
Detecting Attacks in Routers Using Sketches
Dhiman Barman, Piyush Satapathy, Gianfranco Ciardo

Department of Computer Science and Engineering
University of California, Riverside

Abstract— Designing routers against different attacks is imper-
ative in today’s Internet. We propose accurate, memory efficient,
and scalable techniques to detect attacks such as worms, viruses,
superspreaders, and denials-of-service (DoS) in routers. Our
schemes enable detection in the routers by looking only at the
IP headers. We propose a general methodology to use sketches,
in particular count-min sketch, FM sketch, and counting and
multi-counting Bloom filters, to recognize attacks in the routing
architecture. Our techniques are based on change detection, for
which we propose an algorithm that can work on data-streams
and leverage the accurate and efficient estimation provided by
sketches. We evaluate the performance of different schemes on
real traces to show their accuracy.

I. INTRODUCTION

With the proliferation of various kinds of attacks, designing
secure and fault-resilient communication systems has become
an indispensable network design goal. Resources consumed
and performance degradation caused by worms and viruses are
significant at the end-user applications. Recent worm attacks
(e.g., Code Red version 1 and 2, nimba) have shown how easy
it is for a worm to spread and gain control of hundreds of
computers in a few minutes and attack a target bottleneck.
Recently, low-rate attacks [16] have been discussed in the
literature; these are capable of causing considerable TCP
throughput loss by injecting small amounts of traffic at the
right intervals. Deployment of such protocols leaves the door
wide open for resource abuse and security threats [21].

State-of-the art techniques are often based on Principal
Component Analysis (PCA) [17] to detect anomalies in traces
collected from multiple locations over same window of time,
mostly off-line. Data-mining and time-series analysis have
been used for off-line trend analysis in the network traffic
[14] under certain traffic models. Moreover, association rules
have been used to detect resource consumption in the context
of network traffic [7]. Most current techniques focusing on
detecting anomalies off-line cater to the needs of data engi-
neering at long time scales and help ISP’s capacity planning.
However, end-users and applications are more concerned about
performance guarantees at much shorter time scales. There-
fore, steps should be taken to detect and filter attacks at these
shorter time scales, to improve user-perceived performance.
Recent proposals advocate routers with more capabilities to
detect malicious flows [6], [12]. We are faced with many
other demands for user-defined aggregate functions [4] and
their support in routers for real-time processing and query
answering. Changes in this direction are being put in practice.
Cisco’s Traffic Anomaly Detector XT works off the critical
path, monitoring mirrored traffic flows at gigabit line rates to
build profiles of “normal” behavior for each protected device.

[10] describes a space-efficient simple data structure using
Bloom filters to represent a static data set. [15] presents a
lossy data structure using counting sketches to capture the
flows in the network. A closely related work [3] suggests a
method for detecting changes of the “heavy” flows using a
sequential hashing scheme which is efficient in memory and
overhead. However, the approach in [3] is different from our
sketch-based change detection in that we use sketches to build
summaries and use different algorithms to find changes among
those summaries. In this paper, we adopt these ideas and use
them to derive efficient methods that detect attacks on-line
in routers. A reasonable way to detect malicious activity at
the router level is for the router to compare the data flowing
through it with what the router would expect to be flowing
through it. Such a scheme implicitly assumes that the attack
has some sort of signature that distinguishes it from normal
traffic. For such a scheme to work on-line, the router must
be able to create a compact representation of a large volume
of data in real-time. We believe that sketches [5] can provide
a good trade-off between the computation required to build
a summary and its accuracy. We provide both primitives for
queries and various approaches that use sketches to detect
attacks. Once a set of flows has been identified as malicious,
several approaches can then be used to contain the possible
damage, such as isolating those flows to a different queue.

The paper is organized as follows. Section II discusses
simplified models of attacks. Section III provides background
on sketching and details our sketching technique to detect
attacks on-line. Section IV presents our main contributions,
proposing algorithms that use sketches for change detection.
Section V evaluates our schemes on real Internet data. We
conclude in Section VI.

II. DEFINITIONS AND ATTACKS

Today, the malicious activities carried out by worms,
viruses, scans, and malwares originated from botnets are
prevalent in the Internet. To design space and time efficient
algorithms that can detect such attacks, we first need to
understand and characterize the nature of these attacks.

