
An Adaptive Hash-based Multilayer Scheduler for L7-filter
on a Highly Threaded Hierarchical Multi-Core Server

Danhua Guo1, Guangdeng Liao1, Laxmi N. Bhuyan1 and Bin Liu2

1
University of California, Riverside

2
Tsinghua University

 900 University Ave. Beijing 100084

 Riverside, CA 92521 P.R. China

 {dguo, gliao, bhuyan}@cs.ucr.edu liub@tsinghua.edu.cn

ABSTRACT

 Ubiquitous multi-core-based web servers and edge routers are

increasingly popular in deploying computationally intensive Deep

Packet Inspection (DPI) programs. Previous work has shown the

benefits of connection locality-based scheduling on multi-core

servers to improve L7-filter performance. However, we show that

highly threaded hierarchical multi-core processors, such as the

Sun Niagara 2 processor, accumulate imbalanced workload at

each resource layer. This workload imbalance potentially offsets

the benefits from connection locality. In addition, connection-

locality-based load balance fails to work when network traffic is

unevenly distributed.

 In this paper, we propose an adaptive hash-based multilayer

scheduler for a highly threaded hierarchical Sun Niagara 2 server.

Our scheduler maintains connection locality and adaptively

adjusts the scheduling to balance the real time workload. The

original Highest Random Weight (HRW) hash guarantees the

connection locality but only balances the workload over the

number of different connections. We enhance the original single

layer HRW into a hierarchical "hash tree" scheduler to balance the

connection workload in accordance with the hierarchical

processor architecture. We then optimize our multilayer scheduler

to adaptively adjust scheduling decisions based on service time at

each level, further improving the system load balance. Our

scheduler is shown to increase the system throughput by 59.2%

compared to the previously proposed connection locality

optimization.

Categories and Subject Descriptors

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:

Multiple-instruction-stream, multiple-data-stream processors

(MIMD); C.2.0 [Computer Communication Networks]: General

– Security and protection (e.g., firewalls)

General Terms

Design, Measurement, Performance

Keywords

Connection Locality, Deep Packet Inspection, L7-filter, Load

Balance, Multicore, Multithreading, Packet Classification,

Parallelism, QoS, Scalability, Scheduling.

1. INTRODUCTION
The prevalence of multi-core chips in scientific computations

has enlightened researchers in the network domain to use these

chips to bridge the gap between the ever-increasing network

bandwidth and the relatively unfulfilling processing speed. In the

network QoS domain, Deep Packet Inspection (DPI) is an

important functionality in most of the major routers/switches on

the market [3, 9, 11]. Maintaining connection locality has been

proven beneficial in improving the performance of DPI programs,

e.g. L7-filter, on some multi-core-based web servers [7]. For L7-

filter, the classification of one connection might require multiple

connection buffers (with different number of packets). Therefore,

maintaining connection locality warms up the cache with reusable

packet data, so that future classifications of the same connection

benefit from the data in the local cache without accessing the

remote memory, which is an order of magnitude more expensive.

However, the benefits of connection locality are offset by two

major challenges on highly threaded hierarchical multi-core

servers.

First of all, a highly threaded hierarchical multi-core server

suffers from accumulative workload imbalance when connection

locality is applied. The hierarchical Sun Niagara 2 multi-core

processor features 64 hardware threads on 16 independent

pipelines across 8 SPARC cores. We show in Fig. 1(a) that with

all the 64 threads enabled, the L7-filter system throughput can

only be increased at most by a factor of 10.1X ("conn+os"-64 VS

"pckt+os"-1) rather than the ideal 16X+. Note that we

conservatively choose 16X to be the maximum speedup for

"ideal" because the 64 threads only share 16 pipelines. Fig. 1(b)

illustrates the imbalanced system utilization at each level in the

Niagara 2 system. Therefore, how to schedule the extensive thread

resource more efficiently on such a multi-core chip becomes a

major concern in scheduler designs.

Secondly, maintaining connection locality sacrifices the

fairness in workload scheduling when packet distribution is

disproportional to the connection distribution. Connection

locality-based load balance guarantees that each core shares a

similar number of different connections. But if the network traffic

is unevenly distributed, packets in some connections might

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ANCS’09, October 19–20, 2009, Princeton, New Jersey, USA.

Copyright 2009 ACM 978-1-60558-630-4/09/0010...$10.00.

outnumber those in the others and therefore causes a jam on the

core where the connections with more packets are affinitized. In

an extreme case, if there are more cores than the number of

different connections being processed at a certain point in the

system, a load balanced system should be able to use all the cores

by relaxing the connection locality instead of wasting the idling

cores and blocking the busy ones. The problem is now clear: how

to balance the trade-off between the maintenance of connection

locality and load balance, subject to throughput constraint.

In this paper, we propose an adaptive hash-based multilayer

scheduler that relaxes connection locality for load balance based

on real time statistical feedback. We choose Highest Random

Weight (HRW) [28] as the baseline hash function, which

intuitively guarantees load balance over the request space, i.e. in

our case, the number of different connections. We implement

HRW at all the three levels: the core, the pipeline and the thread,

respectively, corresponding to the hierarchical architecture on the

Niagara 2 chip. Our intention is to balance the workload

progressively. However, in the aforementioned scenario when the

network traffic follows an uneven distribution, the workload

should be balanced at the packet level instead of the connection

level, which HRW fails to do genetically. As a result, we propose

to adaptively change the HRW hash decision when it deteriorates

the packet level workload balance. Our experiment results show

that the adaptive hash-based multilayer scheduler achieves close

to ideal load balance and the system throughput can be increased

by 59.2% compared to the previously proposed connection-based

scheduling in paper [7]. Authors in paper [12] also adopted a

feedback system for HRW based on CPU utilization. Our work

differs from theirs in that we choose a less expensive real time

metric and implement the scheduler hierarchically for a much

more complicated highly threaded server architecture.

