A Scalable Multithreaded L7-filter Design for

Multi-Core Servers
Danhua Guo" 3, Guangdeng Liao1, Laxmi N. Bhuyan1, Bin Liu2, Jianxun Jason Ding3

1University of California, Riverside
Riverside, CA

{dguo,gliao,bhuyan}@cs.ucr.edu

ABSTRACT

L7-filter is a significant component in Linux’s QoS
framework that classifies network traffic based on
application layer data. It enables subsequent distribution of
network resources in respect to the priority of applications.
Considerable research has been reported to deploy multi-
core architectures for computationally intensive
applications. Unfortunately, the proliferation of multi-core
architectures has not helped fast packet processing due to:
1) the lack of efficient parallelism in legacy network
programs, and 2) the non-trivial configuration for scalable
utilization on multi-core servers.

In this paper, we propose a highly scalable parallelized L7-
filter system architecture with affinity-based scheduling in a
multi-core server. We start with an analytical study of the
system architecture based on an offline design. Similar to
Receive Side Scaling (RSS) in the NIC, we develop a
model to explore the connection level parallelism in L7-
filter and propose an affinity-based scheduler to optimize
system scalability. Performance results show that our
optimized L7-filter has superior scalability over the naive
multithreaded version. It improves system performance by
about 50% when all the cores are deployed. In addition, this
model also ameliorates the performance degradation in a
virtualized environment due to our direct mapping
mechanism.

Categories and Subject Descriptors

C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:
Multiple-instruction-stream, — multiple-data-stream processors
(MIMD); C.2.0 [Computer Communication Networks]: General
— Security and protection (e.g., firewalls)

General Terms
Design, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ANCS 08, November 6-7, 2008, San Jose, California, USA.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

*Tsinghua University
Beijing, China
Imyujie@gmail.com {dannguo,jiding}@cisco.com

®Cisco Systems, Inc.
San Jose, CA

Keywords
Affinity, L7-filter, Multi-Core, Packet Classification,
Parallelism, QoS, Scalability, Scheduling.

1. INTRODUCTION

Network resource competition becomes increasingly
intense as more and more applications demand high
bandwidth and more computing capability. The Quality of
Service (QoS) in network domain requires powerful
classifiers to distribute resources based on application
priorities. Traditional packet classifications make the
decision based on packet header information. But many
applications, such as P2P and HTTP, hide their application
characteristics in the payload. They require dynamic
assignment of port numbers during connection
establishment. Under such circumstances, Deep Packet
Inspection (DPI) is used to identify the protocol/application
information and improve QoS.

A layer-7 classifier requires massive processing
capability. The emergence of high speed networks, such as
10 Gigabit Ethernet (10GbE), increases the intensity of
network traffic, which consequently elevates the demand
for fast DPI processing. Traditional single core server is
insufficient to satisfy DPI functionality. However, multi-
core architectures can boost packet processing by executing
concurrent processes/threads on different cores. Therefore,
they are widely deployed as server platforms to provide
more computing power and to match I/O processing
required by high bandwidth network. Cisco’s Application
Oriented Network (AON) technology also employs multi-
core architectures [4].

In spite of its enhanced processing power, efficient core
utilization in a multi-core architecture remains a challenge.
The lack of efficient program level parallelism in legacy
network applications greatly limits the utilization of multi-
core architectures, and they often perform no better than
single core systems. Furthermore, inter-processor
communication in multi-core architectures hampers system
scalability. Experiments [25] showed that the 8-core test
server running a modified SPECweb2005 workload
achieved only a 4.8X speedup in throughput (compared to
the ideal 8X).

To address the issues above, we propose a highly scalable
parallelized L7-filter system architecture with affinity-based
scheduling for a multi-core server. The original L7-filter is a
sequential DPI program that identifies protocol information in a
given connection. It reads in network traffic through Netfilter’s
QUEUE in the kernel, and was first designed as a component in
Linux’s QoS framework. However, we parallelize the L7-filter
operations based on a userspace version. Our technique is in line
with many recent products which have moved Netfilter processing
from the kernel level to application level [3, 4]. Previous research
from both academia and industry [2, 9, 11] have demonstrated
that the performance of L7-filter is bounded by the cost of pattern
matching. Therefore, we have developed a decoupled model to
separate the packet arrival handling and focus on optimizing the
pattern matching operations at the application layer.

