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Abstract Clustering suffers from the curse of dimensionality, and similarity
functions that use all input features with equal relevance may not be effec-
tive. We introduce an algorithm that discovers clusters in subspaces spanned
by different combinations of dimensions via local weightings of features. This
approach avoids the risk of loss of information encountered in global dimension-
ality reduction techniques, and does not assume any data distribution model.
Our method associates to each cluster a weight vector, whose values capture
the relevance of features within the corresponding cluster. We experimentally
demonstrate the gain in perfomance our method achieves with respect to com-
petitive methods, using both synthetic and real datasets. In particular, our results
show the feasibility of the proposed technique to perform simultaneous clus-
tering of genes and conditions in gene expression data, and clustering of very
high-dimensional data such as text data.
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1 Introduction

The clustering problem concerns the discovery of homogeneous groups of data
according to a certain similarity measure. It has been studied extensively in
statistics (Arabie and Hubert 1996), machine learning (Cheeseman and Stutz
1996; Michalski and Stepp 1983), and database communities (Ng and Han 1994;
Ester et al. 1995; Zhang et al. 1996).

Given a set of multivariate data, (partitional) clustering finds a partition of
the points into clusters such that the points within a cluster are more simi-
lar to each other than to points in different clusters. The popular K-means or
K-medoids methods compute one representative point per cluster, and assign
each object to the cluster with the closest representative, so that the sum of the
squared differences between the objects and their representatives is minimized.
Finding a set of representative vectors for clouds of multidimensional data is an
important issue in data compression, signal coding, pattern classification, and
function approximation tasks.

Clustering suffers from the curse of dimensionality problem in high-dimen-
sional spaces. In high dimensional spaces, it is highly likely that, for any given
pair of points within the same cluster, there exist at least a few dimensions on
which the points are far apart from each other. As a consequence, distance
functions that equally use all input features may not be effective.

Furthermore, several clusters may exist in different subspaces, comprised
of different combinations of features. In many real world problems, in fact,
some points are correlated with respect to a given set of dimensions, and others
are correlated with respect to different dimensions. Each dimension could be
relevant to at least one of the clusters.

The problem of high dimensionality could be addressed by requiring the
user to specify a subspace (i.e., subset of dimensions) for cluster analysis. How-
ever, the identification of subspaces by the user is an error-prone process. More
importantly, correlations that identify clusters in the data are likely not to be
known by the user. Indeed, we desire such correlations, and induced subspaces,
to be part of the findings of the clustering process itself.

An alternative solution to high dimensional settings consists in reducing the
dimensionality of the input space. Traditional feature selection algorithms select
certain dimensions in advance. Methods such as Principal Component Analysis
(PCA) (or Karhunen–Loeve transformation) (Duda and Hart 1973; Fukunaga
1990) transform the original input space into a lower dimensional space by
constructing dimensions that are linear combinations of the given features, and
are ordered by nonincreasing variance. While PCA may succeed in reducing
the dimensionality, it has major drawbacks. The new dimensions can be difficult
to interpret, making it hard to understand clusters in relation to the original
space. Furthermore, all global dimensionality reduction techniques (like PCA)
are not effective in identifying clusters that may exist in different subspaces. In
this situation, in fact, since data across clusters manifest different correlations
with features, it may not always be feasible to prune off too many dimensions
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without incurring a loss of crucial information. This is because each dimension
could be relevant to at least one of the clusters.

These limitations of global dimensionality reduction techniques suggest that,
to capture the local correlations of data, a proper feature selection procedure
should operate locally in input space. Local feature selection allows to embed
different distance measures in different regions of the input space; such distance
metrics reflect local correlations of data. In this paper we propose a soft feature
selection procedure that assigns (local) weights to features according to the
local correlations of data along each dimension. Dimensions along which data
are loosely correlated receive a small weight, that has the effect of elongating
distances along that dimension. Features along which data are strongly corre-
lated receive a large weight, that has the effect of constricting distances along
that dimension. Figure 1 gives a simple example. The upper plot depicts two
clusters of data elongated along the x and y dimensions. The lower plot shows
the same clusters, where within-cluster distances between points are computed
using the respective local weights generated by our algorithm. The weight values
reflect local correlations of data, and reshape each cluster as a dense spherical
cloud. This directional local reshaping of distances better separates clusters,

Fig. 1 (Top) Clusters in original input space. (Bottom) Clusters transformed by local weights
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and allows for the discovery of different patterns in different subspaces of the
original input space.

1.1 Our contribution

An earlier version of this work appeared in (Domeniconi et al. 2004; Al-Razgan
and Domeniconi 2006). However, this paper is a substantial extension, which
includes (as new material) a new derivation and motivation of the proposed
algorithm, a proof of convergence of our approach, a variety of experiments,
comparisons, and analysis using high-dimensional text and gene expression
data. Specifically, the contributions of this paper are as follows:

1. We formalize the problem of finding different clusters in different subspac-
es. Our algorithm (Locally Adaptive Clustering, or LAC) discovers clusters
in subspaces spanned by different combinations of dimensions via local
weightings of features. This approach avoids the risk of loss of information
encountered in global dimensionality reduction techniques.

2. The output of our algorithm is twofold. It provides a partition of the data, so
that the points in each set of the partition constitute a cluster. In addition,
each set is associated with a weight vector, whose values give information
of the degree of relevance of features for each partition.

3. We formally prove that our algorithm converges to a local minimum of
the associated error function, and experimentally demonstrate the gain in
perfomance we achieve with our method. In particular, our results show the
feasibility of the proposed technique to perform simultaneous clustering of
genes and conditions in gene expression data, and clustering of very high
dimensional data such as text data.

4. The LAC algorithm requires in input a parameter that controls the strength
of the incentive for clustering on multiple dimensions. The setting of such
parameter is particularly difficult, since no domain knowledge for its tuning
is available. In this paper, we introduce an ensemble approach to com-
bine multiple weighted clusters discovered by LAC using different input
parameter values. The result is a consensus clustering that is superior to
the participating ones, provided that the input clusterings are diverse. Our
ensemble approach gives a solution to the difficult and crucial issue of
tuning the input parameter of LAC.

2 Related work

Local dimensionality reduction approaches for the purpose of efficiently index-
ing high-dimensional spaces have been recently discussed in the database lit-
erature (Keogh et al. 2001; Chakrabarti and Mehrotra 2000; Thomasian et al.
1998). Applying global dimensionality reduction techniques when data are not
globally correlated can cause significant loss of distance information, resulting
in a large number of false positives and hence a high query cost. The general
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approach adopted by the authors is to find local correlations in the data, and
perform dimensionality reduction on the locally correlated clusters individually.
For example, in Chakrabarti and Mehrotra (2000), the authors first construct
spacial clusters in the original input space using a simple tecnique that resem-
bles K-means. PCA is then performed on each spatial cluster individually to
obtain the principal components.

In general, the efficacy of these methods depends on how the clustering
problem is addressed in the first place in the original feature space. A potential
serious problem with such techniques is the lack of data to locally perform PCA
on each cluster to derive the principal components. Moreover, for clustering
purposes, the new dimensions may be difficult to interpret, making it hard to
understand clusters in relation to the original space.

One of the earliest work that discusses the problem of clustering simulta-
neously both points and dimensions is (Hartigan 1972). A model based on
direct clustering of the data matrix and a distance-based model are introduced,
both leading to similar results.

More recently, the problem of finding different clusters in different subspac-
es of the original input space has been addressed in (Agrawal et al. 1998).
The authors use a density-based approach to identify clusters. The algorithm
(CLIQUE) proceeds from lower to higher dimensionality subspaces and discov-
ers dense regions in each subspace. To approximate the density of the points,
the input space is partitioned into cells by dividing each dimension into the
same number ξ of equal length intervals. For a given set of dimensions, the
cross product of the corresponding intervals (one for each dimension in the set)
is called a unit in the respective subspace. A unit is dense if the number of points
it contains is above a given threshold τ . Both ξ and τ are parameters defined
by the user. The algorithm finds all dense units in each k-dimensional subspace
by building from the dense units of (k − 1)-dimensional subspaces, and then
connects them to describe the clusters as union of maximal rectangles.

While the work in (Agrawal et al. 1998) successfully introduces a methodol-
ogy for looking at different subspaces for different clusters, it does not compute
a partitioning of the data into disjoint groups. The reported dense regions largely
overlap, since for a given dense region all its projections on lower dimensional-
ity subspaces are also dense, and they all get reported. On the other hand, for
many applications such as customer segmentation and trend analysis, a partition
of the data is desirable since it provides a clear interpretability of the results.