To summarize, we make the following contributions in this

paper:

 We motivate our research by pointing out that the

connection locality alone does not guarantee

performance benefits in a highly threaded hierarchical

multi-core system like Niagara 2.

 We adopt HRW hash function to guarantee connection

locality while maintaining load balance over the number

of different connections.

 We implement a multilayer HRW scheduler

hierarchically, corresponding to the Niagara 2

architecture so that connection workload is balanced

progressively at the core, the pipeline and the thread

level, respectively.

 We optimize the multilayer HRW scheduler to

adaptively change scheduling decisions based on real

time workload distribution at the packet level to provide

better load balance.

The rest of the paper is organized as follows: In section 2, we

review the background information about the Niagara 2 system

architecture, its default system scheduler and the HRW hash. We

describe our implementation in details in section 3. In section 4,

we describe our experiment environment and we present our

result in section 5. In section 6, we conclude our paper.

2. BACKGROUND

2.1 L7-filter and Connection Locality
L7-filter [1] is an important QoS component in Linux that

classifies network traffic based on packet payload. It classifies the

network traffic based on connections as opposed to packets. The

connection-based DPI programs are gaining more publicity in

both academic studies [7, 13, 14, 27, 31] and industrial products

[3, 9, 11]. In L7-filter, incoming packets are preprocessed and

then placed in a reassembling buffer. Each connection has a

registered entry in the reassembling buffer. A preprocessed packet

is appended to the corresponding connection entry in the buffer,

and the entire new entry triggers the matching engine for

classification. Upon receiving the classification result, any further

packets of the current connection will be marked with the matched

protocol ID and bypass the classification engine. If the matching

engine cannot find a match, the classification for this connection

will be triggered every time a new packet of this connection

comes in and this new packet is reassembled into a new

connection buffer. An entry in the reassembling buffer can hold

 (a) Throughput inefficiency (b) Workload imbalance at different levels (%)

Fig. 1 L7-filter performance on a Sun Niagara 2 chip. (a) "pckt+os" is the default set up without any optimization; "conn+affinity"

applies the connection locality and thread affinity optimizations proposed in paper [7]; "conn+os" substitutes the thread affinity option to

use the default Solaris kernel software thread scheduler, which is discussed in the section 2.2. "ideal" is the ideal throughput based on a

linear expectation to the number of independent processing units. (b) The bars show the average utilization (%) at each level in the core;

the lines represent the range of peak high and peak low values (%).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16 32 64

Th
ro

u
gh

p
u

t
(G

b
p

s)

pckt+os

conn+affinity

conn+os

ideal

0

20

40

60

80

100

120

core pipeline thread

up to 8 packets for each connection. If a connection cannot be

classified with 8 packets in the buffer 1 , it is marked as

"NO_MATCH", and any further packets for this connection will

be excluded from matching.

As multi-core processors have become the de facto server

platforms, a recent trend is moving towards the deployment of

multithreaded DPI programs on multi-core servers. Paper [7]

showed that a multithreaded L7-filter program could achieve a

speedup of 7.6X in TCP throughput using an 8-core Intel

Clovertown server. The reason behind this gain is to maintain the

connection locality for incoming traffic to benefit from cache

locality. Their research result is in line with the widespread

Receive Side Scaling (RSS) technique implemented in NIC [21]

as well as findings from an Intel Research group [29]. However,

we observe from Fig. 1 that on a highly threaded hierarchical

multi-core server using a Sun Niagara 2 processor, connection

locality alone does not guarantee desired system performance. In

Fig. 1(b), we show that the hierarchical parallelization resource

accumulatively incurs load imbalance, which offsets the

performance gain from connection locality. In addition, the

uneven traffic distribution also introduces a challenge to the

connection locality optimization.

2.2 The Sun Niagara 2 and the Solaris

Scheduler
Fig. 2(a) illustrates the system architecture of a Sun Niagara 2

processor. The eight cores connect through a crossbar switch to

eight banks of 16-way set associative L2 cache, totaling 4 MB.

The Sun Niagara chipset series differ from other high-end server

processors not merely in degree but also in kind. The Niagara 2

processor uses eight simple in-order SPARC cores rather than the

more complicated out-of-order x86 cores. Each core on the

Niagara 2 chip runs at a relatively lower (1.2 GHz [16]) frequency.

However, the low frequency cores are complemented with two

independent integer pipelines, each residing 4 hardware threads.

Naturally, the Niagara chip forms a virtual hierarchical structure,

with the cores at the first level, the pipelines inside each core at

the second level, and the threads running on each pipeline at the

third level.

Fig. 2(b) demonstrates the scheduler topology in the Niagara 2-

Solaris system architecture. At every clock cycle, the hardware

strand scheduler (the "Pick" unit) grants one of the four threads in

a pipeline exclusive access to use the pipeline resource.

Essentially, when one thread stalls for memory access, the "Pick"

unit on chip chooses from the other 3 idling threads on the same

core to hide the latency. Note that the scheduling done by "Pick"

is a hardware implementation that runs at a clock cycle granularity,

which cannot be modified in software. It is at a different level

from the thread/pipeline/core scheduling discussed in this paper.

