(¢) to abstract each object’s location.
Then the current location of a moving object at any time in-
stant can be calculated. An update has to be issued only
when the parameters of f change (e.g. speed or direc-
tion). Clearly, this approach minimizes the update over-
head. However, it introduces new problems, such as the
need for appropriate data models, query languages, and
query processing and optimization techniques.

The focus of this paper is on the problem of indexing
mobile objects in two dimensions. We are interested in ef-
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ficiently answer range queries over the objects’ location in
the future. Here we present techniques based on the duality
transform to efficiently index the future locations of mov-
ing points on the plane. We extend the one dimensional
techniques that were presented in [12]. We also present an
experimental evaluation of our techniques.

2. Problem description

We consider a database that records the position of mov-
ing objects in two dimensions on a finite terrain. We assume
that objects move with a constant velocity vector starting
from a specific location at a specific time instant. Thus, we
can calculate the future position of the object, provided that
the characteristics of its motion remain the same. Velocities
are bounded by [VUynin, Umaz]. Objects update their motion
information whenever their speed or direction changes. The
system is dynamic, i.e. objects may be deleted or new ob-
jects may be inserted.

Let P(tp) = [zo,yo] be the initial position at time
to. Then, at time ¢t > to its position will be P(t) =
[(t),y(t)] = [xo + vz(t — t0), Yo + vy(t — to)], where
V' = [ug, vy] is its velocity vector.

We would like to answer queries of the form: “Report the
objects located inside the rectangle [, Z24] X [Y14,Y24] at
the time instants between 1, and ¢, (Where t,,0, < t14 <
t24), given the current motion information of all objects”
(i.e. the two dimensional MOR query in [12]).

In section 3 we present work related with the problem at
hand. Next, section 4 describes the dual transform, which
is the core of our approach. The technique for indexing
moving objects in 2-d is illustrated in section 5, and experi-
mental results are given in section 6.

3. Related work

The straightforward approach of representing an object
moving on an 1-dimensional line is by plotting the trajecto-
ries as lines on the time-location (¢, y) plane (same for (¢, )
plane). The equation describing each line is y(t) = vt + a
where v is the slope (velocity in this case) and a is the
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intercept, which is computed using the motion informa-
tion (Figure 1). In this setting, the query is expressed as

Y

¥2

Y2q

Figure 1. Trajectories and query on (¢,y)
plane.

the 2-dimensional interval [(y14, yY24), (t14, t24)]. and it re-
ports the objects that correspond to the lines intersecting the
query rectangle.

The space-time approach provides an intuitive represen-
tation. Nevertheless, it is problematic, since the trajectories
correspond to long lines. Using traditional indexing tech-
niques in this setting tends to show many drawbacks.

One approach is to use a Spatial Access Method, such
an R-tree [9] or an R*-tree [4]. In this setting each line is
approximated by a minimum bounding rectangle (MBR).
Obviously, the MBR approximation has much larger area
than the line itself. Furthermore, since the trajectory of an
objectis valid until an update is issued, it has a starting point
but no end. Thus all trajectories expand till “infinity”, i.e.
they share an ending point on the time dimension.

Another approach is to partition the space into disjoint
cells and store in each cell those lines that intersect it [19].
This could be accomplished by using an index such an R+-
tree [16], a cell-tree [8], and the PMR-quadtree [15]. The
shortcoming of these methods is that they introduce replica-
tion of the lines, since each line is copied into the cells that
intersect it. Given the fact that lines are long, the situation
becomes even worse. The effect of using space partitioning
indices would be a high overhead for updates, along with
large amount of space.

The Moving Objects Spatio-Temporal (MOST) model
and a language (FTL) for querying the current and future
locations of mobile objects are presented in [17, 20, 21]. In
order to index line segments, a method based upon the dual
transform is proposed in [10]. The use of dual transforma-
tion to index mobile objects is pointed out in [21].

In [3] a main memory framework (kinetic data structure)
is proposed and adresses the issue of mobility and mainte-
nance of configuration functions among continuously mov-
ing objects. Application of this framework to external range
trees [2] appears in [1].

Related work includes nearest neighbor queries in a mo-
bile environment [11, 7], time-parameterized queries [18]

and selectivity estimation for moving object queries [5].

Saltenis et al. [13] presented a technique to efficiently in-
dex moving objects. They proposed the time-parameterized
R-tree (TPR-tree), which extends the R*-tree. The coordi-
nates of the bounding rectangles in the TPR-tree are func-
tions of time and, intuitively, are capable of following the
objects as they move. The position of a moving object is
represented by its location at a particular time instant (ref-
erence position) and its velocity vector. Recently in [14]
the RFXP _tree was proposed to index moving objects with
expiration time.

In [12] a technique to index moving objects was intro-
duced, based upon the dual transform, which we extend
here.