Recently (Procopiuc et al. 2002), another density-based projective cluster-
ing algorithm (DOC/FastDOC) has been proposed. This approach requires
the maximum distance between attribute values (i.e., maximum width of the
bounding hypercubes) as parameter in input, and pursues an optimality crite-
rion defined in terms of density of each cluster in its corresponding subspace. A
Monte Carlo procedure is then developed to approximate with high probability
an optimal projective cluster. In practice it may be difficult to set the parameters
of DOC, as each relevant attribute can have a different local variance.

Dy and Brodley (2000) also addresses the problem of feature selection to find
clusters hidden in high-dimensional data. The authors search through feature
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subset spaces, evaluating each subset by first clustering in the corresponding
subspace, and then evaluating the resulting clusters and feature subset using
the chosen feature selection criterion. The two feature selection criteria inves-
tigated are the scatter separability used in discriminant analysis (Fukunaga
1990), and a maximum likelihood criterion. A sequential forward greedy strat-
egy (Fukunaga 1990) is employed to search through possible feature subsets.
We observe that dimensionality reduction is performed globally in this case.
Therefore, the technique in Dy and Brodley (2000) is expected to be effective
when a dataset contains some relevant features and some irrelevant (noisy)
ones, across all clusters.

The problem of finding different clusters in different subspaces is also ad-
dressed in Aggarwal et al. (1999). The proposed algorithm (PROjected CLUS-
tering) seeks subsets of dimensions such that the points are closely clustered
in the corresponding spanned subspaces. Both the number of clusters and the
average number of dimensions per cluster are user-defined parameters. PRO-
CLUS starts with choosing a random set of medoids, and then progressively
improves the quality of medoids by performing an iterative hill climbing proce-
dure that discards the ‘bad’ medoids from the current set. In order to find the
set of dimensions that matter the most for each cluster, the algorithm selects the
dimensions along which the points have the smallest average distance from the
current medoid. ORCLUS (Aggarwal and Yu 2000) modifies the PROCLUS
algorithm by adding a merging process of clusters, and selecting for each cluster
principal components instead of attributes.

In contrast to the PROCLUS algorithm, our method does not require to
specify the average number of dimensions to be kept per cluster. For each clus-
ter, in fact, all features are taken into consideration, but properly weighted.
The PROCLUS algorithm is more prone to loss of information if the number
of dimensions is not properly chosen. For example, if data of two clusters in
two dimensions are distributed as in Fig. 1 (Top), PROCLUS may find that
feature x is the most important for cluster 0, and feature y is the most important
for cluster 1. But projecting cluster 1 along the y dimension does not allow to
properly separate points of the two clusters. We avoid this problem by keeping
both dimensions for both clusters, and properly weighting distances along each
feature within each cluster.

The problem of feature weighting in K-means clustering has been addressed
in Modha and Spangler (2003). Each data point is represented as a collection
of vectors, with “homogeneous” features within each measurement space. The
objective is to determine one (global) weight value for each feature space. The
optimality criterion pursued is the minimization of the (Fisher) ratio between
the average within-cluster distortion and the average between-cluster distor-
tion. However, the proposed method does not learn optimal weights from the
data. Instead, different weight value combinations are ran through a K-means-
like algorithm, and the combination that results in the lowest Fisher ratio is
chosen. We also observe that the weights as defined in Modha and Spangler
(2003) are global, in contrast to ours which are local to each cluster.
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Recently (Dhillon et al. 2003), a theoretical formulation of subspace clus-
tering based on information theory has been introduced. The data contingency
matrix (e.g., document-word co-occurrence matrix) is seen as an empirical joint
probability distribution of two discrete random variables. Subspace clustering
is then formulated as a constrained optimization problem where the objective
is to maximize the mutual information between the clustered random variables.
Parsons et al. (2004) provides a good overview of subspace clustering techniques
for high-dimensional data.

Generative approaches have also been developed for local dimensionality
reduction and clustering. The approach in Ghahramani and Hinton (1996)
makes use of maximum likelihood factor analysis to model local correlations
between features. The resulting generative model obeys the distribution of a
mixture of factor analyzers. An expectation-maximization algorithm is pre-
sented for fitting the parameters of the mixture of factor analyzers. The choice
of the number of factor analyzers, and the number of factors in each analyzer
(that drives the dimensionality reduction) remain an important open issue for
the approach in Ghahramani and Hinton (1996).

Tipping and Bishop (1999) extends the single PCA model to a mixture of
local linear sub-models to capture nonlinear structure in the data. A mixture of
principal component analyzers model is derived as a solution to a maximum-
likelihood problem. An EM algorithm is formulated to estimate the parameters.

While the methods in Ghahramani and Hinton (1996) and Tipping and
Bishop (1999), as well as the standard mixture of Gaussians technique, are
generative and parametric, our approach can be seen as an attempt to directly
estimate from the data local correlations between features. Furthermore, both
mixture models in Ghahramani and Hinton (1996) and Tipping and Bishop
(1999) inherit the soft clustering component of the EM update equations. On
the contrary, LAC computes a partitioning of the data into disjoint groups. As
previously mentioned, for many data mining applications a partition of the data
is desirable since it provides a clear interpretability of the results. We finally
observe that, while mixture of Gaussians models, with arbitrary covariance
matrices, could in principle capture local correlations along any directions, lack
of data to locally estimate full covariance matrices in high-dimensional spaces
is a serious problem in practice.

2.1 COSA

Our technique LAC is related to the algorithm Clustering On Subsets of Attri-
butes (COSA), proposed in Friedman and Meulman (2002). Both LAC and
COSA develop an exponential weighting scheme, but they are fundamentally
different in their search strategies and their outputs. COSA is an iterative algo-
rithm that assigns a weight vector (with a component for each dimension) to
each data point, while LAC assigns a weight vector to each cluster instead.

The COSA starts by assigning equal weight values to each dimension and to
all points. It then considers the k nearest neighbors of each point, and uses the
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resulting neighborhoods to compute the dimension weights. Larger weights are
credited to those dimensions that have a smaller dispersion within the neigh-
borhood. These weights are then used to compute dimension weights for each
pair of points, which in turn are utilized to update the distances for the compu-
tation of the k nearest neighbors. The process is iterated until the weight values
become stable.

At each iteration, the neighborhood of each point becomes increasingly pop-
ulated with data from the same cluster. The final output is a pairwise distance
matrix based on a weighted inverse exponential distance that can be used as
input to any distance-based clustering method (e.g., hierarchical clustering).

The COSA requires in input the value of k for nearest neighbor computation.
COSA does not require in input the number of dimensions per cluster. As in
LAC, this value is regulated by a parameter (called h in this paper) that con-
trols the strength of the incentive for clustering on multiple dimensions. COSA
requires the tuning of such parameter. The setting of h is particularly difficult,
since no domain knowledge for its tuning is available. As a major advantage
with respect to COSA, in this paper, we introduce an ensemble approach to
combine multiple weighted clusters discovered by LAC using different h values.
The result is a consensus clustering that is superior to the participating ones,
and resolves the issue of tuning the parameter h. The details of our ensemble
approach are presented in Sect. 6.

2.2 Biclustering of gene expression data

Microarray technology is one of the latest breakthroughs in experimental
molecular biology. Gene expression data are generated by DNA chips and other
microarray techniques, and they are often presented as matrices of expression
levels of genes under different conditions (e.g., environment, individuals, tis-
sues). Each row corresponds to a gene, and each column represents a condition
under which the gene is developed.

Biologists are interested in finding sets of genes showing strikingly simi-
lar up-regulation and down-regulation under a set of conditions. To this extent,
recently, the concept of bicluster has been introduced (Cheng and Church 2000).
A bicluster is a subset of genes and a subset of conditions with a high-similarity
score. A particular score that applies to expression data is the mean squared
residue score (Cheng and Church 2000). Let I and J be subsets of genes and
experiments, respectively. The pair (I, J) specifies a submatrix AIJ with a mean
squared residue score defined as follows:

H(I, J) = 1
|I||J|

∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)
2, (1)

where aiJ = 1
|J|

∑
j∈J aij, aIj = 1

|I|
∑

i∈I aij, and aIJ = 1
|I||J|

∑
i∈I,j∈J aij. They rep-

resent the row and column means, and the mean of the submatrix, respectively.
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The lowest score H(I, J) = 0 indicates that the gene expression levels fluctuate
in unison. The aim is then to find biclusters with low mean squared residue
score (below a certain threshold).