 In addition to the "Pick" scheduler, there is also a kernel

software thread scheduler that maps software threads to hardware

threads. In Solaris 10, the kernel software thread scheduler

spreads software threads first across cores, one thread per core

until every core has one, then two threads per core until every

core has two, and so on. Within each core, the kernel software

thread scheduler balances the software threads onto the 8

1 The number of packets allowed in the buffer of a connection is a

system configurable parameter.

hardware threads on the core's two integer pipelines [23]. This

kernel software thread scheduler works at a higher level (closer to

the application layer). The "thread affinity" system calls exist in

both Linux and Solaris to overwrite the decisions made by this

scheduler.

However, neither of these two schedulers distributes the

incoming network traffic to the software thread. This kind of

scheduling is defined in the application by the programmer. A

Round-Robin distribution of the workload to the software threads

is a common and simple default implementation. The scheduler

proposed in this paper belongs to this category. The hierarchical

architecture of the Niagara 2 is a virtual organization of the

software threads. In order to avoid the influence of the kernel

software thread scheduler, we use a system call (processor_bind)

to affinitize each software thread to a hardware thread. By doing

this 1-to-1 pinning, we can focus on the scheduling of workload

distribution at the software level.

2.3 The Highest Random Weight (HRW)

Hash Function
HRW is a popular choice for web servers [12]. It is later

adopted by the CARP distributed caching scheme [22]. Benefits

of HRW are proven [28] to include low overhead, load balance,

high hit rate and minimal disruption. HRW always maps a given

object name to the same server within a given cluster, which

guarantees cache locality.

In practice, HRW assigns a weight to each server based on

the requested object space. Every time a scheduling decision

needs to be made, the incoming request triggers an update of the

weight on each server. The server with the highest weight gets

chosen to service the request. It is important to note that HRW

provides load balance over the requested object space, i.e. in our

case, the number of different connection IDs. In contrast, the

actual loads due to the actual traffic received at the router/web

server input ports may by no means be distributed uniformly over

this request object space, but rather will exhibit certain locality

patterns, as described in the "Packet Train" paper [10].

SPARC #0

SPARC #1

SPARC #2

SPARC #3

SPARC #4

SPARC #5

SPARC #6

SPARC #7

Cross Bar

Switch

8 X 8

L1 I$

L1 D$

L1 I$

L1 D$

L1 I$

L1 D$

L1 I$

L1 D$

L1 I$

L1 D$

L1 I$

L1 D$

L1 I$

L1 D$

L1 I$

L1 D$

L2 $

Bank #0

L2 $

Bank #1

L2 $

Bank #2

L2 $

Bank #3

L2 $

Bank #4

L2 $

Bank #5

L2 $

Bank #6

L2 $

Bank #7

Pipeline #0 Pipeline #1

SPARC Core

Fetch

Decode

Exe.

Mem.

Write

Pick

Fetch

Decode

Exe.

Mem.

Write

Pick

T
h

re
ad

 #
0

T
h

re
ad

 #
1

T
h

re
ad

 #
2

T
h

re
ad

 #
3

T
h

re
ad

 #
4

T
h

re
ad

 #
5

T
h

re
ad

 #
6

T
h

re
ad

 #
7

Fig. 2(a). The Sun Niagara 2 Chip architecture and the

parallelism inside each SPARC core

Workload
Software

Threads

Hardware

Threads

Hardware

(Virtually

Hiearachical)

Workload

Distribution

(Proposal)

Kernel

Software

Thread

Scheduler

“Pick”

Fig. 2(b). The scheduler topology in the Niagara 2-Solaris

system

3. DESIGN AND OPTIMIZATION OF AN

ADAPTIVE HASH-BASED MULTILAYER

SCHEDULER FOR L7-FILTER
 In this section, we propose a multilayer scheduler based on

HRW hash that adaptively adjusts connection locality decisions

for workload balance at the core, the pipeline and the thread level,

respectively. In our scheduler, the workload is balanced over the

length of the runqueue (i.e. service time) at each level, instead of

over the number of different connections as in the original hash.

3.1 A Basic Implementation of HRW-based

Scheduler on Niagara 2
In our software scheduling scenario, we define HRW as

follows:

Let),(jcg


be a pseudo-random weight function

),0(}63,...,2,1,0{: nCg  , i.e. we assume),(jcg


 to generate a

random variable (weight) in),0(n with uniform distribution. The

value of n is different, depending on the selection of the weight

function),(jcg


. Let a packet arrive at an input i , carrying an

identifier vector c


belonging to C , i.g. connection IDs. The

mapping)(cf


 is then computed as follows:

),(max),(

)(

}63,...,0{
kcgjcg

jcf

k












Because packets of the same connection share the same

connection ID, our HRW function guarantees connection locality.

Now we want to make sure this function also balances the

workload upon the selection of the weight function. In our paper,

we follow the random variable generation hash function g , as

proposed in paper [28]:

312mod)))()(((),(BkDBSAASkg ii 

where 1103515245A and 12345B .)(kD is a 31-bit digest of

the object name k and
iS is the ID of the

thi server in the cluster.

This function generates a pseudo-random weight in the range

]12..0[31  . In our case, the object name k is the connection ID of

an incoming packet. Each
iS is represented by a software thread

ID.

If we define a random variable
iq as the probability that a

request will be sent to
iS , and another random variable

il
as the

amount of processing done by server
iS , we claim the following

two properties of our hash function, when the number of requests

is infinite, as in paper [28]:

1) The coefficient of variation of
iq is zero, i.e. each software

thread has an equal probability of being chosen to service the

request to classify the connection buffer.

2) The coefficient of variation of
il is zero, i.e. each software

thread services the same amount of requests/connections.