4. The dual space-time representation

The dual transform, in general, maps a hyper-plane h
from R? to a point in R? and vice-versa. In this section we
briefly describe how we can address the problem at hand
in a more intuitive way, by using the dual transform on the
one-dimensional case.

A line from the primal plane (¢, y) is mapped to a point
on the dual plane. A class of transforms with similar prop-
erties may be used for the mapping. The problem setting
parameters determine which one is more usefull.

One dual transform for mapping the line with equation
y(t) = vt + a to a point in R? is by using the dual plane
where one axis represents the slope of an object’s trajec-
tory (i.e. velocity) and the other axis its intercept. Thus we
have the dual point (v, a) (this is called Hough-X transform
in [10]). Accordingly, the 1-d query [(y14,Y24); (t14,t24)]
becomes a polygon in the dual space. By using a linear con-
straint query [6], the query () in the dual Hough-X plane is
expressed in the following way [12]:

Ifv > 0,then @ = C; A Co A C5 A C4, where:

Ci :Uzvmin’CZZ’US’Umaz,
Cs =a+tyv >yigand Cy = a+t14v < Yoy
If v <0,then Q = Dy A Dy A D3 A Dy, where:
Dy =v < —vmin, D2 =v > —vnaa »
D3 =a+tigv > yigand Dy = a + tagv < yoq
By rewriting the equation y = vt +aast = Ly — 2

we can arrive to a different dual representation. Tﬁe poiflt
on the dual plane has coordinates (n,b), where n = 1
and b = —7 (Hough-Y in [10]). Coordinate b is the point
where the line intersects the line y = 0 in the primal space.
By using this transform, horizontal lines cannot be repre-
sented. Similarly, the Hough-X transform cannot represent
verical lines. Nevertheless, since in our setting lines have
a minimum and maximum slope (velocity is bounded by

[Umin, Umaz]), both transforms are valid.
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5. Indexing in two dimensions

The 2-dimensional problem (Figure 2) is addresed by de-
composing the motion of the object into two independent
motions, one on the (¢, z) plane and one on the (¢, y) plane.
Each motion is indexed separately. Next we present the pro-
cedure used in order to build the index, as well as the algo-
rithm for answering the 2-d query.

5.1. Building the index

We begin by decomposing the motion in (z,y, t) space
into two motions on the (¢,z) and (¢,y) plane. Further-
more, on each projection, we partition the objects according
to their velocity. Objects with small velocity magnitude are
stored using the Hough-X dual transform, while the rest of
them are stored using the Hough-Y transform, i.e into two
distinct index structures.

d
2
~ ><1’\ -
- T 4 = /

Figure 2. Trajectories and query in (z,y,t)
space.

The reason for using different transforms is that motions
with small velocities in the Hough-Y approach are mapped
into dual points (n, b) having large n coordinates (n = 1).
Thus, since few objects have small velocities, by storing
the Hough-Y dual points in an index structure such an R*-
tree, MBR’s with large extents are introduced, and the index
performance is severely affected. On the other hand, by
using a Hough-X index for the small velocities’ partition,
we eliminate this effect, since the Hough-X dual transform
maps an object’s motion to the (v, a) dual point.

When a dual point is stored in the index responsible for
the object’s motion on one of the planes, i.e. (¢,z) or (¢,y),
information about the motion on the other plane is also in-
cluded. Thus, the leaves in both indices for the Hough-Y
partition store the record (ng, by, ny, by). Similarly, for the
Hough-X partition, in both projections we keep the record
(Vg, Gz, Vy, ay). In this way, the query can be answered by
one of the indices; either the one responsible for the (¢, x)
or the (¢, y) projection.

On a given projection, the dual points (i.e. (n,b) and
(v, a)) are indexed using R*-trees [4]. The R*-tree has been
modified in order to store points at the leaf level, and not

degenerated rectangles. Therefore, we can afford storing
extra information about the other projection.

An outline of the procedure for building the index fol-
lows:

1. Decompose the 2-d motion into two 1-d motions on

the (¢,z) and (¢,y) planes.

2. For each projection, build the corresponding index

structure

Partition the objects according to their velocity:

a. Objects with small velocity are stored using the
Hough-X dual transform, while the rest are stored
using the Hough-Y dual transform.

b. Motion information about the other projection is
also included.

In order to pick one of the two projections and answer
the simplex query, the technique descibed next is used.

5.2. Answering the query

The 2-d MOR query is first decomposed into two 1-d
queries, one for each projection. Furthermore, on a given
projection, the simplex query is asked in both partitions, i.e.
Hough-Y and Hough-X.

On the Hough-Y plane the query region is given by the
intersection of two half-plane queries, as shown in Figure 3.