We observe that the mean squared residue score is minimized when subsets
of genes and experiments (or dimensions) are chosen so that the gene vectors
(i.e., rows of the resulting bicluster) are close to each other with respect to the
Euclidean distance. As a result, the LAC algorithm, and other subspace clus-
tering algorithms, are well suited to perform simultaneous clustering of both
genes and conditions in a microarray data matrix. Wang et al. (2002) intro-
duces an algorithm (pCluster) for clustering similar patterns, that has been
applied to DNA microarray data of a type of yeast. The pCluster model opti-
mizes a criterion that is different from the mean squared residue score, as it
looks for coherent patterns on a subset of dimensions (e.g., in an identified
subspace, objects reveal larger values for the second dimension than for the
first). Similarly, Yang et al. (2002) introduces the δ-cluster model to discover
strong coherence among a set of objects (on a subset of dimensions), even if
they have quite different values, and the dimension values are not fully spec-
ified. The concept of bicluster (Cheng and Church 2000) (which assumes that
the microarray matrix is fully specified) can be regarded as a special case of this
model.

3 Locally adaptive metrics for clustering

We define what we call weighted cluster. Consider a set of points in some space
of dimensionality D. A weighted cluster C is a subset of data points, together
with a vector of weights w = (w1, . . . , wD), such that the points in C are closely
clustered according to the L2 norm distance weighted using w. The component
wj measures the degree of participation of feature j to the cluster C. If the
points in C are well clustered along feature j, wj is large, otherwise it is small.
The problem becomes now how to estimate the weight vector w for each cluster
in the dataset.

In this setting, the concept of cluster is not based only on points, but also
involves a weighted distance metric, i.e., clusters are discovered in spaces trans-
formed by w. Each cluster is associated with its own w, that reflects the cor-
relation of points in the cluster itself. The effect of w is to transform distances
so that the associated cluster is reshaped into a dense hypersphere of points
separated from other data.

In traditional clustering, the partition of a set of points is induced by a set of
representative vectors, also called centroids or centers. The partition induced by
discovering weighted clusters is formally defined as follows.

Definition Given a set S of N points x in the D-dimensional Euclidean space,
a set of k centers {c1, . . . , ck}, cj ∈ �D, j = 1, . . . , k, coupled with a set of corre-
sponding weight vectors {w1, . . . , wk}, wj ∈ �D, j = 1, . . . , k, partition S into k
sets {S1, . . . , Sk}:
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Sj =
⎧
⎨

⎩x|
(

D∑

i=1

wji(xi − cji)
2

)1/2

<

(
D∑

i=1

wli(xi − cli)
2

)1/2

, ∀l �= j

⎫
⎬

⎭ , (2)

where wji and cji represent the ith components of vectors wj and cj, respectively
(ties are broken randomly).

The set of centers and weights is optimal with respect to the Euclidean norm,
if they minimize the error measure:

E1(C, W) =
k∑

j=1

D∑

i=1

⎛

⎝wji
1

|Sj|
∑

x∈Sj

(cji − xi)
2

⎞

⎠ (3)

subject to the constraints
∑

i wji = 1 ∀j. C and W are (D×k) matrices whose col-
umn vectors are cj and wj, respectively, i.e., C = [c1 . . . ck] and W = [w1 . . . wk].
For shortness of notation, we set

Xji = 1
|Sj|

∑

x∈Sj

(cji − xi)
2,

where |Sj| is the cardinality of set Sj. Xji is the variance of the data in cluster j
along dimension i. The solution

(C∗, W∗) = argmin(C,W)E1(C, W)

will discover one-dimensional clusters: it will put maximal (i.e., unit) weight on
the feature with smallest variance Xji within each cluster j, and zero weight on
all other features. Our objective, instead, is to find weighted multidimensional
clusters, where the unit weight gets distributed among all features according to
the respective variance of data within each cluster. One way to achieve this goal
is to add the regularization term

∑D
i=1 wji log wji,1 which represents the nega-

tive entropy of the weight distribution for each cluster (Friedman and Meulman
2002). It penalizes solutions with maximal (unit) weight on the single feature
with smallest variance within each cluster. The resulting error function is

E2(C, W) =
k∑

j=1

D∑

i=1

(wjiXji + hwji log wji) (4)

subject to the same constraints
∑

i wji = 1 ∀j. The coefficient h ≥ 0 is a parame-
ter of the procedure; it controls the relative differences between feature weights.
In other words, h controls how much the distribution of weight values will devi-
ate from the uniform distribution. We can solve this constrained optimization

1 Different regularization terms lead to different weighting schemes.
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problem by introducing the Lagrange multipliers λj (one for each constraint),
and minimizing the resulting (unconstrained now) error function

E(C, W) =
k∑

j=1

D∑

i=1

(wjiXji + hwji log wji) +
k∑

j=1

λj

(
1 −

D∑

i=1

wji

)
. (5)

For a fixed partition P and fixed cji, we compute the optimal w∗
ji by setting

∂E
∂wji

= 0 and ∂E
∂λj

= 0. We obtain:

∂E
∂wji

= Xji + h log wji + h − λj = 0, (6)

∂E
∂λj

= 1 −
D∑

i=1

wji = 0. (7)

Solving Eq. 6 with respect to wji we obtain h log wji = −Xji + λj − h. Thus:

wji = exp(−Xji/h + (λj/h) − 1) = exp(−Xji/h) exp((λj/h) − 1)

= exp(−Xji/h)

exp(1 − λj/h)
.

Substituting this expression in Eq. 7:

∂E
∂λj

= 1 −
D∑

i=1

exp(−Xji/h)

exp(1 − λj/h)
= 1 − 1

exp(−λj/h)

D∑

i=1

exp((−Xji/h) − 1) = 0.

Solving with respect to λj we obtain

λj = −h log
D∑

i=1

exp((−Xji/h) − 1).

Thus, the optimal w∗
ji is

w∗
ji = exp(−Xji/h)

exp(1 + log(
∑D

i=1 exp((−Xji/h) − 1)))

= exp(−Xji/h)
∑D

i=1 exp(−Xji/h)
. (8)
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For a fixed partition P and fixed wji, we compute the optimal c∗
ji by setting

∂E
∂cji

= 0. We obtain:

∂E
∂cji

= wji
1

|Sj|2
∑

x∈Sj

(cji − xi) = 2wji

|Sj|

⎛

⎝|Sj|cji −
∑

x∈Sj

xi

⎞

⎠ = 0.

Solving with respect to cji gives

c∗
ji = 1

|Sj|
∑

x∈Sj

xi. (9)

Solution (8) puts increased weight on features along which the variance Xji is
smaller, within each cluster. The degree of this increase is controlled by the
value h. Setting h = 0, places all weight on the feature i with smallest Xji,
whereas setting h = ∞ forces all features to be given equal weight for each
cluster j. By setting E0(C) = 1

D

∑k
j=1

∑D
i=1 Xji, we can formulate this result as

follows.

Proposition When h = 0, the error function E2 (4) reduces to E1 (3); when
h = ∞, the error function E2 reduces to E0.

4 Locally adaptive clustering algorithm

We need to provide a search strategy to find a partition P that identifies the
solution clusters. Our approach progressively improves the quality of initial
centroids and weights, by investigating the space near the centers to estimate
the dimensions that matter the most. Specifically, we proceed as follows.

We start with well-scattered points in S as the k centroids: we choose the first
centroid at random, and select the others so that they are far from one another,
and from the first chosen center. We initially set all weights to 1/D. Given the
initial centroids cj, for j = 1, . . . , k, we compute the corresponding sets Sj as
given in the definition above. We then compute the average distance Xji along
each dimension from the points in Sj to cj. The smaller Xji is, the larger is the
correlation of points along dimension i. We use the value Xji in an exponen-
tial weighting scheme to credit weights to features (and to clusters), as given
in Eq. 8. The exponential weighting is more sensitive to changes in local fea-
ture relevance (Bottou and Vapnik 1992) and gives rise to better performance
improvement. Note that the technique is centroid-based because weightings
depend on the centroid. The computed weights are used to update the sets
Sj, and therefore the centroids’ coordinates as given in Eq. 9. The procedure
is iterated until convergence is reached. The resulting algorithm, that we call
LAC, is summarized in the following.
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Input N points x ∈ RD, k, and h.

1. Start with k initial centroids c1, c2, . . . , ck;
2. Set wji = 1/D, for each centroid cj, j = 1, . . . , k and each feature i =

1, . . . , D;
3. For each centroid cj, and for each point x:

Set Sj = {x|j = arg minl Lw(cl, x)},
where Lw(cl, x) = (

∑D
i=1 wli(cli − xi)

2)1/2;
4. Compute new weights.

For each centroid cj, and for each feature i:

Set Xji = ∑
x∈Sj

(cji − xi)
2/|Sj|; Set wji = exp(−Xji/h)

∑D
l=1 exp(−Xjl/h)

;

5. For each centroid cj, and for each point x:
Recompute Sj = {x|j = arg minl Lw(cl, x)};

6. Compute new centroids.

Set cj =
∑

x x1Sj (x)
∑

x 1Sj (x)
, for each j = 1, . . . , k, where 1S(.) is the indicator function

of set S;
7. Iterate 3,4,5,6 until convergence.