A data-stream S is a sequence of tuples (〈i, j, p, q〉, v),
where i and j denote the packet source IP address and port, p
and q denote the destination IP address and port, while v is a
value (e.g., size) associated with the packet. A flow (as given
by Cisco’s NetFlow) R(i, j, p, q) is the multiset containing all
the packets corresponding to a given 〈i, j, p, q〉 combination.

We can then characterize various attacks as follows. Port-
scans are attacks where a particular IP address and port pair

connects to a destination on several ports:

PortScan(i, j, p)⇔ |{q : |R(i, j, p, q)| > 0}| > δPS ,

where δPS are a user-defined threshold. Address-scans are
attacks where a particular IP address connects to multiple
destination IP addresses on a particularly vulnerable port. The
source host may or may not use different source ports. Such
attacks can be identified by a large number of flows destined
to a given destination port:

AddrScan(i, j, q)⇔ |{p : |R(i, j, p, q) > 0}| > δAS or
AddrScan(i, q)⇔ |{(j, p) : |R(i, j, p, q)| > 0}| > δAS ,

where δAS is user-defined threshold.
We consider simple models of spam, malware, and worms.

Spams are usually sent from a server (or set of botnets)
to a large set of destinations, although this is also typical
behavior for peer-to-peer clients or content-providers. Worms
and malware spread like epidemic: initially, a set of hosts
sends malicious packets to other hosts after scanning; then,
the victims further spread malicious contents, recursively. The
assumption is that few sources try to connect to a particular
destination or a set of destinations on any ports.

WormMalwSpam(i)⇔ |{(j, p, q) : |R(i, j, p, q)|>0}|>δWMS ,

where δWMS is user-defined threshold.
Flows are termed “heavy hitters” if they send most of the

packets or bytes, so we can modify the above formulations
to incorporate heavy-hitters. Worms are sometimes termed
superspreaders.

There are other kinds of flows which can be flagged as
suspicious such as DoS marked by sudden increase in the
number of packets; alpha flows, by sudden increase in the
number of packets and bytes per packet; flash crowd, by
sudden increase in the number of source IP addresses, source
ports, number of packets and bytes per packet.

III. BACKGROUND

We first discuss background on sketches, then use them as a
lossy data structure in our technique to analyze attack traffic.
For sketches to be useful in the detection mechanism, the flow
ids seen by the routers cannot be manipulated by the attackers.
Therefore, we assume the adoption of a technique to prevent
spoofing of source and destination IP addresses.

With the increasing speed of Internet links, traffic monitor-
ing is becoming increasingly challenging. For example, on a
40Gbps link, a router has about 25ns to forward the packet, so
any additional packet processing has severe time constraints. A
data-stream sketch is a compact summarization much smaller
than the data-stream itself. For a data-stream over a domain
of size N , the sketch is of size logO(1)(N). Sketches can be
computed very fast and can be collected at distributed points.
Furthermore, sketches can accurately answer queries about the
data-stream most of the time.

“Tug-of-war” sketches [1] are computed using 4-wise ran-
dom hash functions gj that map packets to {+1,−1}. Let
ai be the number of occurrences of an object i ∈ {1, ..., N}
in a data-stream a. A sketch with a relative error no greater

than ε and with at least δ confidence is a vector of length
O(1

ε2 log 1
δ), whose jth entry is defined to be

∑N
i=1 aigj(i),

and is easy to maintain under updates. This structure has
been applied to find the (approximate) inner product of two
vectors a and b with error ±ε‖a‖2‖b‖2 [9]. To keep up with
the link speeds, a small number of sketches can be stored
in SRAM. As new packets arrive, the sketch is updated. A
sketch has the property that we can generate linear projections
(inner products) of the data-streams with a small (polynomial)
number of vectors quite easily and accurately, provided the dot
product of corresponding unit vectors (the cosine) is large.
This can be used in several ways. First, since any point query
i on the signal can be viewed as merely the inner product
of the signal with a vector that has a 1 in its ith component
and 0 elsewhere, we can use the sketch to directly estimate
the point query; likewise for range queries. Since there are
only N point queries and N(N − 1)/2 range queries, which
are small polynomials, sketches will suffice. Second, since
wavelet transforms are linear projections of the signal with a
specific set of N vectors, we can generate wavelet coefficient
approximations from the sketch [9] which can in turn be used
for point or range query estimations on the signal up to error
of ±ε‖a‖2.