Based on the understanding of this model, we explore
potential connection level parallelism in pattern matching,
and propose an affinity-based scheduler to enhance the
scalability of multithreading. Essentially, we assign packets
belonging to the same connection to the runqueue of the
same thread, which is dispatched to a dedicated core in
multi-core server. Similar to Receive Side Scaling (RSS)
[20] for the NIC, our scheduler works in software and
provides faster packet classification with good scalability in
the multi-core architecture.

Considering that DPI engines always reside in a back end
server or a content-aware router/switch, one should be
concerned with the memory limit for the matching process.
We measure the number of connections under processing
and decide the minimum buffer size with each thread
running independently on a separate core. The measurement
results demonstrate storage efficiency (bounded by KByte
scale) and improved practicality of our multithreaded L7-
filter architecture.

Our contributions in this paper can be summarized as
follows:

e Developed a trace-driven offline L7-filter DPI system
model to study its processing requirements in a well-
controlled environment without noises from network
infrastructure and kernel stack.

e Designed and implemented L7-filter parallel
algorithm at the connection level and proposed an
affinity-based scheduler to achieve higher
performance scalability.

e Performed a unique “life-of-a-packet” analysis to
illustrate the L7-filter performance bottleneck and
demonstrate the optimization advantages of our
design.

The remainder of the paper is organized as follows: In
section 2, we provide background information and
motivation of the paper. In section 3, we demonstrate the
system architecture in a progressive fashion. We present the

performance measurements in section 4. In section 5, we
discuss related research. Finally, in section 6, we conclude
the paper and propose future research directions.

2. BACKGROUND AND MOTIVATION
2.1 Packet Inspection and L7-filter

The universal intention of packet inspection is to provide
Quality of Service (QoS) in the network domain. According to
various priorities of applications, network resources must be
distributed in a manner such that critical applications are
guaranteed better services in terms of bandwidth and latency. In
retrospect, packet inspection has evolved from simple matching of
packet header information to intensive computation with payload
data.

In spite of the simplicity and practicality of the classical
port-based packet inspection, DPI is more and more widely
used to meet the requirement of classifying file sharing
services such as P2P in recent years. DPI checks packet
payload information where service characteristics are
deliberately hidden in some malicious applications. An
accurate and efficient classification of packet payload
prevents these malicious applications from acquiring large
bandwidth, and therefore guarantees network QoS.

Among many signature-based protocol parsing software,
L7-filter [2] is most widely used for connection-based DPI
in Linux. By matching against signature fields of various
protocols, L7-filter uses GNU Regular Expression (RE)
matching to obtain protocol type associated with the
application layer data in the packet. Different from
signature-based Intrusion Detection Systems (IDS), which
have thousands of complex network security regulation sets,
signature-based protocol parsing schemes are
comparatively simple with only hundreds of protocol
matching rule sets, and thus can be easily implemented and
deployed in software without any specific hardware
accelerators. That said, the computation cost of the L7-filter
software still remains high for real-time processing of
packets [2, 9, 19]. Thus, optimization effort is needed.

2.2 Multi-core Architecture

Multi-core architecture duplicates hardware resources such
as ALU, L1 cache, etc. on the same die, and hence allows multiple
processes to run concurrently on different cores. Intel multi-core
architecture, as shown in Figure 1, provides shared L2 cache for
cores in the same group. This simplifies inter-core communication
by eliminating cache-coherency protocols as used in multi-cache
systems.