The sequential structure of the LAC algorithm is analogous to the mathematics
of the EM algorithm (Dempster et al. 1977; Wu 1983). The hidden variables
are the assignments of the points to the centroids. Step 3 constitutes the E
step: it finds the values of the hidden variables Sj given the previous values of
the parameters wji and cji. The following step (M step) consists in finding new
matrices of weights and centroids that minimize the error function with respect
to the current estimation of hidden variables. It can be shown that the LAC
algorithm converges to a local minimum of the error function (5). The running
time of one iteration is O(kDN).

Despite the similarities between the LAC algorithm and EM with a diago-
nal covariance matrix, our approach has distinctive characteristics that make it
different from the EM algorithm. Specifically: (1) LAC performs a hard assign-
ment of points to clusters. (2) LAC assumes equal prior probabilities for all
clusters, as any centroid-based clustering approach does. (3) The variance Xji,
for each cluster j and each dimension i, is estimated directly from the data in a
nonparametric fashion, without assuming any data distribution model. (4) The
exponential weighting scheme provided by Eq. 8 results in a faster rate of con-
vergence (as corroborated by our experimental results). In fact, variations of
clusters’ variances Xji are exponentially reflected into the corresponding weight
values wji. Thus, the weights are particularly sensitive to changes in local feature
relevance. (5) The weights wji credited to each cluster j and to each dimension
i are determined by both a local and a global component: Xji and h, respec-
tively. Xji is the variance of the data along dimension i, within cluster j. The
constraint

∑
i wji = 1 makes the weights to measure the proportional amounts

of the dimensions that account for the variances of the clusters. The global
parameter h is equal for all clusters and all dimensions. It controls how much
the distribution of weight values will deviate from the uniform distribution.
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We point out that the LAC algorithm can identify a degenerate solution,
i.e., a partition with empty clusters, during any iteration. Although we did not
encounter this problem in our experiments, strategies developed in the liter-
ature, such as the insertion strategy (Mladenović and Brimberg 1996), can be
easily incorporated in our algorithm. In particular, we can proceed as follows:
if the number of nonempty clusters in the current iteration of LAC is l < k,
we can identify the l points with the leargest (weighted) distance to their clus-
ter’s centroid, and form l new clusters with a single point in each of them. The
resulting nondegenerate solution is clearly better than the degenerate one since
the selected l points give the largest contributions to the cost function, but it
could possibly be improved. Therefore, the LAC iterations can continue until
convergence to a nondegenerate solution.

5 Convergence of the LAC algorithm

In light of the remark made above on the analogy of LAC with the dynamics
of EM (Wu 1983), here we prove that our algorithm converges to a solution
that is a local minimum of the error function (5). To obtain this result we need
to show that the error function decreases at each iteration of the algorithm.
By derivation of Eqs. 8 and 9, steps 4 and 6 of the LAC algorithm perform a
gradient descent over the surface of the error function (5). We make use of this
observation to show that each iteration of the algorithm decreases the error
function.
We prove the following theorem.

Theorem The LAC algorithm converges to a local minimum of the error func-
tion (5).

Proof For a fixed partition P and fixed cji, the optimal w′
ji obtained by setting

∂E
∂wji

= 0 and ∂E
∂λj

= 0 is:

w′
ji = exp(−Xji/h)

∑N
l=1 exp(−Xjl/h)

(10)

as in step 4 of the LAC algorithm.
For a fixed partition P and fixed wji, the optimal c′

ji obtained by setting ∂E
∂cji

= 0
is:

c′
ji = 1

|Sj|
∑

x∈Sj

xi (11)

as in step 6 of the LAC algorithm.
The algorithm consists in repeatedly replacing wji and cji with w′

ji and c′
ji using

Eqs. 10 and 11, respectively. The value of the error function E at completion of
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iteration t is E(t)
5 (C′, W′), where we explicit the dependence of E on the partition

of points computed in step 5 of the algorithm. C′ and W′ are the matrices of
the newly computed centroids and weights. Since the new partition computed
in step 3 of the successive iteration t + 1 is by definition the best assignment of
points x to the centroids c′

ji according to the weighted Euclidean distance with
weights w′

ji, we have the following inequality:

E(t+1)
3 (C′, W′) − E(t)

5 (C′, W′) ≤ 0, (12)

where E(t+1)
3 is the error function evaluated on the partition computed in step 3

of the successive iteration t +1. Using this result, and the identities E(C′, W′) =
E(t+1)

3 (C′, W′) and E(C, W) = E(t)
3 (C, W) [E(t)

3 is the value of the error function
at the beginning (step 3) of iteration t], we can derive the following inequality:

E(C′, W′) − E(C, W) = E(t+1)
3 (C′, W′) − E(t)

5 (C′, W′)

+E(t)
5 (C′, W′) − E(t)

3 (C, W)

≤ E(t)
5 (C′, W′) − E(t)

3 (C, W) ≤ 0,

where the last inequality is derived by using the definitions of w′
ji and c′

ji.
Thus, each iteration of the algorithm decreases the lower bounded error

function E (5) until the error reaches a fixed point where conditions w∗′
j = w∗

j ,
c∗′

j = c∗
j ∀j are verified. The fixed points w∗

j and c∗
j give a local minimum of the

error function E.

6 Setting parameter h: an ensemble approach

The clustering result of LAC depends on two input parameters. The first one is
common to all clustering algorithms: the number of clusters k to be discovered
in the data. The second one (h) controls the strength of the incentive to clus-
ter on more features. The setting of h is particularly difficult, since no domain
knowledge for its tuning is available. Here we focus on setting the parameter
h directly from the data. We leverage the diversity of the clusterings produced
by LAC when different values of h are used, in order to generate a consensus
clustering that is superior to the participating ones. The major challenge we
face is to find a consensus partition from the outputs of the LAC algorithm to
achieve an “improved” overall clustering of the data. Since we are dealing with
weighted clusters, we need to design a proper consensus function that makes
use of the weight vectors associated with the clusters. Our techniques leverage
such weights to define a similarity measure which is associated to the edges of
a bipartite graph. The problem of finding a consensus function is then mapped
to a graph partitioning problem (Dhillon 2001; Fern and Brodley 2004; Strehl
and Ghosh 2003).
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The LAC algorithm outputs a partition of the data, identified by the two
sets {c1, . . . , ck} and {w1, . . . , wk}. Our aim here is to generate robust and stable
solutions via a consensus clustering method. We can generate contributing clus-
terings by changing the parameter h. The objective is then to find a consensus
partition from the output partitions of the contributing clusterings, so that an
“improved” overall clustering of the data is obtained.

For each data point xi, the weighted distance from cluster Cl is given by

dil =
√√√√

D∑

s=1

wls(xis − cls)
2.

Let Di = maxl{dil} be the largest distance of xi from any cluster. We want to
define the probability associated with cluster Cl given that we have observed
xi. At a given point xi, the cluster label Cl is assumed to be a random variable
from a distribution with probabilities {P(Cl|xi)}k

l=1. We provide a nonparametric
estimation of such probabilities based on the data and on the clustering result.

In order to embed the clustering result in our probability estimations, the
smaller the distance dil is, the larger the corresponding probability credited to
Cl should be. Thus, we can define P(Cl|xi) as follows:

P(Cl|xi) = Di − dil + 1
kDi + k − ∑

l dil
, (13)

where the denominator serves as a normalization factor to guarantee∑k
l=1 P(Cl|xi) = 1. We observe that ∀l = 1, . . . , k and ∀i = 1, . . . , N P(Cl|xi) > 0.

In particular, the added value of 1 in (13) allows for a nonzero probability
P(CL|xi) when L = arg maxl{dil}. In this last case, P(Cl|xi) assumes its minimum
value P(CL|xi) = 1/(kDi + k + ∑

l dil). For smaller distance values dil, P(Cl|xi)

increases proportionally to the difference Di −dil: the larger the deviation of dil
from Di, the larger the increase. As a consequence, the corresponding cluster
Cl becomes more likely, as it is reasonable to expect based on the informa-
tion provided by the clustering process. Thus, Eq. 13 provides a nonparametric
estimation of the posterior probability associated to each cluster Cl.

We can now construct the vector Pi of posterior probabilities associated with
xi:

Pi = (P(C1|xi), P(C2|xi), . . . , P(Ck|xi))
t, (14)

where t denotes the transpose of a vector. The transformation xi → Pi maps
the D-dimensional data points xi onto a new space of relative coordinates with
respect to cluster centroids, where each dimension corresponds to one cluster.
This new representation embeds information from both the original input data
and the clustering result.