These two properties guarantee that our HRW function

balances different types of connections across the software thread

pool, after enough connections pass through the system. A typical

real network link usually contains more than 10K connections [12,

20], which guarantees that properties 1) and 2) hold true.

Implementation Details:

As the network traffic comes into the server, L7-filter checks

the connection table and decides further processing for the packet.

Each connection could be in one of the three states: "MATCHED",

i.e. all packets of this connection are and will be marked with the

corresponding protocol ID; "NO_MATCH", i.e. all packets of this

connection are and will be directly forwarded to upper layer

programs, bypassing L7-filter without being classified; and

"NO_MATCH_YET", i.e. all packets of this connection are

necessary for the classification until the state changes to one of

the other two states. For the third case, L7-filter places the

incoming packets into their corresponding entries in the

connection reassembling buffer based on the 4-tuple (Source IP,

Destination IP, Source Port # and Destination Port #) information

in the packet header. These parts of the program can be seen as a

preprocessing stage, which can be handled in a trace driven model

[7]. For every newly assembled connection buffer, L7-filter calls

the HRW hash to generate a weight for each and every one of the

64 threads. The scheduler picks the thread with the maximum

weight, and assigns the connection buffer to the runqueue of the

selected thread. The selected thread classifies each connection

buffer in its runqueue on a First In First Out (FIFO) fashion.

Computation Cost analysis:

Intuitively, computing the weight function for 64 threads upon

each new packet arrival is expensive. However, we can preprocess

the computation of weight functions offline for different

(connection ID, software thread ID) combinations, and then load

the result table into memory. Essentially, the hash process

requires only 1 additional memory access to check the result table,

given we use array data structure to guarantee random memory

access. Now, let us calculate the size of the result table:

For an example of 10K different connections, we need 10K *

64 threads * 4-byte weight value = 2.5MB. As we will present in

the result section, our scheduling incurs very little overhead.

3.2 A 3-Level Hierarchical HRW-based Hash-

Tree Scheduler
 In section 3.1, we presented the baseline HRW-based

scheduler. It guarantees connection locality while maintaining

load balance over the number of different connections,

independent of the underlying architecture and the parallelization

implementation. In this section, we redesign the baseline HRW-

based scheduler for Sun Niagara 2. Specifically, the redesigned

HRW-based scheduler takes the hierarchical concerns into

consideration, and further leverages the potential load imbalance.

In the background section, we already show that Niagara 2 is a

highly threaded hierarchical multi-core processor. It has eight

cores on chip, and each of the cores contains two independent

pipelines running eight hardware threads. From Fig. 2, it is clear

that the parallelization resources on a Niagara 2 chip naturally

form a virtual "dendrogram/tree" architecture, with eight cores

being the first level children; sixteen pipelines the second level;

and 64 threads the lowest level.

With the understanding of the chip architecture, let us

reevaluate the load balance property in the baseline HRW-based

scheduler. It is coarse-grained in the sense that only the thread

level parallelism is considered. A better way of load balance

should take the entire parallelism hierarchy into consideration.

We redesign the baseline hash-based scheduler into a 3-level

hierarchical scheduler. Essentially, we have a hash function to

balance the workload at the core level, then another hash function

at the pipeline level in the selected core, and finally a hash

function to choose from one of the four threads in the selected

pipeline. Our idea is formulated as follows:

We want to select the software thread j for every newly

assembled connection buffer of connection c


,



 jcf)(


),(max),(
}3,...,0{

kcgjcg
k




 , where thread k belongs to pipeline j ,

such that:

),(max),(
}1,0{

kcgjcg
k





, where pipeline k  belongs to core j  ,

such that:

),(max),(
}7,...,0{

kcgjcg
k





, where k  is one of the eight cores.

This redesigned scheduler uses the HRW hash at all the three

levels and therefore balances the workload over the number of

connections hierarchically. Fig. 3 shows how the algorithm works.

The ultimate destination thread is selected progressively from top

down in the tree structure. At each layer, the node with the

maximum weight is selected. Scheduling at a lower layer would

only choose from children nodes of the selected parent node.

Implementation details:

In addition to the weight vector for threads, now we need

weight vectors for the cores and pipelines as well. We can use

multi-dimensional arrays to reflect the hierarchical relationship

between different level elements. The index system is described as

follows:

 core_weight[core_ID] core_ID [0,7]

 pipeline_weight[core_select][pipeline_ID]
 pipeline_ID [0,1]

 thread_weight[core_select][pipeline_select][thread_ID]
 thread_ID [0,3]

Computation cost analysis:

Compared to the baseline HRW-based hash scheduler, the

hierarchical scheduler can also be precomputed offline. The only

difference is that it requires two additional accesses to the weight

result table. Moreover, the core_weight and pipeline_weight array

requires additional memory to store. For an example of 10K

connections, we need 10K * 8 cores * 4-byte weight value =

320KB for the core_weight array and 10K * 2 pipelines * 4-byte

weight value = 80K for the pipeline_weight array. Therefore, we

need 400KB of extra memory to store the hierarchical result table.

3.3 An Adaptive Feedback System for the

HRW-based Hash Scheduler
Load sharing over the number of different connections might

be problematic when the network traffic does not evenly distribute

across connections. Consider the following example: suppose we

have two connections c1 and c2, and 80% of the network traffics

are of packets belonging to c1 while only 20% of the packets

belong to c2. Both of the HRW-based schedulers can only use two

of all the eight available cores (one for each distinguished

connection, because of connection locality), leaving the rest of the

cores idle.