Software

NetFLow

flow cache Processor

Bus

Data
collection

and
analysis

over

terminated
flow

records

Forwarding hardware

update

sketches

Fig. 1. Sketches in router linecard.

Count-Min Sketch. Next we discuss about Count-Min (CM)
sketches [5]. CM sketches maintain an n-dimensional vec-
tor which is updated upon arrival of each packet (and
its attributes). The current state at time t is a(t) =
〈a1(t), . . . , an(t)〉. Initially a is the zero vector 0, so ai(0)
for all i. Updates to the individual entries of the vector are
presented as a stream of pairs. The tth update is (it, ct) and the
vector is updated as ait

(t) = ait
(t−1)+ct and ai′(t) = ai′(t)

for i′ 6= i.
Count-Min sketch is defined with two parameters (ε, δ) and

can be stored in an array of width w and depth d. Given
parameters (ε, δ), let w = d e

ε e and d = dln 1
δ e. We also need

a set of hash functions h1, . . . , hd : {1, . . . , n} → {1, . . . , w}
which are chosen uniformly at random from a pairwise-
independent family. To update the sketch upon arrival of each
element, we have count[j, hj(it)]← count[j, hj(it)]+ ct, for
1 ≤ j ≤ d.

At any time t, monitoring tasks might invoke queries to
compute certain functions of interest on a(t). Effectiveness
of sketching techniques will be realized, if a router supports
query primitives to answer queries regarding plausible attacks

based on vectors a and b corresponding to two data-streams.
Such primitives will be:

• a point query, denoted by Q(i), to return an approxima-
tion of ai given by minj count[j, hj(i)]

• a range query Q(l, r) to return an approximation of∑r
i=l ai

• an inner product query, denoted by Q(a,b) is to approx-
imate

∑r
i=l aibi given by

w∑
k=1

counta[j, k] · countb[j, k].

• an change range query, denoted by Q(l, r, e1, e2) is to
return an approximation of

∑r
i=l ai between events e1

and e2 and we discuss it later.

Bloom filter. A Bloom filter [10] is a simple space-efficient
randomized data structure to represent a multiset of n elements
and support membership queries. When a list or set is used and
space-usage needs to be minimized, a Bloom filter is often a
good choice. A Bloom filter is an array of m bits initially
all bits are set to 0. An incoming element with identifier
id is hashed through k hash functions and the bit positions
returned by the hash functions are set to 1. A location can
be set to 1 multiple times but only the first change has an
effect. Hence a Bloom filter may yield a false positive with
probability [2] (1 − ρ)k, where ρ = e−kn/m. In a counting
Bloom filter, each bit in the Bloom filter is replaced by a
small counter. When an item is inserted, k hash functions
map the item to k buckets and the corresponding counters are
incremented by the value associated with the id and when an
item is deleted the corresponding k counters are decremented.
Considering n elements, m counters, and k hash functions,
O(log log m) bits are necessary for each counter to avoid
overflow. A multi-counting Bloom filter is a counting Bloom
filter with m counters and m buckets divided into k groups of
size m/k. The range of the ith hash function maps to buckets
{m(i− 1)/k + 1, ..., mi/k}.
FM sketch. An FM sketch [8] is an unbiased estimator of
the number N of distinct elements in a multiset and is order-
and duplicate-insensitive. An FM sketch assumes a pseudo-
random hash function which maps elements from [0 . . . 2L)→
[0 . . . L] into a bitmap. Let ρ(x) represent the position of the
least significant 1-bit in the binary representation of x and
ρ(0) = L. If the hash values are uniformly distributed, the
position of the least significant 1-bit in the bitmap is k with
probability 1

2k+1 . The duplicate insensitivity arises from the
fact that a bitmap hash function maps an element to a fixed
bit every time it is inserted. The leftmost zero position, R, is
used as an indicator of log2 N . The expectation of R is

E[R] ≈ log2(0.773N) which implies N ≈ 1.29×2E[R].

Here E[R] is an unbiased estimator but the variance of R
is 1.12. To improve the variance [8] proposes to use an
average over m independent bitmaps (Probabilistic Counting
with Stochastic Averaging, PCSA). To achieve a O(1) time
complexity, PCSA maintains m independent bitmaps and each
element is mapped to one bitmap using another hash function.
Thus, on average, N/m distinct elements are mapped to a
bitmap. The modified estimator is thus N ≈ 1.29m2E[

P

ki/m]

where ki is the least significant bit position of the 1-bit in the

i the FM sketch. The relative error is 0.78/
√

m. Moreover,
as shown in the analysis, O(log2 N) should be an appropriate
value of the sketch sizes for N distinct elements with space
complexity O(m log2 N).