Suppose we run LAC m times for different values of the h parameter. For
each point xi, and for each clustering ν = 1, . . . , m we then can compute the
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vector of posterior probability Pν
i . Using the P vectors, we construct the follow-

ing matrix A:

A =

⎛

⎜⎜⎜⎝

(P1
1)

t (P2
1)

t . . . (Pm
1 )t

(P1
2)

t (P2
2)

t . . . (Pm
2 )t

...
...

...
(P1

N)t (P2
N)t . . . (Pm

N)t

⎞

⎟⎟⎟⎠ .

Note that the (Pν
i )

ts are row vectors (t denotes the transpose). The dimen-
sionality of A is therefore N × km, under the assumption that each of the m
clusterings produces k clusters. (We observe that the definition of A can be
easily generalized to the case where each clustering may discover a different
number of clusters.)

Based on A we can now define a bipartite graph to which our consensus par-
tition problem maps. Consider the graph G = (V, E) with V and E constructed
as follows. V = VC ∪ VI , where VC contains km vertices, each representing
a cluster of the ensemble, and VI contains N vertices, each representing an
input data point. Thus, |V| = km + N. The edge Eij connecting the vertices Vi
and Vj is assigned a weight value defined as follows. If the vertices Vi and Vj
represent both clusters or both instances, then E(i, j) = 0; otherwise, if vertex
Vi represents an instance xi and vertex Vj represents a cluster Cν

j (or vice versa)
then the corresponding entry of E is A(i, k(ν − 1) + j).

We note that the dimensionality of E is (km + N) × (km + N), and E can be
written as follows:

E =
(

0 At

A 0

)
.

A partition of the bipartite graph G partitions the cluster vertices and the
instance vertices simultaneously. The partition of the instances can then be
output as the final clustering. Due to the special structure of the graph G
(sparse graph), the size of the resulting bipartite graph partitioning problem is
kmN. We run METIS (Kharypis and Kumar 1995) on the resulting bipartite
graph to compute a k-way partitioning that minimizes the edge weight-cut. This
gives the consensus clustering we seek. We call the resulting algorithm Weighted
Bipartite Partitioning Algorithm (WBPA) . An earlier version of this algorithm
appeared in Al-Razgan and Domeniconi (2006).

7 Experimental evaluation

In our experiments, we have designed five different simulated datasets to com-
pare the competitive algorithms under different conditions. Clusters are dis-
tributed according to multivariate Gaussians with different mean and standard
deviation vectors. We have tested problems with two and three clusters up to
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50 dimensions. For each problem, we have generated five or ten training data-
sets, and for each of them an independent test set. In the following, we report
accuracy and performance results obtained via 5(10)-fold cross-validation com-
paring LAC, PROCLUS, DOC, K-means (with Euclidean distance), MK-means
(K-means with Mahalanobis distance), and EM (Dempster et al. 1977) (mixture
of Gaussians with diagonal—EM(d)—and full—EM(f )—covariance matrices).
Among the subspace clustering techniques available in the literature, we chose
PROCLUS (Aggarwal et al. 1999) and DOC (Procopiuc et al. 2002) since, as
the LAC algorithm, they also compute a partition of the data. On the contrary,
the CLIQUE technique (Agrawal et al. 1998) allows overlapping between clus-
ters, and thus its results are not directly comparable with ours. Furthermore, we
include a comparison with a clustering method which puts unit (i.e., maximal)
weight on a single dimension. In order to estimate the most relevant dimension
for each cluster, we apply LAC, and consider the dimension that receives the
largest weight within each cluster. Data within each cluster are then projected
along the corresponding selected dimension. This gives a one-dimensional cen-
troid per cluster. Finally, data are partitioned as in K-means using the resulting
one-dimensional distances (each cluster uses, in general, a different dimension).
We call the resulting algorithm LAC(1-dim).

Error rates are computed according to the confusion matrices that are also
reported. For LAC, we tested the integer values from 1 to 11 for the parameter
1/h, and report the best error rates achieved. The k centroids are initialized
by choosing well-scattered points among the given data. The mean vectors and
covariance matrices provided by K-means are used to initialize the parameters
of EM.

7.1 Simulated data

Example 1 The dataset consists of D = 2 input features and k = 3 clusters. All
three clusters are distributed according to multivariate Gaussians. Mean vector
and standard deviations for one cluster are (2, 0) and (4, 1), respectively. For
the second cluster the vectors are (10, 0) and (1, 4), and for the third are (18, 0)

and (4, 1). Table 2 shows the results for this problem. We generated 60,000 data
points, and performed ten fold cross-validation with 30,000 training data and
30,000 testing data.

Example 2 This dataset consists of D = 30 input features and k = 2 clusters.
Both clusters are distributed according to multivariate Gaussians. Mean vector
and standard deviations for one cluster are (1, . . . , 1) and (10, 5, 10, 5, . . . , 10, 5),
respectively. For the other cluster the vectors are (2, 1, . . . , 1) and
(5, 10, 5, 10, . . . , 5, 10). Table 2 shows the results for this problem. We gener-
ated 10,000 data points, and performed ten fold cross-validation with 5,000
training and 5,000 testing data.

Example 3 This dataset consists of D = 50 input features and k = 2 clus-
ters. Both clusters are distributed according to multivariate Gaussians. Mean
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Fig. 2 Example 4: two Gaussian clusters non-axis oriented in two dimensions

vector and standard deviations for one cluster are (1, . . . , 1) and (20, 10, 20, 10, . . . ,
20, 10), respectively. For the other cluster the vectors are (2, 1, . . . , 1) and
(10, 20, 10, 20, . . . , 10, 20). Table 2 shows the results for this problem. We gen-
erated 10,000 data points, and performed ten fold cross-validation with 5,000
training data and 5,000 testing data.

Example 4 This dataset consists of off-axis oriented clusters, with D = 2 and
k = 2. Figure 2 shows the distribution of the points for this dataset. We gen-
erated 20,000 data points, and performed five fold-cross-validation with 10,000
training data and 10,000 testing data. Table 2 shows the results.

Example 5 This dataset consists again of off-axis oriented two dimensional clus-
ters. This dataset contains three clusters, as Fig. 3 depicts. We generated 30,000
data points, and performed five fold-cross-validation with 15,000 training data
and 15,000 testing data. Table 2 shows the results.

7.2 Real data

We used ten real datasets. The OQ-letter, Wisconsin breast cancer, Pima Indians
Diabete, and Sonar data are taken from the UCI Machine Learning Repository.
The Image data set is obtained from the MIT Media Lab. We used three high
dimensional text datasets: Classic3, Spam2000, and Spam5996. The documents
in each dataset were preprocessed by eliminating stop words (based on a stop
words list), and stemming words to their root source. We use as feature values
for the vector space model the frequency of the terms in the corresponding doc-
ument. The Classic3 dataset is a collection of abstracts from three categories:
MEDLINE (abstracts from medical journals), CISI (abstracts from IR papers),



82 C. Domeniconi et al.

Fig. 3 Example 5: three Gaussian clusters non-axis oriented in two dimensions

CRANFIELD (abstracts from aerodynamics papers). The Spam data belong
to the Email-1431 dataset. This dataset consists of emails falling into three cat-
egories: conference (370), jobs (272), and spam (786). We run two different
experiments with this dataset. In one case, we reduce the dimensionality to
2,000 terms (Spam2000), in the second case to 5,996 (Spam5996). In both cases,
we consider two clusters by merging the conference and jobs mails into one
group (non-spam).

To study whether our projected clustering algorithm is applicable to gene
expression profiles, we used two datasets: the B-cell lymphoma (Alizadeh et al.
2000) and the DNA microarray of gene expression profiles in hereditary breast
cancer (Hedenfalk et al. 2001). The lymphoma dataset contains 96 samples, each
with 4,026 expression values. We clustered the samples with the expression val-
ues of the genes as attributes (4,026 dimensions). The samples are categorized
into nine classes according to the category of mRNA sample studied. We used
the class labels to compute error rates, according to the confusion matrices.
We also experiment our algorithm with a DNA microarray dataset (Hedenfalk
et al. 2001). The microarray contains expression levels of 3,226 genes under 22
conditions. We clustered the genes with the expression values of the samples
as attributes (22 dimensions). The dataset is presented as a matrix: each row
corresponds to a gene, and each column represents a condition under which the
gene is developed.