This example shows that connection locality and load balance

over the number of different connections cannot guarantee real

workload balance over the system utilization, especially when the

packet distribution does not follow the connection distribution.

Under such circumstance, the scheduler should be able to observe

the difference in utilization between each thread/pipeline/core,

and relax the connection locality to adjust the workload

accordingly.

In order to measure the real system utilization, an intuitive

solution is to read from the kernel to obtain core/CPU utilization

information [12]. However, we do not adopt this approach for two

reasons: 1) reading kernel information and reporting back to the

userspace program for every schedule incurs too much overhead

for high speed networks. For a 10GbE network, packet intervals

could be as short as 1.25 µsec (for MTU=1.5KB sized packets).

The cost of interrupts and system calls (more than 0.5 µsec on our

testbed machine) would be non-negligible in this case. 2)

core/CPU utilization information is a real time value, which

means it changes overtime. From the point when the values are

measured to the point when they are reported to the program, the

values are already outdated. We need a metric that accurately

reports the run time values, and that is less affected by the

reporting delay.

In our feedback system, we choose an application layer metric

that is a lot less costly. We measure the overall runqueue length in

terms of bytes at the core, the pipeline and the thread level,

respectively. All the runqueues are filled with connection buffers

with different lengths. The length of a connection buffer directly

reflects the number of cycles needed for the DPI matching engine,

because for the most widely used DFA representation, each input

character (1 byte) requires exactly one clock cycle to process.

Workload

HRW-Core

HRW-Pipeline

HRW-Thread

1. Select a core.

2. Select a pipeline

from the slected core.

3. Select a thread

from the selected pipeline

on the selected core.

Fig. 3. An illustration of the HRW-based multilayer scheduler.

Therefore, the runqueue length is equivalent to the processing

time in terms of CPU cycles. Table I summarizes the algorithm in

details.

With this runqueue length measurement, we can adaptively

change the HRW-based hash scheduling if the decision causes

packet level workload imbalance. If the summation of the

runqueue length between the HRW selected node at each level

(core/pipeline/thread) and the current buffer length at the same

level is greater than a THRESHOLD compared to the node with

the shortest runqueue at the same level, the decision made by the

HRW should be overruled, and the connection buffer should be

scheduled to the node with the shortest runqueue. Two points

needed to be noted: 1) the THRESHOLD value is a balance

between HRW decision (when it is low) and Minimum-load

Mapping [4, 24] (when it is high), i.e. a balance between

connection locality and load balance. A high value for

THRESHOLD makes HRW decisions more powerful and the

feedback system less responsive, while a low value for

THRESHOLD provides better load balance by overruling HRW

decisions, incurring a higher scheduler overhead. Based on our

measurements, we choose THRESHOLD at each level to be 10%

of the shortest runqueue length at the same level in our

experiments. 2) The adaptive feedback system works at all the

three levels where HRW-based hash works. Essentially, our

feedback system itself provides hierarchical feedback information

to the schedulers at different levels.

Implementation details:

We use similar data structures and index system as those

described in section 3.2 to record the runqueue lengths for the

cores, the pipelines and the threads. The runqueue length array at

each level is used to overrule the decision made by the HRW-

based function at the same level, if and only if the summation

between the runqueue of the selected node at each level

(core/pipeline/thread) and the current connection buffer length

exceeds the shortest runqueue length of this level by a

THRESHOLD (10%). If the condition is satisfied, the current

connection buffer should be scheduled to the node with the

shortest runqueue of this level.

Computation cost analysis:

In addition to the three memory accesses to all the three result

tables for the weight of the nodes at each level, the feedback

system needs to check and compare among the length of

runqueues at all the three levels. The runqueues are dynamic data

structures, whose contents change as the program runs. Therefore,

they cannot be precomputed. However, finding the minimum

element in the runqueue length array with a fixed size (8 for the

core level, 2*8=16 for the pipeline level and 4*2*8=64 for the

thread level) only requires constant time. Therefore, the overall

scheduling overhead including 1) checking the weight table; 2)

checking the minimum runqueque length; and 3) comparing

between 1) and 2) is only a constant factor for each incoming

connection buffer. As we will present in the experimental results

section later, the overhead of this scheduling mechanism is

negligible compared to the cost of the pattern matching processing

for the classification.

4. EXPERIMENTAL RESULTS

4.1 Experiment Platform
We use a Sun Niagara 2-based T5120 machine as our testbed

server. The layout of the cores is presented in Fig. 2. The

hierarchical processor architecture contains 8 in-order cores (1.2

GHz). Each of the eight cores embeds 2 independent integer

pipelines that enable real multithreading without causing resource

contention. Each pipeline is shared by 4 hardware threads, totaling

64 hardware threads in the system. As we can see from Fig. 2, the

eight cores are connected to share a 4MB L2 cache through an

8X8 crossbar switch. Our testbed server also installs 16GB of

667MHz DDR2 memory.

We use Solaris 10 as our default OS. The baseline userspace

sequential L7-filter is of version 0.6 with protocol definition

updated by 05/19/2009. Because the original L7-filter was written

for Linux OS, we make some changes in the Makefile and header

files to direct the program to link to the corresponding library in

Solaris. To keep our work a consistent reference and contrast with

the paper [7], we remain using pthread as the multithreading

library instead of the" thread" library provided by Solaris.