IV. OUR CONTRIBUTIONS

Having described sketches, we now propose several change
detection algorithms based on them.

• In our first approach, to capture unexpectedness, we
define the change between two sketches S1(α1, β1) and
S2(α1, β2) as Sd = S2 − kS1, since sketches are closed
under linear combination; αi and βi denote the beginning
and end of the ith monitoring interval and k is a threshold
on the tolerable relative change. To give an example,
assume that portscans activity is prevalent during an
interval and is reflected through a high scanning rate. An
alternative approach could be to maintain two sketches,
S1 and S2 such that S1 is updated when the scanning
rate is high (or congestion is high) and S2 is updated
when there is no scanning. Using simple queries, accurate
detection of the flows showing abrupt changes can be
achieved.

• In the second approach, interactive periodic abrupt
change discovery involves tasks; first we have to detect
the periodic abrupt changes, then we need to age the
summarization in sketches so that the router can pose
queries. Our approach to discover attacks in a traffic is
based on the computation of the moving average (MA)
of the sketches, with a subsequent annotation of abrupt
changes as the points with value higher than x standard
deviations about the mean value (of point query) of
the MA. The width of the moving window affects the
sensitivity and accuracy of the estimation. We can use
estimators as in [14] for mean and variance.

1: Maintain w sketches, S = {s1, s2, . . . , sw}, correspond-
ing to the last w measurement intervals

2: Update sMA =
w∑

i=1

gisi/
w∑

i=1

gi, gi is weight of si

3: Compute x̄i=medianjv
hi
x where

v̄hi
x = count[i, hi(x)]− sum(S)/K/1− 1/K

sum(S) =
∑

j

count[0][j]

4: Compute var=median jvar
hi where

var
hi
x =

K

K − 1

∑

j

(count[i][j])2 − 1

K − 1
(sum(S))2

5: Attacks = {fi| flow ids from buckets in sw that exceed
meani(x̄)+βvar} where β is user-defined constant factor.

A. Change Detection based on Probability Distribution

Any attack detection algorithm should be based on a change
detection algorithm. Our algorithm is similar to that proposed
in [13] but our focus here is to emphasize the accuracy and

compactness of sketches in a change-detection algorithm. The
main idea behind Algorithm 1 is to detect the points where the
underlying distribution of the data stream elements, captured
using sketches, change. We present the case using FM sketches
that estimate the number of distinct flows in regular intervals,
where flows are identified by 5-tuples. As assumed before, this
technique of detecting drastic changes in the number of distinct
flows will give an indication of scanning activity – portscan,
address, or other attacks. Another advantage behind leveraging
the meta-algorithm in [13] is that it provides theoretical bounds
on misclassification.

Algorithm 1 Change detection using FM sketches
1: c0 ← 0
2: for i = 1 . . . k do
3: si ← FMi

4: windX,i ← mX,i intervals from time c0

5: windY,i ← next mY,i intervals in incoming data streams
6: end for
7: while more flows to process do
8: Slide windY,i by 1 sample
9: if distance(windX,i,windY,i) ≥ αi then

10: c0 ← current time
11: Output change at time c0

12: Clear all windows and goto step 1
13: end if
14: end while

In Algorithm 1, we keep k pairs of windows (sliding in
parallel). Each window spans over multiple intervals and each
interval has a count estimated by a FM sketch. In the process
of comparing k pair of windows (one is a base window),
if the distance exceeds a threshold, we declare a change.
Another important issue is the distance function, for which we
propose several possibilities: (a) a modification of the distance
function from [13] and (b) the difference of the sum of values
between two windows (denote by sum-diff). One can also use
the KL-distance function1. We describe a distance function in
Algorithm 2 that is used by Algorithm 1.