Biologists are interested in finding sets of genes showing strikingly similar
up-regulation and down-regulation under a set of conditions. Since class labels
are not available for this dataset, we utilize the mean squared residue score as
defined in (1) to assess the quality of the clusters detected by LAC and PRO-
CLUS algorithms. The lowest score value 0 indicates that the gene expression
levels fluctuate in unison. The aim is to find biclusters with low-mean squared
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Table 1 Characteristics of real data

N D k Number of data per cluster

OQ 1,536 16 2 783-753
Breast 683 9 2 444-239
Pima 768 8 2 500-268
Image 640 16 15 80-64-64-64-48-48-48-32-32-32-32-32-32-16-16
Sonar 208 60 2 111-97
Lymphoma 96 4,026 9 46-11-10-9-6-6-4-2-2
Classic3 3,893 3,302 3 1460-1400-1033
Spam2000 1,428 2,000 2 786-642
Spam5996 1,428 5,996 2 786-642
DNA-microarray 3,226 22 n.a. n.a.

Table 2 Average error rates for simulated data

LAC LAC(1-dim) PROCLUS K-means MK-means DOC EM(d) EM(f)

Ex1 11.4(0.3) 13.3(0.3) 13.8(0.7) 24.2(0.5) 18.6(7.2) 35.2(2.2) 5.1(0.4) 5.1(0.4)
Ex2 0.5(0.4) 26.5(2.2) 27.9(9.8) 48.4(1.1) 42.3(7.7) no clusters 0.6(0.3) 0.8(0.3)
Ex3 0.08(0.1) 28.6(2.3) 21.6(5.3) 48.1(1.1) 47.7(1.5) no clusters 0.0(0.1) 25.5(0.2)
Ex4 4.8(0.4) 4.9(0.4) 7.1(0.7) 7.7(0.7) 3.8(4.7) 22.7(5.9) 4.8(0.2) 2.3(0.2)
Ex5 7.7(0.3) 9.4(0.3) 7.0(2.0) 18.7(2.7) 4.8(4.9) 16.5(3.9) 6.0(0.2) 2.3(0.2)
Average 4.9 16.5 15.5 29.4 23.4 24.8 3.3 7.2

residue score (in general, below a certain threshold). The characteristics of all
ten real datasets are summarized in Table 1.

7.3 Results on simulated data

The performance results reported in Table 2 clearly demonstrate the large gain
in performance obtained by the LAC algorithm with respect to LAC(1-dim),
PROCLUS, K-means and MK-means with high-dimensional data. The good
performance of LAC on Examples 4 and 5 shows that our algorithm is able to
detect clusters folded in subspaces not necessarily aligned with the input axes.
Figure 4 shows the result obtained with LAC on Example 5. The large error rates
of K-means for the 30 and 50 dimensional datasets (Examples 2 and 3) show
how ineffective a distance function that equally use all input features can be in
high-dimensional spaces. Also MK-means gives large error rates on Examples
2 and 3, which demonstrates the difficulty of estimating full covariance matrices
in high-dimensional spaces. As expected, projecting the data on one-dimension
causes the loss of crucial information for the high-dimensional clusters of Exam-
ples 2 and 3. As a consequence, LAC(1-dim) performs considerably worse than
LAC on these data. On the other hand, LAC(1-dim) performs reasonably well
on Examples 1, 4, and 5, since the two-dimensional Gaussian data are designed
to cluster closely along a single direction.
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Fig. 4 Example 5: clustering results of the LAC algorithm

Table 3 Dimensions selected
by PROCLUS

C0 C1 C2

Ex1 2,1 2,1 2,1
Ex2 8,30 19,15,21,1,27,23 –
Ex3 50,16 50,16,17,18,21,22,23,19,11,3 –
Ex4 1,2 2,1 –
Ex5 1,2 2,1 1,2

Examples 1, 2, and 3 offer optimal conditions for EM(d); Examples 4 and 5
are optimal for EM(f ) and MK-means. As a consequence, EM(d) and EM(f )
provide best error rates in such respective cases. As expected, MK-means pro-
vides error rates similar to EM(f ) on Examples 4 and 5. Nevertheless, LAC
gives error rates similar to EM(d) under conditions which are optimal for the
latter, especially in higher dimensions. The large error rate of EM(f ) for Exam-
ple 3 confirms the difficulty of estimating full covariance matrices in higher
dimensions.

PROCLUS requires the average number of dimensions per cluster as param-
eter in input; its value has to be at least two. We have cross-validated this param-
eter and report the best error rates obtained in Table 2. PROCLUS is able to
select highly relevant features for datasets in low dimensions, but fails to do so
in higher dimensions, as the large error rates for Examples 2 and 3 show. Table 3
shows the dimensions selected by PROCLUS for each dataset and each cluster.
Figure 5 plots the error rate as a function of the average number of dimen-
sions per cluster, obtained by running PROCLUS on Example 2. The best error
rate (27.9%) is achieved in correspondence of the value four. The error rate
worsens for larger values of the average number of dimensions. Figure 5 shows
that the performance of PROCLUS is highly sensitive to the value of its input
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Fig. 5 Example 2: error rate of PROCLUS versus average number of dimensions

Table 4 Average number of
iterations

LAC PROCLUS K-means EM(d)

Ex1 7.2 6.7 16.8 22.4
Ex2 3.2 2.0 16.1 6.3
Ex3 3.0 4.4 19.4 6.0
Ex4 7.0 6.4 8.0 5.6
Ex5 7.8 9.8 15.2 27.6
Average 5.6 5.9 15.1 13.6

parameter. If the average number of dimensions is erroneously estimated, the
performance of PROCLUS significantly worsens. This can be a serious problem
with real data, when the required parameter value is most likely unknown.

We set the parameters of DOC as suggested in Procopiuc et al. (2002). DOC
failed to find any clusters in the high-dimensional examples. It is particularly
hard to set the input parameters of DOC, as local variances of features are
unknown in practice.

Table 4 shows the average number of iterations performed by LAC, K-means,
and EM(d) to achieve convergence, and by PROCLUS to achieve the termi-
nation criterion. For each problem, the rate of convergence of LAC is superior
to the rate of K-means: on Examples 1 through 5 the speed-ups are 2.3, 5.0,
6.5, 1.1, and 1.9, respectively. The number of iterations performed by LAC and
PROCLUS is close for each problem, and the running time of an iteration of
both algorithms is O(kDN) (where k is the number of clusters, N is the number
of data points, and D the number of dimensions). The faster rate of conver-
gence achieved by the LAC algorithm with respect to K-means (and EM(d))
is motivated by the exponential weighting scheme provided by Eq. 8, which
gives the optimal weight values w∗

ji. Variations of the within-cluster dispersions
Xji (along each dimension i) are exponentially reflected into the corresponding
weight values wji. Thus, the (exponential) weights are more sensitive (than qua-
dratic or linear ones, for example) to changes in local feature relevance. As a
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consequence, a minimum value of the error function (5) can be reached in less
iterations than the corresponding unweighted cost function minimized by the
K-means algorithm.

To further test the accuracy of the algorithms, for each problem we have com-
puted the confusion matrices. The entry (i, j) in each confusion matrix is equal to
the number of points assigned to output cluster i, that were generated as part of
input cluster j. Results are reported in Tables 5-9. We also computed the average
weight values per cluster obtained over the runs conducted in our experiments.
We report the weight values for Example 5 in Table 10. Similar results were
obtained in all cases. Table 10 shows that there is a perfect correspondence
between the weight values of each cluster and the correlation patterns of data
within the same cluster. This is of great importance for applications that require
not only a good partitioning of data, but also information to what features are
relevant for each partition.

As expected, the resulting weight values for one cluster depends on the con-
figurations of other clusters as well. If clusters have the same standard deviation
along one dimension i, they receive almost identical weights for measuring dis-
tances along that feature. This is informative of the fact that feature i is equally
relevant for both partitions. On the other hand, weight values are largely differ-
entiated when two clusters have different standard deviation values along the
same dimension i, implying different degree of relevance of feature i for the
two partitions.