4.2 The Trace Driven Model
We adopt the same trace driven model proposed in paper [7].

The decoupled model proposed in that work separates the packet

processing in the kernel stack from the pattern matching

operations at the application layer. We choose the most recent

version 1.23 libnids [15] as the preprocessing component, which

parses the 4-tuple information in the incoming packet, and places

it into the corresponding entry in the connection reassembling

TABLE I

AN ADAPTIVE HRW-BASED MULTILAYER SCHEDULER

SCHEDULER (char * conn_buff)

Find core_select w. MAX HRW weight;

IF core_len[core_select] + conn_buff->len() -

 core_len[core_min] > THRESHOLD THEN

 core_select = core_min;

ENDIF

UPDATE the queue length of cores;

Find pipe_select w. MAX HRW weight;

IF pipe_len[core_select][pipe_select]

 +conn_buff->len()-core_len[pipe_select][pipe_min]

 >THRESHOLD THEN

 pipe_select = pipe_min;

ENDIF

UPDATE the queue length of pipelines in the selected core;

Find thread_select w. MAX HRW weight;

IF thread_len[core_select][pipe_select][thread_select]

 + conn_buff->len() -

 thread_len[core_select][pipe_select][thread_min]

 > THRESHOLD THEN

 core_select = core_min;

UPDATE the queue length of threads in the selected
pipeline of the selected core;

ENDIF

buffer. For the packet trace, we select an intrusion detection

evaluation data set from the MIT DARPA project [17]. It contains

about 340K packets from more than 40K connections.

4.3 Performance Metrics
 Throughput is a direct reflection of any packet processing

system. We calculate the throughput in our system by dividing the

overall packet length (bytes) by the execution time of our trace

driven model.

 For core/CPU utilizations, we present results for both software

threads (using "prstat" command) and physical core utilization

(using a Perl script "corestat"). More specifically, we break down

the utilization to show the workload distribution at the core, the

pipeline and the thread level. We also present the maximum queue

length for each thread to correspond to the software thread

utilization. This gives us a better idea about the workload balance

situation.

 We additionally profile the life of a packet in the system to

illustrate the overhead of scheduling versus the cost of pattern

matching.

4.4 Throughput and Core Utilization
Fig. 4 illustrates the throughput and CPU utilization results

obtained from different optimizations. The "conn+aff." reflects the

basic connection locality + thread affinity optimization, as

proposed in their paper [7]. We adopt this optimization as our

baseline set up. It is clearly presented that our adaptive multilayer

hash scheduler ("3-HRW+Adp") increases the system throughput

by 130% (0.87 Gbps VS 1.99Gbps). It is arguably reasonable to

question the fairness of this comparison because the testbed in that

paper was an Intel dual quad-core Clovertown machine, whereas

we use a 64-thread 8-core Sun Niagara 2 machine. Therefore, we

did a simple optimization ("conn+os") for the connection locality

technique by using the default software scheduler on Solaris,

which provides a better load balance compared to the thread

affinity set up. This optimization can increase the throughput by

43% (1.25 Gbps VS 0.87 Gbps). To keep our result report

reasonable, we choose the “conn+os” case as the default case

which our optimizations are compared to. We also observe that

HRW alone only increases the throughput by 3.2%, while the

multilayer HRW achieves a throughput of 1.54 Gbps, an

additional improvement of 20%. The ultimate system throughput

can be increased by 59.2% compared to "conn+os" using the

adaptive multilayer scheduler.

The CPU utilization shows a pattern of growth as throughput

increases. This is because better load balance reduces CPU idle

time. Therefore, more CPU time is spent in matching connection

buffers. If the per core CPU workload is unevenly distributed,

some of the cores might be idling after they finish the workload in

their runqueue, while those cores with higher workloads keep

running blindly, blocking workload deeper in the runqueue. In the

next subsection, we will present the workload distribution

situation at the core, the pipeline and the thread level.

4.5 Workload Distribution
 Fig. 5 shows the utilization at different levels in the system

using different optimizations. We obtain the results for all the

three figures at the same timestamp after system warm-up. The

bars in each figure show the average utilization across all the

processing units at the same level, e.g. the bars in Fig. 5.(b) are

the average pipeline utilization across all the 16 pipelines in the

system. The vertical lines in each figure represent the range

between the highest and lowest utilization for each optimization.

Note that the value for a node at a higher level in the hierarchical

architecture is not simply equivalent to the sum of its children's

values. Especially for the thread utilization, Solaris counts the

block I/O time as part of the non-idling statistics for a thread.

Therefore, even if all the four threads show 100% utilization, their

pipeline/core utilization numbers could still be low [23]. However,

what we really care about in Fig. 5 is the load balance impact of

each optimization, which is not affected by the structural relations.

 All the three figures show that HRW-based scheduling

optimizations consistently provide narrow ranges of utilization,

independent of the depth of the hierarchy. At the same time, a

narrow range of utilization means each node at the same level

shares a more similar workload. Therefore, our adaptive

multilayer hash scheduler provides the best load balance and

consequently the most efficient CPU utilization. It should also be

noted that as we go down the hierarchical tree, the benefits of the

multilayer hash increase. This is understandable because the

genetic workload discrepancy grows accumulatively, as we go

down the hierarchy. The utilizations at a higher level are less

different due to the accumulative effect. At the thread level, the

workload difference is reduced from 89% to 10%. An increased

average utilization further verifies the gain in efficiency.

 Here we also present the runqueue length at the thread level to

directly illustrate the changes in workload balance. As we can see

from Fig. 6, it is quite straightforward that the runqueue length

becomes much smoother when our scheduling optimizations that

are applied. Another observation from the same figure shows the

average runqueue length of the thread decreases as we further

optimizes our scheduler. This observation means the overall

matching time is reduced in the system, which is in line with the

observation in Fig. 4.