Consider the parallel linesn = —— and n = ﬁ If the

Umin

HHHHHH

Figure 4. Query on the Hough-X dual plane.

simplex query was answered approximately, the query area
would be enlarged by EHoughY — pHouwshY | pHoughY
(the triangular areas in Figure 3). Also, let the actual area
of the simplex query be QH°“9"Y  Similarly, on the dual
Hough-X plane (Figure 4), let Qf7°"9"X be the actual area
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of the query, and EH°%“9"X be the enlargement. The al-
ogorithm chooses the projection which minimizes the fol-
lowing criterion «:

EHoughY EHoughX

K

= QHoughY + QHoughX (1)

Since the whole motion information is kept in the indices, it
is used in order to produce the exact result set of objects.
An outline of the algorithm for answering the exact 2-d
query is presented next:
1. Decompose the query into two 1-d queries, for the
(t,z) and (t, y) projection.
2. Get the dual query for each projection
(i.e. the simplex query).
3. Calculate the criterion & for each projection, and
choose the one (say ) that minimizes it.
4. Answer the simplex query by searching the Hough-X
and Hough-Y partition, using projection 7.
5. Put an object in the result set, only if it satisfies the
query. Use the whole motion information to do the
filtering ”on the fly”.

6. Performance experiments

We present experimental results for the 2-dimensional
MOR query, comparing our method and the TPR-tree. We
used the same dataset generator as in [13]. The simulation
scenario assumes objects moving on a finite terrain having
size 1000 x 1000 km. The terrain contains a fully connected
graph, whose edges are the routes objects can move along.
The number of vertices, or destinations (/N D), distinguish
one dataset from another. The objects are initially posi-
tioned on the routes in a random fashion. They are assigned
with equally probability to one of three possible groups hav-
ing maximum velocity of 0.75, 1.5 and 3km/min. Objects
initially accelerate, then they maintain a maximum speed,
and finally they decelerate. The updates are generated so
that the total average time interval between two updates is
fixed to a parameter UI. Queries consist of time-slice and
window queries, and are issued within a time window W
from the current time.

To test the performance of the two techniques we did
the following experimental evaluation. First, we ran experi-
ments were the TPR-tree has a fixed horizon H = UI + W
where UI = 60 and W = 40, and we use this parameters to
generate the workload. We also generated queries that their
temporal interval lies outside TPR-tree’s predefined hori-
zon (we added 5H to t14 and t34). This situation can come
up, if we are not able to accurately predict the horizon be-
forehand. Also this is similar to what happens if there are
no updates for a while. In this case (i.e. no updates), the
TPR-tree cannot answer queries efficiently, because it re-
builds the structure of the tree during updates only. This

is necessary for the TPR-tree, because the size of the time-
parameterized MBRs increases over time. For this second
set of queries, we also tried the TPR-tree using the auto-
matic horizon estimation [14].

We generated scenarios for 40 and 160 ND’s. We also
generated a dataset in which the objects can move randomly
on the terrain. Each simulation scenario runs for 600 units
and involves 100K objects. Four queries are issued every
time instant, intermixed with around one million updates in
total. The page size was set to 4K and a buffer pool of 50
pages was used. The leaf capacity was 204 in both methods.
The update-time MBR setting was used for the TPR-tree.

The results of our experiments are shown next. When-
ever shown in the figures, T'P R-fixed stands for TPR-tree
with fixed horizon setting, while 7' P R-auto stands for TPR-
tree with automatic horizon estimation. In figure 5 the re-
sults regarding the queries within the horizon are presented,
in terms of pages I/O. Similarly, in figure 6, the results
for queries having temporal part outside the horizon are
shown. Figure 7 presents the update performance results,
while figure 8 shows the space consumption. Note that, for
our method, update performance and space consumption re-
main constant, regardless of whether the queries temporal
part lies within or outside TPR-tree’s horizon.

Queries within horizon

Avg. 10 per query
Il
]
3

ND4o ND160 Uni

Figure 5. Queries within horizon

Queries outside horizon

Avg. l/0 per query

NDao ND160 Uni

Figure 6. Queries outside of horizon

We observe that both methods exhibit approximately
equal performance for queries asked within the horizon.
When the queries are issued outside the horizon, the TPR-
tree perfomance is affected dramatically. Our method im-
proves in this case, because the selectivity of the queries
drops, when their temporal part is outside the horizon. Fur-
thermore, it has faster updates, but requires larger space. So
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Update Performance
11
10
— |

Avg. /0 per update

PR

ND4o ND160 Uni

Figure 7. Update performance

Space consumption

= pual
W TPR
O TPR—auto

Num. of Pages

ND40o ND160 Uni

Figure 8. Space consumption

there is a trade-off between update performance and space
consumption. However, our method does not assume any
query window W, as the TPR-tree does.

7. Conclusions

We presented an external memory mechanism for
indexing mobile objects that move on the plane, in order
to efficiently answer range queries about their location
in the future. The perfomance evaluation illustrates the
applicability of our method.
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