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1 Introduction

Dimension attributes in data warehouses are typically
hierarchical, and a variety of OLAP applications (such as
point-of-sales analysis and decision support) call for sum-
marizing the measure attributes in fact tables along the hi-
erarchies of these attributes. For example, the total sales
at different stores can be summarized hierarchically by ge-
ographic location (e.g., state/city/zip code/store), by time
(e.g., year/month/day/hour), or by product category (e.g.,
clothing/outerwear/jackets/brand). Existing OLAP tools
help to summarize and navigate the data at different levels
of aggregation (e.g., jackets sold in each state during De-
cember 2006) via drill-down and roll-up operators. OLAP
tools are also used to characterize changes in these hier-
archical summaries over time (e.g., the sales in December
2006 compared to sales in December 2005 over different
locations) to detect anomalies and characterize trends (e.g.,
see [2]). When the number of changes identified is large
(e.g., the total sales at many locations differed significantly
from their expectations), one seeks explanations. In this
paper, we are interested in parsimonious explanations of
changes in measure attributes aggregated along an associ-
ated dimension attribute hierarchy.

We propose a natural model of explanation that makes
effective use of the dimension hierarchy and describes
changes at the leaf nodes of the hierarchy (e.g., individual
stores in the location hierarchy) as a composition of “node
weights” along each node’s root-to-leaf path in the dimen-
sion hierarchy; each node weight constitutes an explanatory
term. For example, sales in California stores were three
times expected sales; sales in San Jose stores were higher by
a factor of two (six times expected sales), whereas sales in
Los Angeles stores were lower than the statewide increase
by a factor of 1.5 (two times expected sales).

Formally, we assume that the dimension hierarchy re-
mains fixed over time, and each data item (e.g., a record
in a fact table) has a timestamp and is associated with a
leaf node (e.g., an individual store) of the hierarchy. A hi-
erarchical summary or snapshot (over some time interval)
then associates with each node in the dimension hierarchy

(e.g., store, zip code, city, state) the aggregated value of the
measure attribute (e.g., total sales) of all data items (with a
timestamp in that time interval) in its subtree.

If we consider two snapshots, it is clear that the changes
between the trees can be expressed over the different levels
of the dimension hierarchy in numerous possible ways. For
example, if the sales at each California store grew to three
times its expectation, we can model this change (among
other possibilities) as a weight of three for each individual
store, or a weight of three at the California state level. The
important question is, what are the nodes in the hierarchy
that explain the (most significant) changes parsimoniously.

A straightforward attempt at identification of parsimo-
nious explanations is a top-down approach. Starting from
the roots of the two snapshots, compare aggregate values of
the measure attributes at corresponding nodes. If the dif-
ference between the aggregates is completely “explained”
by the composition of node weights along the path from the
root coming into that node, no additional node weight (or
explanatory term) is needed at that node. Otherwise, that
node’s weight is set to the appropriate difference. While
straightforward, such an explanation can be easily shown to
not be optimally parsimonious. For example, if 4 out of 5
stores in Los Angeles grew to two times their expectations,
and the 5’th store exhibited no change, a top-down expla-
nation would associate of weight of 1.6 = 8/5 to the Los
Angeles node, and would then have to have additional ex-
planations at each store to explain their differences wrt the
city-level explanation – thus needing six explanatory terms.
An optimally parsimonious explanation, on the other hand,
needs only two explanatory terms – a weight of 2 at the Los
Angeles node, and a separate node weight (of 0.5) for the
anomalous 5’th store.

2 Change Explanation Model

We define a natural model which gives a hierarchical ex-
planation of change between between two snapshots of hi-
erarchical data. Let T1 and T2 be rooted trees induced from
a dimension attribute hierarchy on multisets of items (as-
sociated with leaf nodes) with measure attributes. The ag-
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(c) bottom-up assignment

Figure 1. (a) and (b) give trees T1 and T2, respectively; (c) shows a bottom-up weight assignment.
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(c) optimal (k = 2)

Figure 2. Weights based on top-down and optimal assignments.

gregate value associated with each node n in Ti is the sum
of the measure values of the multiset of items associated
with leaf nodes in n’s subtree in Ti. Let mTi

(n) denote
this aggregate value at Ti’s node n. For example, consider
the IPv4 address space (32 bits) in which a hierarchy is in-
duced by bit-prefixes on the IP addresses. Figures 1(a) and
(b) provide examples of hierarchical summaries constructed
from multisets of fully specified IP addresses, with counts
indicating traffic volumes (e.g., total packets or bytes).