7.4 Results on real data

Table 11 reports the error rates obtained on the nine real datasets with class
labels. For each dataset, all N points were used to identify the clusters. For
LAC we fixed the value of the parameter 1/h to 9 (this value gave in general
good results with the simulated data). We ran PROCLUS with input parameter
values from 2 to D for each dataset, and report the best error rate obtained in

Table 5 Confusion matrices
for Example 1

C0 (input) C1 (input) C2 (input)

LAC
C0 (output) 8,315 0 15
C1 (output) 1,676 10,000 1,712
C2 (output) 9 0 8,273
PROCLUS
C0 (output) 7,938 0 7
C1 (output) 2,057 10,000 2,066
C2 (output) 5 0 7,927
K-means
C0 (output) 9440 4,686 400
C1 (output) 411 3,953 266
C2 (output) 149 1,361 9,334
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Table 6 Confusion matrices
for Example 2

C0 (input) C1 (input)

LAC
C0 (output) 2,486 13
C1 (output) 14 2,487

PROCLUS
C0 (output) 1,755 648
C1 (output) 745 1,852
K-means
C0 (output) 1,355 1,273
C1 (output) 1,145 1,227

Table 7 Confusion matrices
for Example 3

C0 (input) C1 (input)

LAC
C0 (output) 2,497 1
C1 (output) 3 2,499

PROCLUS
C0 (output) 2,098 676
C1 (output) 402 1,824
K-means
C0 (output) 1,267 1,171
C1 (output) 1,233 1,329

Table 8 Confusion matrices
for Example 4

C0 (input) C1 (input)

LAC
C0 (output) 4,998 473
C1 (output) 2 4,527

PROCLUS
C0 (output) 5,000 714
C1 (output) 0 4,286
K-means
C0 (output) 4,956 724
C1 (output) 44 4,276

each case. For the Lymphoma (4,026 dimensions), Classic3 (3,302 dimensions),
Spam2000 (2,000 dimensions), and Spam5996 (5,996 dimensions) we tested sev-
eral input parameter values of PROCLUS, and found the best result at 3,500,
350, 170, and 300, respectively. LAC gives the best error rate in six of nine
datasets. LAC outperforms PROCLUS and EM(d) in each dataset. MK-means
and EM do not perform well in general, and particularly in higher dimensions
[the same holds for LAC(1-dim)]. This is likely due to the non-Gaussian distri-
butions of real data. MK-means and EM(f ) (Netlab library for Matlab) failed
to run to completion on the very high-dimensional data due to memory prob-
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Table 9 Confusion matrices
for Example 5

C0 (input) C1 (input) C2 (input)

LAC
C0 (output) 5,000 622 0
C1 (output) 0 3844 0
C2 (output) 0 534 5,000

PROCLUS
C0 (output) 5,000 712 0
C1 (output) 0 4,072 117
C2 (output) 0 216 4,883
K-means
C0 (output) 4,816 1,018 0
C1 (output) 140 3,982 1,607
C2 (output) 44 0 3,393

Table 10 LAC: weight values
for Example 5

Cluster w1 w2

C0 0.92 0.08
C1 0.44 0.56
C2 0.94 0.06

Table 11 Average error rates for real data

LAC LAC(1-dim) PROCLUS K-means MK-means DOC EM(d) EM (f )

OQ 30.9 35.9 31.6 47.1 42.4 54.0 40.0 43.8
Breast 4.5 18.4 5.7 4.5 34.6 32.9 5.3 5.4
Pima 29.6 34.9 33.1 28.9 34.9 42.7 33.7 34.9
Image 39.1 54.5 42.5 38.3 35.4 45.8 39.8 34.6
Sonar 38.5 33.2 39.9 46.6 41.4 65.0 44.5 44.3
Lymphoma 32.3 52.1 33.3 39.6 – – 47.4 –
Classic3 2.6 62.5 48.2 62.4 – – 59.2 –
Spam2000 1.2 44.9 28.0 44.7 – – 36.6 –
Spam5996 5.1 10.2 44.5 44.9 – – 44.8 –
Average 20.4 38.5 34.1 39.7 37.7 48.1 39.0 32.6

lems. Interestingly, LAC(1-dim) gives the best error rate on the Sonar data,
suggesting the presence of many noisy features. In three cases (Breast, Pima,
and Image), LAC and K-means have very similar error rates. For these sets,
LAC did not find local structures in the data, and credited approximately equal
weights to features. K-means performs poorly on the OQ and Sonar data. The
enhanced performance given by the subspace clustering techniques in these two
cases suggest that data are likely to be locally correlated. This seems to be true
also for the Lymphoma data.

The LAC algorithm did extremely well on the three high-dimensional text
data (Classic3, Spam2000, and Spam5996), which demostrate the capability
of LAC in finding meaningful local structure in high-dimensional spaces. This
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result suggests that an analysis of the weights credited to terms can guide the
automatic identification of class-specific keywords, and thus the process of label
assignment to clusters. Furthermore, the poor performance of LAC(1-dim) on
the high-dimensional data (in particular, Lymphoma, Classic3, and Spam2000)
demonstrates the presence of multidimensional sub-clusters embedded in very
high-dimensional spaces. The discovery of one-dimensional clusters is not suffi-
cient to reveal the underlying data structure.

The DOC algorithm performed poorly, and failed to find any clusters on the
very high dimensional data (Lymphoma, Classic3, Spam2000, and Spam5996).
We did extensive testing for different parameter values, and report the best
error rates in Table 11. For the OQ data, we tested width values from 0.1 to
3.4 (at steps of 0.1). (The two actual clusters in this dataset have standard devi-
ation values along input features in the ranges (0.7, 3.2) and (0.95, 3.2).) The
best result obtained reported one cluster only, and 63.0% error rate. We also
tried a larger width value (6), and obtained one cluster again, and error rate
54.0%. For the Sonar data we obtained the best result reporting two clusters
for a width value of 0.5. Nevertheless, the error rate is still very high (65%). We
tested several other values (larger and smaller), but they all failed to finding any
cluster in the data. (The two actual clusters in this dataset have standard devia-
tion values along input features in the ranges (0.005, 0.266) and (0.0036, 0.28).)
These results clearly show the difficulty of using the DOC algorithm in practice.

7.4.1 Robustness analysis

We capture robustness of a technique by computing the ratio bm of its error rate
em and the smallest error rate over all methods being compared in a particular
example: bm = em/ min1≤k≤4 ek. Thus, the best method m∗ for an example has
bm∗ = 1, and all other methods have larger values bm ≥ 1, for m �= m∗. The
larger the value of bm, the worse the performance of method m is in relation
to the best one for that example, among the methods being compared. The dis-
tribution of the bm values for each method m over all the examples, therefore,
seems to be a good indicator concerning its robustness. For example, if a partic-
ular method has an error rate close to the best in every problem, its bm values
should be densely distributed around the value 1. Any method whose b value
distribution deviates from this ideal distribution reflect its lack of robustness.
Figure 6 plots the distribution of bm for each method over the six real datasets
OQ, Breast, Pima, Image, Sonar, and Lymphoma. For scaling issues, we plot the
distribution of bm for each method over the three text data separately in Fig. 7.
For each method [LAC, PROCLUS, K-means, EM(d)] we stack the six bm val-
ues. (We did not consider DOC since it failed to find reasonable patterns in
most cases.) LAC is the most robust technique among the methods compared.
In particular, Fig. 7 graphically depicts the strikingly superior performance of
LAC over the text data with respect to the competitive techniques.
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Fig. 6 Performance distributions over real datasets

Fig. 7 Performance distributions over text data

7.4.2 Analysis of text data

To investigate the false positive and false negative rates on the spam data
we show the corresponding confusion matrices in Tables 12 and 13. In both
cases, LAC has low-false positive (FP) and low-false negative (FN) rates. On
Spam2000: FP = 0.26%, FN = 2.3%; On Spam5996: FP = 2.66%, FN = 7.85%.
PROCLUS discovers, to some extent, the structure of the two groups for
Spam2000 (FP = 18.8%, FN = 35.1%), but fails completely for Spam5996.
This result confirms our findings with the simulated data, i.e., PROCLUS fails
to select relevant features in high dimensions. In both cases, K-means and
EM(d) are unable to discover the two groups in the data: almost all emails
are clustered in a single group. In Figs. 8–10, we plot the error rate of LAC
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Table 12 Confusion matrices
for Spam2000

Spam (input) Non-spam (input)

LAC
Spam (output) 771 2
Non-spam (output) 15 640
PROCLUS
Spam (output) 502 116
Non-spam (output) 284 526
K-means
Spam (output) 786 639
Non-spam (output) 0 3
EM(d)
Spam (output) 781 517
Non-spam (output) 5 125

Table 13 Confusion matrices
for Spam5996

Spam (input) Non-spam (input)

LAC
Spam (output) 733 20
Non-spam (output) 53 622
PROCLUS
Spam (output) 777 627
Non-spam (output) 9 15
K-means
Spam (output) 786 641
Non-spam (output) 0 1
EM(d)
Spam (output) 780 634
Non-spam (output) 6 8

as a function of the input parameter h for the three text datasets used in our
experiments. As expected, the accuracy of the LAC algorithm is sensitive to the
value of h; nevertheless, a good performance was achieved across the range of
values tested ( 1

h = 1, 3, 5, 7, 9, 11).