Multi-core architectures are deployed more and more to
satisfy the requirement of faster packet processing. In
addition, multithreading directives such as Pthread and MPI
have explored program level parallelism. [8, 15, 21, 22]
propose OS level heuristics to distribute heterogeneous
workloads among cores to improve efficiency in system
utilization. Unfortunately, most of such available designs

require a large amount of change in the OS.

Since kernel 2.6, Linux provides affinity configuration
API for SMP platform. The user (with root access) could
change the CPU affinity to interrupt and userspace
applications. Foong [6] shows the efficiency of CPU
affinity with multiple NICs. Compared to previous works,
we believe tuning up affinity settings for Linux is easier and
more reliable, especially when kernel modification becomes
cumbersome in a virtualization environment.

2.3 From Kernel to Userspace

Most of the DPI software operations are conducted in the OS
kernel space. Granted that operations in the kernel sometimes
provide performance benefits, computation intensive operations
are not suitable in the kernel space. The developers of L7-filter
realized this problem and admitted in 2006 that, “By Dec 2006,
we had realized that working anywhere in kernel space was not
the brightest idea, so we released a version that runs in userspace
and gets its data through Netfilter's QUEUE.” [2]

That userspace version of Linux L7-filter is single-
threaded. Even though the computation-intensive operations
are moved out from the kernel space to the userspace, this
single-threaded L7-filter cannot utilize the multi-core
processing resources. Hence, a multithreaded L7-filter that
applies proper core affinity can better utilize multi-core
server resources and significantly improve L7-filter
performance.

2.4 Connection-based Parallelism

Connection-based parallelism was productized by Microsoft in
their Receive Side Scaling (RSS) NIC technology. In that
technology, a particular core in the system is assigned to process
all the packets in the same connection. Compared to the default
load-balance scheduling in Linux kernel (with irgbalance
enabled), RSS balances the workload on a connection rather than
packet basis [20].

The same idea can be applied to our L7-filter
parallelization effort. Because packets in the same
connection share not only IP layer information in the header,
but also potential common sections in the payload,
processing packets of the same connection in the same CPU
can improve /O performance by maintaining a better cache
locality. Since L7-filter classifies packets based on
connections, an implementation of connection-based
parallelism is expected to provide efficiency in multi-core
utilization.

3. DESIGN AND OPTIMIZATION OF AN
MULTITHREADED L7-FILTER

In this section, we present our optimized L7-filter system
architecture to address the issues raised above. We first
develop a decoupled offline model to focus on optimizing
the performance bottleneck in the L7-filter. We then
propose a connection level multithreaded L7-filter system

Intel Xeon X5355 Clovertown

CHU0 CruE2 CPU#1 CPU#3
‘ L2 Cache ‘ ‘ L2 Cache ‘
L2 Cache L2 Cache
CPU#4 CPU#8 CPU#5 CPU#7
Socket #0 Socket #1

Figure 1. CPU layout of Intel Xeon X5355 Clovertown machine.

architecture and an affinity-based scheduler to efficiently
utilize a multi-core server. As an extension, we also
propose a processor mapping mechanism in Xen hypervisor
and discuss the impact of virtualization on our new model.

3.1 Decoupling Linux L7-filter Operations

Network traffic in original L7-filter is captured by
Netfilter, which consists of a set of hooks inside the Linux
kernel that allows kernel modules to register callback
functions with the network stack. A registered callback
function is then used for every packet that traverses the
respective hook within the network stack. Inside the
network stack of the kernel, a series of operations are
executed to establish a connection buffer based on 5-tuple
connection information in the packet header. After such a
preprocessing stage including TCP/IP packets checksum
verification, TCP/IP reassembling, IP refragmentation, etc.,
L7-filter starts to match all the application layer data of the
arriving packets in the same connection against the protocol
database in a sequential fashion.

It is known that the pattern matching operation at the
application level consumes most of the time in DPI system
[2, 9, 19]. We expect the same to be true in an L7 filter,
both intuitively and by the experiment data to be presented
in section 4.5.