Given hierarchical summaries T1 and T2 as input, we
would like to explain the changes of T2 with respect to T1.
For exposition, let us assume that the trees have the same
leaf nodes (possibly with different aggregate values) and all
leaves in both trees have non-zero measures. Our model
gives a complete hierarchical explanation of change ex-
pressed as a composition of weights (“explanatory terms”)
for nodes along the root-to-leaf path of each leaf node. Let
P(n) be the ancestor path from the root down to a tree
node n. Formally, for each leaf node `, we wish to find
weights w(n) of each node n ∈ P(`) subject to the con-
straint mT2

(`) =
∏

n∈P(`) w(n) × mT1
(`). This system

of equations is under-constrained and thus does not yield a
unique assignment of weights.

One possible assignment of weights is bottom-up, which
assigns each leaf node ` in T1 a weight of mT2

(`)

mT1
(`) , and 1 to

each non-leaf node. Figure 1(c) shows a bottom-up assign-
ment for the trees T1 and T2 shown in Figures 1(a) and (b),
respectively. Another possible assignment is the top-down
assignment, as shown in Figure 2(a).

We define a parsimonious explanation of hierarchical
change as follows. Given two trees T1 and T2, a parsimo-
nious explanation of change is one with the minimum num-
ber of non-trivial weights, i.e., weights not equal to 1. Con-
sider Figure 2(b), which is able to explain the changes using
only 2 non-trivial weights compared to 3 for the bottom-up
strategy and 5 for the top-down one; in fact, it is an opti-
mally parsimonious explanation.

However, this model is too sensitive to noise. We wish
to capture similar (but not equal) changes among related
leaves ` which may not have equal mT2

(`)

mT1
(`) ratios. For ex-

ample, if two sibling leaves have ratios of 1.99 and 2.01, we
may wish to describe this at the parent using a weight of 2.
Since the deviations from this description at the leaves are
small, we may tolerate this error as being a good enough ap-
proximation to report only significant changes and to avoid
overfitting. We extend our explanation model to allow a
tolerance parameter k on the weight assignments: only
weights /∈ [ 1

k
, k] are reported as part of an explanation.

Thus, given a threshold k ≥ 1, a parsimonious explana-
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Figure 3. Census data 2000-2004: Population counts from 2000-2003 are compared against Population of year 2004.
(a) Explanation size vs. # leaves; (b) Explanation size vs. k; (c) Stability, Sc as a function of k.

location weight
Texas/Kleberg/Corpus Christi City 60.4
Mississippi/Rankin/Jackson City 46.5

Illinois/Lake/Round Lake Village/27923 41
Minnesota/Nicollet/0/39878 33.17

Minnesota/Nicollet/Mankato City 28.1

Table 1. Top 5 explanation weights comparing the
Census data from years 2000 and 2004, k = 1.1.

tion of change finds the minimum the number of weights
/∈ [ 1

k
, k]. Figure 2(c) shows an explanation with k = 2,

having no non-trivial weights.

3 Evaluation

We evaluate the effectiveness of our proposed change ex-
planation model according to its ability to capture interest-
ing hierarchical explanations as well as the stability of the
output under small perturbations of tolerance parameter k.
We define stability to measure the sensitivity of the set of
explanation weights as a function of tolerance parameter k.
Let Sk

l
be the set of nodes at level l where “explanations”

occur. Then the stability of the output at level h, given a
change in tolerance parameter from k − ∆k to k, is given
by Sc =

|Sk−∆k

h
∩S

k

h
|

|Sk

h
|

. We used a data set of census popula-
tion counts for the United States over different years in the
geographical hierarchy given by state/county/city/zip code;
each year contains roughly 80K leaf nodes and 130K total
nodes of population counts [1].

We compared the parsimonious explanations against
those obtained by naive bottom-up and top-down ap-
proaches on the Census data. The first snapshot contains
the population count in each zip code of a year from 2000-
2003 and the second snapshot contains populations from
2004. The tolerance parameter k is the only tunable param-

eter to achieve parsimonious explanations. Figure 3 shows
the number of explanations, running time and stability of
the optimal algorithm on Census datasets.

Figure 3(a) shows the number of explanations as the
number of leaves increases. We observe that k = 1.05 at-
tains a high level of parsimony in reducing the number of
explanations. This can be expected since population counts
do not change by more than 5% in 4-5 years. The similar-
ity of bottom-up and optimal explanation sizes with k = 1
indicates that the number of distinct count ratios is signif-
icant. The number of explanations dramatically decreases
as k increases (Figure 3(b)), as expected, given extra toler-
ance for grouping similar ratios. The stability curves show
the average stability across all levels (Figure 3(c)). Stabil-
ity is always > 0.65. Table 1 shows the top 5 explanation
weights in the Census data sets used in the descending order
of max(weight, 1/weight) for k = 1.1.

4 Conclusions

In this paper, we proposed a natural model for explain-
ing changes between two hierarchical snapshots and formu-
lated the problem of finding a parsimonious explanation in
this model. Our model makes effective use of the hierarchy
and describes changes at the leaf nodes as a composition of
node weights along each root-to-leaf path in the hierarchy.
We evaluated our approach on real data to demonstrate its
effectiveness and robustness in explaining changes.
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