Algorithm 2 Calculating distance between two Windows
Input: S1 and S2 are two windows of any lengths
Output: d, statistical distance between S1 and S2

1: j ← MaxFl/max(|S1|, |S2|) {MaxFl is a threshold}
2: A←{Ai|Ai=[ai,bi],ai<bi,(ai,bi∼U [0,MaxFl]),i=1,..,j}
3: for i = 1 . . . j do
4: S1(Ai)← |S1 ∩Ai|/|S1|, S2(Ai)← |S2 ∩ Ai|/|S2|
5: disti ← 2|S1(Ai)− S2(Ai)|
6: end for
7: d← maxj distj

1Given two windows W1 and W2 and their associated multiset of flow
counts si in a data stream {s1, s2, . . . , sn}, the KL distance from W1 to W2

is given by D(W1||W2) =
P

a∈A
Pw1

(a) log
Pw1

(a)

Pw2
(a)

, where the empirical

distribution is given by Pw(a) = N(a|w)+0.5
n+|A|/2

and A is an interval of the
form [a, b], a, b ∈

� +.

Intuitively, Algorithm 2 tries to find the largest change in
probability of a set. Given two finite domain subsets, S1 and
S2 and a collection of measurable subsets denoted by Ais, d
returns the largest variation distance between two distributions
represented by S1 and S2. Line 4 gives the empirical weight
of Ai w.r.t to Sj and empirical distance is given by Line 5.
We construct the measurable subsets by taking intervals from
the real line in Line 2.
Other issues.

Sketches are inherently irreversible and are good for sum-
marizing and querying only if we know the flow ids. It is
difficult to obtain the flow ids corresponding to heavy-hitters
or superspreaders. Once we detect the heavy change buckets,
the main problem is retrieving the culprit keys from the
Count-Min sketch. Some techniques have been proposed for
offline detection [20]; some detect flow ids by searching in
small hierarchical key space [3]. In case of a single bucket
change in each hash table, we can recover the culprit key
with some accuracy if we simply take the intersection of
the reverse mappings for the heavy change buckets in each
hash table. For our sketching schemes to work, we assume
absence of spoofing. In [11], the authors proposed a new
network architecture to overcome this problem: the IP address
space is divided into a set of client addresses and a set of
server addresses. This allow clients to initiate connections to
servers, but does not allow clients to initiate connections to
clients, nor servers to initiate connections to servers. With this
architecture, many DoS and reflection DoS can be prevented.
Moreover, the client address does not need to have a global
significance, it just needs to have significance along the path
between the client and the server, so that packets from the
server can return to the client (this does not have any effect on
the sketch mechanism, as all is needed is a unique identifier).
Path-based client addresses make complete source-address
spoofing impossible for the clients.

V. EVALUATION

We consider three different sketching techniques, count-min
(with ε = 0.01 and δ = 0.1), counting Bloom filter, and multi-
counting Bloom filter. To avoid counter overflow we choose
1000 counters and four hash functions. For the third sketching
technique we implement a parallel multi-stage Bloom filter.
We have a set of m counters and we divide those into k subsets
of m/k counters per set using k independent hash functions.
Every insertion increments one counter in each one of the k
subsets. Again we use 1000 counters and four hash functions.

For change detection we implement an FM sketch with 100
bits and two bit-vectors. We consider two different traces; a
general traffic flow [18] that contains few unique flows and
a malicious traffic flow (Mydoom trace [19]) that contains
thousands of unique flows. We partition each trace into ten
uniform time intervals and calculate the distinct flows for each
part of the trace by averaging the values over ten different runs
with different hash functions.

First, we provide some evaluation results that supports our
claims about using sketching techniques. Due to lack of space,
we only present representative results that validate Algorithm 1

and the first approach in Section IV. Fig. 2(a) compares the
flow size using three different sketching techniques and the
exact value. We plot ten heavy flows out of 436 total flows
from a trace file and observe that the estimated flow sizes are
quite accurate. Fig. 2(b) represents the accuracy of change in
flow sizes between two time intervals. We divide the traces
into two time intervals and calculate the changes in flow sizes
across the two intervals for each flow. Comparison of the
estimated changes against exact changes shows that estimation
is quite accurate. Fig. 3(a) shows the FM sketch estimation
over ten intervals of the general traffic trace and Fig. 3(b)
shows the estimation over ten intervals of the Mydoom trace.
In both figures, we see small errors in estimation for the
FM sketch (we know that the FM sketch estimate has some
variance). Here we intend to show that the FM sketch gives
a quite good approximation of the exact number of distinct
flows, however the error percentage could go higher in certain
cases due to the higher covariance nature of the hashing
functions used in the FM sketch.