To concentrate on optimizing the pattern matching
operation, we developed an offline trace-driven model in
our study. We choose libnids [10] as a userspace module.
Libnids reads tcpdump trace files and simulates kernel
network stack behaviors in userspace. In the real-world
situation, packet arrival and pattern matching operations are
tightly coupled. However, in our study, we use an offline
trace input to replace the handling of network packets
arrival. This decoupled model has the following
advantages: 1) It frees us from dealing with complex and
corner case operations in the lower layer networking and
kernel stacks, so that we can concentrate on optimizing the

hot-spot pattern matching operations. 2) It provides
repeatable and well-controlled research environment,
enabling testing and validation on various approaches. 3) It
also allows us to simulate and measure L7-filter
performance on reliable connections without any packet
loss or retransmission.

3.2 Modeling Single-Threaded L7-filter

Once a packet is processed by libnids, L7-filter classifies
the packet in the steps described in Figure 2. Packets are
fed into the system at the optimal speed (as in a TCP
connection with no packet dropped).

The original online L7-filter is substituted by a combination of
a Preprocessing Thread (PT) and a Matching Thread (MT). The
PT functions as a real network stack in the kernel and schedules
the packets. At any point of processing, a connection can only
have one of the three statuses: 1) MATCHED; 2) NO_MATCH
and 3) NO_MATCH YET. For any incoming packet, L7-filter
first decides the host connection based on the 5-tuple of this
packet. It is then preprocessed based on the connection status in
one of the following two ways:

e For 1) or 2): L7-filter already marks a final result
to the connection. No further action is necessary.

e For 3): this packet is appended to the corresponding
connection in the assembling buffer, and the new buffer
is placed in the runqueue of the MT.

For both cases, the PT goes back to fetch the next packet from
the trace file only after the current packet has been preprocessed.
On the other hand, the MT keeps matching the connection in its
runqueue until the queue is empty. If the number of packets in a
connection exceeds a predefined threshold before the connection
is classified, the connection is marked as “NO_MATCH”.

As shown in Figure 2, one MT is handling the
computation-heavy pattern matching operation. More MTs
should be deployed to handle this operation, especially on
multi-core based systems.

3.3 Parallelizing L7-filter at Connection Level

with an Affinity-based Scheduler

A straightforward optimization to the single-threaded L7-
filter is to create more MTs in the thread pool.
Theoretically, multithreading can improve system
performance in proportion to the number of additional
processing units. However, in real practice, the scalability
issue of multithreading depends heavily on the OS
scheduler and the design of multithreading.

In Linux kernel 2.6, an O(1) scheduler takes the place of
the O(n) scheduler in kernel 2.4 in order to improve
performance on highly threaded workloads. Processes
created in an SMP system are placed on a given CPU's
runqueue. In the general case, it is impossible to predict the
life of a process. Therefore, the initial allocation of

Trace File
Preprocess packe

System Read Read a packet

Next g
Preprocessing Packet II

L Y

Packet Assembling Buffer

Update matching result

for the connection FIFO 8
L7-filter ‘ processing Matching Thread

Classification

MATCHED ||
NO_MATCH

N:
Connection
reassembling

PCRE RE Matching thread
Matching starts to work

Figure 2. Trace-driven L7-filter data flow.

processes to CPUs is very likely to be suboptimal. To
maintain a balanced workload across CPUs, every 200ms,
Linux 2.6 scheduler checks to see whether a cross-CPU
balancing of tasks is necessary. On the other hand, when a
thread blocking for 1/O is signaled, it will be awakened on
the core (migration occurs, if necessary) where the event
occurred [13, 16]. This ensures that application processing
of a flow’s packets is likely to be executed on the same core
as its network protocol processing.

Despite the advantage of resolving load imbalances and
implementing I/O affinity, the O(1) scheduler introduces an
undesirable overhead for periodic CPU statistic collection
and additional cache misses due to inter-core data copies.
Studies [23, 24] have shown load-balancing to be an issue
for edge (e.g. routing) workloads. As a result, we need to
find an alternative to solve the multithreading scheduling
problem.