4.6 A Life-of-Packet Analysis (Overhead)
 In this subsection, we discuss the overhead of our hash-based

scheduler by conducting a life-of-packet analysis, which profiles

the execution time for each component along the processing path

of one packet instead of the entire packet trace.

 Fig. 7 scales the execution time to 100% for all the five different

optimizations. We would like to present the impact of scheduling

overhead on the overall packet processing. It shows that

preprocessing components take about 5% of the overall packet

processing time. The cost of scheduler increases as more

Fig. 4 System Throughput and Utilization.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.5

1

1.5

2

2.5

conn+aff. conn+os HRW 3-HRW 3-HRW+Adp

Th
ro

u
gh

p
u

t
(G

b
p

s)

Throughput

CPU Util

heuristics are applied. For the adaptive multilayer hash, it takes

about 10% of the overall packet processing. Compared to the 76%

execution time spent in pattern matching, we believe this

overhead is still acceptable. We also observe a decreased time

share of Matching Thread (MT) when more optimizations are

applied. A smaller time-share for the MT in Fig. 7 can be caused

by either a reduced matching cost in the MT or an increased

computation overhead in the scheduler.

 Fig. 8 shows the absolute execution time for a packet. Clearly

shown from this figure, each matching thread runs longer than the

scheduler does. Therefore, the reduced MT execution percentage

in Fig. 7 is due more to the reduction in MT execution time than

the increased scheduler cost (from 0.49 µsec to 0.57 µsec). This

observation verifies our theoretical analysis in section 3. The

average per packet execution time for the MTs is reduced because

workloads are more balanced on the available threads. The

workload balance reduces blocking time by scheduling those

connection buffers from a deeper location in a busy thread to a

relatively free thread, hence increasing the overall system

throughput.

 Fig. 5 . a) Core utilization (%) b) Pipeline utilization (%) c) Thread utilization (%)

0

20

40

60

80

100

120

conn+aff. conn+os HRW 3-HRW 3-HRW+Adp

0

5

10

15

20

25

30

35

40

45

50

conn+aff. conn+os HRW 3-HRW 3-HRW+Adp

0

20

40

60

80

100

120

conn+aff. conn+os HRW 3-HRW 3-HRW+Adp

Fig. 6. Runqueue length on all the 63 matching threads. Note that thread #0 runs the preprocessing thread exclusively.

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Th
re

ad
 Q

u
e

u
e

 L
e

n
gt

h
 (

B
yt

e
s)

conn+aff. conn+os

HRW 3-HRW

3-HRW+Adp

Fig. 7 Scaled execution time percentage for each component.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

conn+aff. conn+os HRW 3-HRW 3-HRW+Adp

MT

Scheduler

Buffer

TCP/IP

Disk I/O

Fig. 8 Absolute execution time comparison between the

scheduler and matching thread.

0

1

2

3

4

5

6

7

8

9

10

conn+aff. conn+os HRW 3-HRW 3-HRW+Adp

Ex
e

cu
ti

o
n

 T
im

e
 (

µ
se

c) Scheduler MT

5. RELATED WORK

5.1 Optimizations for DPI
The costly pattern matching in DPI programs has been studied

extensively at the sequential program level. Major research in this

domain falls into three categories: 1) reducing the alphabet size

[2]; 2) increasing throughput by processing multiple input

characters per clock cycle [8, 14]; and 3) balancing between the

memory bandwidth and memory size requirement [13, 31].

Another direction of the research studies the deployment of DPI

programs, i.e. how to use hardware accelerators. In this domain,

both FPGA [18] and Network Processor [19] solutions have been

proposed to explore the packet level parallelism inside DPI

programs. [27] proposed a "bit-splitting" architecture to explore

the internal parallelism inside of the state machines.

As multicore-based web servers become the mainstream

platforms for network appliances, research has increasingly

proposes to deploy DPI programs using general purpose multi-

core servers. Authors in paper [30] discussed the possibility of

parallelizing SNORT [25] using multi-core servers with a 3-level

feedback system. Another research group [7] designed a

multithreaded L7-filter on a Intel Xeon server. It showed good

performance by using connection locality and thread affinity.

However, we found that simply applying connection locality

optimization alone does not guarantee good performance on a

highly threaded hierarchical multi-core processor like Sun

Niagara 2. Our analysis showed that load imbalance across the

extensive parallelism resources offsets the benefits achieved from

connection locality. Therefore, we adopted a hash-based

technique and a feedback system to consider load balance while

maintaining connection locality.

5.2 Multi-core Scheduling and Hash
 The key issue in multi-core scheduling is how to balance the

workload across available processing resources. Previously

proposed works [5, 6, 26] mainly achieve balanced workload

based on real time thread migration. The advantage of research in

this domain is that the locality of running threads can be adjusted

to shorten the blocking delay incurred by uneven workload

distribution based on real time statistics. The downside of

migration-based load balance algorithms is cache thrashing, i.e.

old cache data might be replaced by new data for the recently

migrated thread.

 Hash functions have been widely adopted in the network

domain. In the client-server model, hash functions are a favorable

choice to map client requested objects into the web cache [22].