7.4.3 Analysis of microarray data

We ran the LAC and PROCLUS algorithms using the microarray data and
small values of k (k = 3 and 4). Tables 14 and 15 show sizes, scores, and dimen-
sions of the biclusters detected by LAC and PROCLUS. For this dataset, DOC
was not able to find any clusters. For LAC we have selected the dimensions
with the largest weights (1/h is fixed to 9). For k = 3, within each cluster four
or five conditions received significant larger weight than the remaining ones.
Hence, we selected those dimensions. By taking into consideration this result,
we ran PROCLUS with five as value of its input parameter. For k = 4, within
two clusters five conditions receive again considerably larger weight than the
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Fig. 8 Classic3 dataset: error rate of LAC versus 1
h parameter

Fig. 9 Spam2000 dataset: error rate of LAC versus 1
h parameter

Fig. 10 Spam5996 dataset: error rate of LAC versus 1
h parameter
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Table 14 Size, score, and
dimensions of the clusters
detected by LAC and
PROCLUS algorithms on the
microarray data (k = 3)

k = 3 LAC PROCLUS

C0 (size, score) 1220 × 5, 11.98 1635 × 4, 9.41
dimensions 9,13,14,19,22 7,8,9,13
C1 (size, score) 1052 × 5, 1.07 1399 × 6, 48.18
dimensions 7,8,9,13,18 7,8,9,13,19,22
C2 (size, score) 954 × 4, 5.32 192 × 5, 2.33
dimensions 12,13,16,18 2,7,10,19,22

Table 15 Size, score, and
dimensions of the clusters
detected by LAC and
PROCLUS algorithms on the
microarray data (k = 4)

k = 4 LAC PROCLUS

C0 (size, score) 1701×5, 4.52 1249×5, 3.90
dimensions 7,8,9,19,22 7,8,9,13,22
C1 (size, score) 1255×5, 3.75 1229×6, 42.74
dimensions 7,8,9,13,22 7,8,9,13,19,22
C2 (size, score) 162 outliers 730×4, 15.94
dimensions – 7,8,9,13
C3 (size, score) 108 outliers 18×5, 3.97
dimensions – 6,11,14,16,21

others. The remaining two clusters contain fewer genes, and all conditions
receive equal weights. Since no correlation was found among the conditions
in these two cases, we have “labeled” the corresponding tuples as outliers.

Different combinations of conditions are selected for different biclusters, as
also expected from a biological perspective. Some conditions are often selected,
by both LAC and PROCLUS (e.g., conditions 7, 8, and 9). The mean squared
residue scores of the biclusters produced by LAC are consistently low, as
desired. On the contrary, PROCLUS provides some clusters with higher scores
(C1 in both Tables 14 and 15).

In general, the weighting of dimensions provides a convenient scheme to
properly tune the results. That is: by ranking the dimensions according to their
weight, we can keep adding to a cluster the dimension that minimizes the
increase in score. Thus, given an upper bound on the score, we can obtain the
largest set of dimensions that satisfies the given bound.

To assess the biological significance of generated clusters we used a bio-
logical data mart (developed by our collaborator biologists), that employs an
agent framework to maintain knowledge from external databases. Significant
themes were observed in some of these groups. For example, one cluster (cor-
responding to cluster C1 in Table 14) contains a number of cell cycle genes
(see Table 16). The terms for cell cycle regulation all score high. As with all
cancers, BRCA1- and BRCA2-related tumors involve the loss of control over
cell growth and proliferation, thus the presence of strong cell-cycle components
in the clustering is expected.
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Table 16 Biological processes annotated in one cluster generated by the LAC algorithm

Biological process z-score Biological process z-score

DNA damage checkpoint 7.4 Purine nucleotide biosynthesis 4.1
Nucleocytoplasmic transport 7.4 mRNA splicing 4.1
Meiotic recombination 7.4 Cell cycle 3.5
Asymmetric cytokinesis 7.4 Negative regulation of cell proliferation 3.4
Purine base biosynthesis 7.4 Induction of apoptosis by intracellular signals 2.8
GMP biosynthesis 5.1 Oncogenesis 2.6
rRNA processing 5.1 G1/S transition of mitotic cell cycle 2.5
Glutamine metabolism 5.1 Protein kinase cascade 2.5
Establishment and/or 5.1 Central nervous system 4.4
maintenance of cell polarity development
Gametogenesis 5.1 Regulation of cell cycle 2.1
DNA replication 4.6 Cell cycle arrest 4.4
Glycogen metabolism 2.3

Table 17 Error rates of
WBPA

WBPA Min-Error Max-Error Avg-Error

OQ 47.5 (1.3) 31.3 49.0 48.3
Breast 3.6 (0.2) 5.9 34.1 20.5
Pima 31.9 (2.2) 29.2 33.6 30.6
Sonar 29.8 (1.7) 34.1 46.6 38.6
Classic3 2.2 (0.2) 1.9 33.8 9.3
Spam2000 0.70 (0.2) 0.62 1.5 0.97
Spam5996 1.2 (0.1) 1.9 7.0 3.8

7.4.4 Results on clustering ensembles

We ran the clustering ensemble algorithm WBPA on the real datasets described
in Table 1. Since METIS (Kharypis and Kumar 1995) requires balanced data-
sets, we performed random sampling on Breast, Pima, Classic3, Spam2000, and
Spam 5996. In each case, we sub-sampled the most populated class: from 444
to 239 for Breast, from 500 to 268 for Pima, from 1,460 and 1,400 to 1,033 for
Classic3, and from 786 to 642 for Spam2000 and Spam5996. We did not use the
Image and Lymphoma datasets to test the clustering ensemble technique since
they are highly unbalanced and the smallest clusters contain too few points.

For each dataset, we ran the LAC algorithm for ten values of the input param-
eter 1

h , randomly chosen within the set of values {0.1, 0.2, 0.5, 1, 2, 3, . . . , 20}. The
clustering results of LAC are then given in input to the consensus clustering
technique WBPA. For the value of k, we input both LAC and the ensemble
algorithm with the actual number of classes in the data. Results are provided in
Table 17, where we report the error rates of WBPA (along with the correspond-
ing standard deviations computed over five runs of WBPA), and the maximum,
minimum, and average error rate values for the input clusterings.

The discrepancy between the Min-Error and Max-Error values show the sen-
sitivity of the LAC algorithm on the value of the input parameter h. As the error
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rates in Table 17 demonstrate, the WBPA technique is capable of leveraging
the diversity of the input clusterings, and provides a consensus clustering that is
better or close to the best individual input clustering for almost all datasets. Spe-
cifically, for the Breast, Sonar, and Spam5996 datasets, the error rate of WBPA
is lower than the best input error rate. For Classic3 and Spam2000, the error
rate of WBPA is still very close to the best input error rate, and well below the
average input error rate. For the Pima dataset, the WBPA error rate is slightly
above the average input error rate. We observe that in this case the input error
rates have a small variance, while the ensemble clustering technique is most
effective when the input clusterings are diverse. WBPA does not perform well
on the OQ dataset. The reason is that, among the input error rates, one has the
value of 31.3%, while all the others are in the range 47–49%. LAC’s accuracy
and diversity are in this case too low for the ensemble to provide good results.
It is well known, in fact, that a good tradeoff between diversity and accuracy is
a necessary condition to achieve an effective ensemble approach. Overall, our
WBPA approach successfully leveraged the diverse input clusterings in six of
seven cases.

8 Conclusions and future work

We have formalized the problem of finding different clusters in different sub-
spaces. Our algorithm discovers clusters in subspaces spanned by different com-
binations of dimensions via local weightings of features. This approach avoids
the risk of loss of information encountered in global dimensionality reduction
techniques.

The output of our algorithm is twofold. It provides a partition of the data,
so that the points in each set of the partition constitute a cluster. In addition,
each set is associated with a weight vector, whose values give information of the
degree of relevance of features for each partition. Our experiments show that
there is a perfect correspondence between the weight values of each cluster and
local correlations of data.

We have formally proved that our algorithm converges to a local minimum of
the associated error function, and experimentally demonstrated the gain in per-
fomance we achieve with our method in high-dimensional spaces with clusters
folded in subspaces spanned by different combinations of features. In addition,
we have shown the feasibility of our technique to discover “good” biclusters in
microarray gene expression data.

The LAC algorithm performed extremely well on the three high-dimen-
sional text data (Classic3, Spam2000, and Spam5996). In our future work we
will further investigate the use of LAC for keyword identification of unlabeled
documents. An analysis of the weights credited to terms can guide the automatic
identification of class-specific keywords, and thus the process of label assign-
ment to clusters. These findings can have a relevant impact for the retrieval of
information in content-based indexed documents.

The LAC algorithm requires as input parameter the value of h, which con-
trols the strength of the incentive for clustering on more features. Our ensemble
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approach WBPA provides a solution to the difficult issue of tuning the input
parameter h of LAC. In our future work, diversity-accuracy requirements of the
individual clusterings, in order for the ensemble to be effective, will be further
investigated and quantified.
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