(a)

0 2 4 6 8 10
0

5

10

15
x 10

6

Rank

F
lo

w
 S

iz
e

Exact
Est. CountMin
Est. CountBloom
Est. MultiCountBloom

(b)

20 22 24 26 28 30
0

500

1000

1500

2000

2500

3000

Rank

C
ha

ng
e

F
lo

w
 S

iz
e

Change Flow Validation

Exact
Est. CountMin
Est. CountBloom
Est. MultiCountBloom

Fig. 2. (a) Sketches of ten heavy ranked flows: A comparison of the exact
flow size with the estimated values using three different sketching techniques.
(b) Sketching changes in heavy ranked flows between two time intervals: A
comparison of change in flows over two periods with that of three different
sketching techniques over the same period. We count flow sizes in bytes.

Next, we evaluate our proposed sketching techniques using
a malicious trace of 100K packets. We partition the trace into
100 parts and for every part we estimate the FM sketch using
Algorithm 1 and detect changes using the distance algorithm
of Algorithm 2. We also calculate the change detection using
the exact value of the flow counts and using the sum-diff
distance algorithm. In Fig. 4(a), we plot the normalized error
between the exact change detection and that estimated by the
FM sketch. We calculate the error as follows: Let Vfm be

(a)

1 2 3 4 5 6 7 8 9 10
0

50

100

150

Interval Number

D
is

tin
ct

 F
lo

w
s

FM Estimate
Exact

(b)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

x 10
4

Interval Number
D

is
tin

ct
 F

lo
w

s

FM Estimate
Exact

Fig. 3. Comparison of distinct flows (exact) against the values estimated by
the FM sketch. (a) FM sketch of ten intervals of normal traffic, (b) FM sketch
of ten intervals of malicious traffic.

the vector of length 100 where the ith entry is 1 if change
is detected at i interval. Similarly, we have a vector Vexact

corresponding to the experiment with exact flow counts. The
error is defined as edit distance(Vfm,Vexact)

No of 1s in Vexact
. We observe that the

change detection by the FM sketch is almost keeping track
with the exact value. In Fig. 4(b) we compare the performance
of two distance function by applying the change detection
Algorithm 1 to exact flow counts. To compute the error, we
use a vector corresponding to each distance function and use
the same formula as above. In Fig. 5, we plot the accuracy of
the two different distance functions on a real trace in which
we inject large values (to create change) at random intervals.
Thus, we are able to verify with certainty the accuracy of
our algorithm (in the sense that we do know where anomalies
occur). The size of each injection is uniformly randomly drawn
from [10a, 20a] where a = maxai, ai is the count in interval
i, and we inject at ten random places of 100 intervals. We see
that the distance function that uses the difference of the sums
of the windows leads to less accurate results. For three values
of threshold, the distance function from Algorithm 2 does
some misclassification. This may be due to the fact that, in
Algorithm 2, we use a probabilistic distance measure. Whereas
in sum-diff distance function, we are using deterministic sums
of two windows (which might overlook change in distribution).

Implementation Issues: For detecting changes in real-time,
sketches might need to be in SRAM for fast memory access.
Therefore, per packet memory access could be an issue. For
FM sketch, memory reference per packet is 1 through a hash
function whereas for Bloom filter, memory references is k per
packet during update. Similarly for Count-Min sketch with

(a)

0 0.1 0.2 0.3 0.4
1

1.2

1.4

1.6

1.8

Threshold

E
rr

or

(b)

0 5 10 15 20
1

1.2

1.4

1.6

1.8

Threshold

E
rr

o
r

Using Distance Algo2

Using simple summation distance

Fig. 4. (a) Change detection accuracy by the FM sketch using distance
function (modified from [13]). We choose threshold values for which Error
is non-zero. (b) Comparison of two different distance functions on exact flow
counts. Through experiments, we select a range of threshold values for which
Error is non-zero. The threshold values are different for different distance
functions, but normalized to show them on the same scale.

0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

Threshold

C
h

a
n

g
e

 D
e

te
ct

io
n

 A
cc

u
ra

cy
(%

)

Using Distance Algo2
Using Simple Summation Distance

Fig. 5. Accuracy of two distance functions on real traces in which synthetic
changes were introduced. The x-axis represents values such as threshold is
mean(X)+α std(X) where X is the flow counts.

depth k, it is k = dln 1
δ e where δ is an input parameter

for Count-Min sketch. If one cares about false positive rate
in Bloom filter, it is minimized for k ≈ 0.7m

n where m is
the number bits in the array and n, the number of inserted
elements. There is a trade-off between k and m/n given by
the false-positive rate as (1− (1− 1/m)kn)k.