Once more MTs are created, each MT executes on a
connection buffer basis. When a new packet is reassembled
for a connection, randomly selecting a non-empty runqueue
of a thread introduces additional cache overhead by
copying packets of the same connection to different cores.
In addition, it also wastes the thread resources. Consider the
case when MT #¢ is matching for connection #c with p
packets in the buffer. During execution of MT #¢, another
packet of connection #c arrives. Since no matching result is
reported yet, this new packet is reassembled with all the p
packets in MT #’s buffer and the p+/ packets of
connection #c is dispatched to another MT #¢+1’s buffer
for further action. When MT #¢+1 starts to classify for
connection #c, MT #t might return that connection #p
belongs to protocol #g. Since MT #¢+1 is unaware of the
status, it has to go through the same process and thus wastes
valuable computation resources and incurs cache pollution
if it is load-balanced to a different CPU from where MT #¢
executes originally.

To attack the challenges discussed above, we propose an
affinity-based scheduling mechanism for our multi-core
server, as shown in Figure 3. We affinitize the PT in core

#0" and bind an MT for each of the cores left in the multi-
core server. On the one hand, multiple MTs ameliorate the
lack of processing power for pattern matching. Even though
OS scheduler can balance the workload to all the cores with
only one MT, we believe dispatching an independent thread
to a dedicated core saves the cost of scheduling overhead
and reduces cache misses introduced by live migrations of
unbalanced workloads. On the other hand, in order to avoid
cold-cache-line effect, we develop our own scheduler for
thread dispatching, which will be discussed shortly. With
our scheduler, the cache and resource efficiency as
previously discussed are both greatly improved.

Figure 4 illustrates the data flow in our scheduler.
Essentially, all the assembling buffers for the same
connection (with different number of packets) will be
scheduled to the same MT. Similar to the baseline model in
Figure 2, the optimized scheduler initially decides whether
an incoming packet needs classification based on the status
of its host connection. If no previous result has been
reported for the connection, the scheduler tries to append
the new packet to the connection buffer and add this new
buffer to the MT runqueue that already contains assembling
buffers of the same connection. In case the desired MT
runqueue is full, the scheduler will sleep until the runqueue
is available for new entries.

There are two heuristics in the optimized multithreaded
model for resource contention. First, if an incoming packet
belongs to a new connection, the scheduler will try to
balance the workload by looking for an MT that has the
shortest runqueue. This load balance mechanism incurs no
extra overhead compared to the default OS scheduler
because the new connection has to suffer from cold cache
line anyway. In addition, before classifying each entry in
the runqueue, the MT checks whether the connection status
has been changed. If L7-filter successfully classifies the
connection with an assembly buffer of less number of
packets, the MT will give up further attempt for this
connection and get the next connection to be classified from
its runqueue.

By serving connection buffer to the same MT in a FIFO
fashion, wastage of MT resources due to information
asymmetry of the classification status is avoided. Moreover,
when previous instance fails to classify the connection, the
used packets are still kept in the cache that hosts the MT.
Consequently, further connection classification could enjoy
the warm cache and executes more efficiently compared to
the original case.

* This is an arbitrary selection. PT can be affinitized to any core.

i |

Schedule new packets

Preprocessing Scheduler
To MTs

D bR b g o R g
50 H B E
55 EEE

T

[]

o
5 5

Core #l‘

Core #2‘

Core #3 ‘

Core #4‘

Core #5 ‘

Core #6‘

Core #7

Core #0‘

Figure 3. Affinity-based Mulit-threaded L7-filter Architecture.

Preprocessed

Y: Read next Packet

Packet

Che;lt;t(lillsa:‘:;ﬂt;:tlon MATCHED |
. NO_MATCH ?
Connection -
Update connection N: Try to dispatch
information an MT for ihe packet
| ¥
‘ Get Connection # ‘ ‘ Get MT # for Connection ‘
PCRE
N:)
N: Start to classify Work on Y: Wait:
the desired MT

Assembling buffes
In MT full?