One of the popular hash functions is HRW, which is proposed in

paper [28]. Although the algorithm provides load balance over the

request object space, it is not adaptive and therefore potentially

vulnerable to traffic locality. In paper [12], the authors presented a

feedback system for the traditional HRW hash. However, our

research differs from theirs in two folds: 1) we implemented a

multilayer HRW using a highly threaded hierarchical multi-core

server instead of a network processor simulator; 2) we chose a

low overhead feedback metric, runqueue length, to provide better

load balance rather than to poll values from the hardware counter,

which is infeasible to do at a per packet basis in a high speed

network.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a scheduler for L7-filter on a highly

threaded hierarchical Sun Niagara 2 multi-core server. In addition

to maintaining the benefits from the connection locality of the

network traffic like some previous proposed schedulers [7, 12,

30], our scheduler also adaptively relaxes the locality constraint to

achieve better load balance. Based on the hierarchical architecture

of the Sun Niagara 2 processor, our scheduler works at the core,

the pipeline and the thread level, respectively. We choose the

HRW hash as our baseline hash function that guarantees

connection locality and load balance over the number of different

connections. We apply a low overhead adaptive feedback system

to balance the workload over real time queue length at each level.

Our experimental results show that the adaptive hash-based

multilayer scheduler can improve the L7-fitler throughput by

59.2% compared to a previous work.

As to future work, we are in the process of developing a hash

function that encloses the feedback system into the hash itself. We

believe a self-adaptive hash function can further reduce the

system overhead incurred by the additional feedback control.

7. ACKNOWLEDGEMENT
 The authors would like to thank anonymous reviewers for their

valuable comments. We also thank Intel for providing the Sun

Niagara 2 based web server. The research was supported in part

by NSF grant CNS 0832108 and NSFC (60625201, 60873250).

REFERENCES
[1] Application Layer Packet Classifier for Linux (L7-filter),

http:// l7-filter.sourceforge.net/.

[2] B. Brodie, et al., "A Scalable Architecture for High-

Throughput Regular-Expression Pattern Matching", ISCA

'06.

[3] Cisco IOS Netflow,

http://www.cisco.com/en/US/products/ps6601/products_ios_

protocol_group_home.html

[4] Cisco Systems. Scaling the world wide web. Available from

http://cio.cisco.com/warp/public/751/advtg/swww_wp.htm.

[5] A. C. Dusseau, et al., "Effective Distributed Scheduling of

Parallel Workloads", SIGMETRICS 1996.

[6] A. Fedorova, et al., "Cache-Fair Thread Scheduling for

Multicore Processors", OSDI '06.

[7] D. Guo, et al., “A Scalable Multithreaded L7-filter Design

for Multi-core Servers”, ANCS 2008.

[8] N. Hua, et al., "Variable-Stride Multi-Pattern Matching for

Scalable Deep Packet Inspection", IEEE INFOCOM '09.

[9] Huawei MSCG Hierarchical DPI Solution,

http://www.huawei.com/products/datacomm/catalog.do?id=1

219

[10] Raj Jain and Shawn A. Routheir, "Packet trains -

measurements and a new model for computer network

traffic", IEEE Journal on Selected Areas in Communications,

4(6):986-995, September 1986.

[11] Juniper M Series Multiservice Edge Routers,

http://www.juniper.net/us/en/local/pdf/datasheets/1000042-

en.pdf

[12] Lukas Kencl, Jean-Yves Le Boudec, "Adaptive Load Sharing

for Network Processor", IEEE INFOCOM 2002.

[13] S. Kumar, et al., “Advanced Algorithms for Fast and

Scalable Deep Packet Inspection”, ANCS 2006.

[14] S. Kumar, et al., "Algorithms to Accelerate Multiple Regular

Expressions Matching for Deep Packet Inspection",

SIGCOMM '06.

[15] libnids, http://libnids.sourceforge.net/

[16] Harlan McGhan, "Niagara 2 Opens the Floodgates - Niagara

2 Design is the Closest thing Yet to a True Server on a Chip",

The Insider's Guide to Microprocessor Hardware, 11/6/06-01.

[17] MIT DARPA Intrusion Detection Data Sets,

http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index

.html.

[18] A. Mitra, et al., “Compiling PCRE to FPGA for Accelerating

SNORT IDS”, ANCS 2007.

[19] P. Piyachon and Y. Luo, “Efficient Memory Utilization on

Network Processors for Deep Packet Inspection”, ANCS

2006.

[20] SPECweb 2005 Published Results,

http://www.spec.org/web2005/results/

[21] Receive Side Scaling (RSS),

http://www.microsoft.com/whdc/device/network/NDIS_RSS.

mspx/.

[22] K. W. Ross, "Hash Routing For Collections of Shared Web

Caches", IEEE Network, Vol. 11, No. 6 November-

December 1997.

[23] Steve Sistare, "The UltraSparc T2 Processor and the Solaris

Operating System", Oct 09, 2007,

http://blogs.sun.com/sistare/entry/the_ultrasparc_t2_processo

r_and

[24] Reid G. Smith, "The contract Net Protocol: High-level

Communication and Control in a distributed Problem

Solver", ACM Transactions on Computers, pages 1104-1113,

December 1980.

[25] SNORT Network Intrusion Detection System,

http://www.snort.org/

[26] D. Tam, et al., "Thread Clustering: Sharing-Aware

Scheduling on SMP-CMP-SMT Multiprocessors", EuroSys

'07.

[27] L. Tan, et al., "A High Throughput String Matching

Architecture for Intrusion Detection and Prevention", ISCA

'05.

[28] D. G. Thaler, C. V. Ravishankar, "Using name-based

mappings to Increase Hit Rates", IEEE/ACM Transactions

on Networking, Vol. 6 No. 1 pp. 1-14, Feburary 1998.

[29] B. Veal, et al., “Performance Scalability of a Multi-core Web

Server”, ANCS 2007.

[30] J. Verdu, et al., " MultiLayer processing - an execution

model for parallel stateful packet processing ", ANCS 2008.

[31] F. Yu, et al., Fast and memory-efficient regular expression

matching for deep packet inspection, ANCS 2006.