VI. CONCLUSION

Intrusion or attack detection requires knowledge of attack
signatures or some invariant characteristics of Internet flows.
In this paper, our attempt has been to detect changes in the
flows which characterize scanning activities and propagation

of worm or viruses. It is a non-trivial task to evade attacks
that are based on spoofing without changing the network
architecture or introducing levels of collaboration. We have
argued the case for support in the router architecture to
detect common Internet attacks. In the evaluation, we find that
counting and multi-counting Bloom filters have high accuracy
in estimating flow sizes and changes in flow sizes. We find
that the FM sketch also estimates the number of distinct
flows quite accurately. We observe that, while finding changes
in distribution, the distance function affects the accuracy (a
simple L2 distance leads to inaccuracy).

REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of
Approximating the Frequency Moments. In ACM Symposium on Theory
of Computing (STOC), pages 20–29, 1996.

[2] A. Broder and M. Mitzenmacher. Network Applications of Bloom
Filters: A Survey. Internet Mathematics, 1(4):485–509, 2004.

[3] T. Bu, J. Cao, A. Chen, and P. P. Lee. A fast and compact method for
unveiling significant patterns in high speed networks. In Proc. of IEEE
INFOCOM, Alaska, 2006.

[4] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and
D. Srivastava. Holistic UDAFs at Streaming Speeds. In Proceedings of
ACM SIGMOD 2004, Paris, France, June 2004.

[5] G. Cormode and S. Muthukrishnan. Improved Data Stream Summary:
The Count-Min Sketch and its Applications. Technical report, 2003.

[6] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better
NetFlow. In Proceedings of the SIGCOMM 2004, Portland, Oregon,
August 2004.

[7] C. Estan, S. Savage, and G. Varghese. Automatically inferring patterns
of resource consumption in network traffic. In Proceedings of the
SIGCOMM 2003, pages 137–148, Karlsruhe, Germany, 2003.

[8] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base algorithms. Journal of Computer and System Sciences, 31(2):182–
209, 1985.

[9] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. Surfing
Wavelets on Streams: One-Pass Summaries for Approximate Aggregate
Queries. In Proceedings of the 27th VLDB Conference, Rome, Italy,
2001.

[10] D. Guo, H. Chen, J. Wu, and X. Luo. Theory and Network Application
of Dynamic Bloom Filters. IEEE Infocom, 2006.

[11] M. Handley and A. Greenhalgh. Steps Towards a DoS-resistant Internet
Architecture. In ACM SIGCOMM FDNA’04 Workshop, August 2004.

[12] D. Katabi, M. Handley, and C. Rohrs. Internet Congestion Control
for High Bandwidth-Delay Product Networks. In Proceedings of ACM
SIGCOMM’02, Piitsburg,USA, 2002.

[13] D. Kifer, S. Ben-David, and J. Gehrke. Detecting changes in data
streams. In Proc. of Int. Conf. on Very Large Data Bases, Canada,
2004.

[14] B. Krishnamurthy, S. Sen, and Y. Chen. Sketch-based Change Detection:
Methods, Evaluation and Applications. In Proceedings of ACM Internet
Measurement Conference’03, 2003.

[15] A. Kumar and J. Xu. Sketch Guided Sampling—Using On-Line
Estimates of Flow Size for Adaptive Data Collection. IEEE Infocom,
2006.

[16] A. Kuzmanovic and E. W. Knightly. Low-rate TCP-targeted denial of
service attacks: the shrew vs. the mice and elephants. In Proceedings
of ACM SIGCOMM’03, 2003.

[17] A. Lakhina, M. Crovella, and C. Diot. Diagnosing Network-Wide Traffic
Anomalies. In Proceedings of ACM SIGCOMM’04, 2004.

[18] LBNL Traffic traces. http://www.icir.org/
enterprise-tracing/.

[19] NLANR MyDoom Traffic traces. ftp://pma.nlanr.net/
traces/long/doom/20040126/COS-1075077419-1.tsh.
gz.

[20] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reverse Hashing for
Sketch-based Change Detection in High-Speed Networks. In Proceed-
ings of ACM/USENIX Internet Measurement Conference’04, 2004.

[21] Y. Zhang, Z. M. Mao, and J. Wang. Low-rate TCP-Targeted DoS Attack
Disrupts Internet Routing. In Proceedings of 14th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
February 2007.