Y: Get the next
connection buffer

DEQUEUE a
Connection buffer

Y: Find a MT with
less workload

Add to assembling buffer Add to assembling
MT Run for the connection in a buffer for the
pable MT connection in the MT
[]

N: Successfully scheduled

Figure 4. Data flow in Scheduler.

4. EXPERIMENTAL RESULTS

4.1 Experiment Platform

We choose Intel Clovertown (Dell Poweredge 2900) as
our test bed server machine. This server system has two
CPU sockets, each embeds a quad-core Xeon X5355
2.66GHz processors, and 16GB of 667MHz DDR2
SDRAM. The layout of the cores is presented in Figure 1.
As we can see from the figure, each socket has two 4MB
shared L2 caches.

We use Linux kernel 2.6.18 as our default OS. The
baseline userspace sequential L7-filter is of version 0.6 with
protocol definition updated by 04/23/2008. We choose the
most recent version 1.23 libnids as the preprocessing
component. We also use PAPI 3.6 [17] to measure cache
misses. We hard-code time stamps into the L7-filter source

to obtain eclipsed time of different components of the
system.

For the packet trace, we select an intrusion detection
evaluation data set from the MIT DARPA project [11].

4.2 Performance Metrics

In order to verify the performance of our model, we
compare our optimizations for multithreading scalability
with the default OS scheduler in terms of throughput, CPU
utilization and cache misses. We define the system
throughput as the size of the total packets in the trace file
divided by the execution time. In addition, we also provide
a life-of-packet analysis to measure various overhead
during processing. As an important metric for real
router/switch, memory requirement of our model is also
discussed.

We present below the evaluation of our optimized L7-
filter in comparison to the original version. For the original
case, we use the default OS scheduler to dispatch MTs with
periodic load balancing. Our affinity-based scheduling for
connection level parallelism is then implemented and
compared with the original scheduler. The experimental
results prove the efficiency of our design.

4.3 Throughput and Core Utilization

Figure 5 illustrates the throughput and CPU utilization of
L7-filter in native Linux. For all the experiments, we use
one thread for preprocessing, including disk 1/0, TCP/IP
reassembling and defagmentation, connection buffer
reassembling and scheduling. The number of threads for
pattern matching is varied as represented by the X-axis in
the figure. The bars represent the throughput and curves
represent the CPU utilization. T-ori and T-aff illustrate
throughputs of the original OS scheduling and our affinity-
based scheduling, respectively. Similarly, U-ori and U-aff
demonstrate CPU utilization without and with our
optimization. The affinity-based multithreading shows its
superiority in scalability compared to the default OS
scheduler. With 7 concurrent threads, the system throughput
increases by 51% compared to the naive OS scheduling.
The system scales near linearly (a speedup of 6.5X when 7
threads are applied.) to the number of MTs. Additionally,
the CPU utilization is also less in the affinity-based
technique with more efficient cache performance. A
significant reduction of last level cache misses is observed
and will be presented in the next subsection. We observe
the effect of providing more than 7 MTs in the 8-core
machine in the last set of bars in Fig. 7. Since core #0 is
always running PT, the extra MT has to compete resource
with the PT on core #0. The system performance is
therefore degraded.

— 100%
. + 90%
2 +80%
g T70% .8
.‘5’ + 60% _g
2 + 50% g
g) + 40% -t
] + 30% %
< + 20%

+ 10%

L 0%

1 2 3 4 5 6 7 8
of MTs

Figure 5. Throughput and Utilization in Native Kernel.

4.4 Cache Performance

As we discussed in section 3, the affinity-based multi-threaded
L7-filter is expected to provide performance improvement by
ensuring efficient cache utilization. Figure 6 shows that the
connection-based multithreading mechanism with the proposed
scheduler reduces L2 cache misses by about 50%. By default,
threads are migrated by the OS scheduler to avoid imbalanced
load at the price of cold cache misses. Our scheduler dispatches
all the packets of the same connection to the same thread, which is
affinitized to a designated core, keeping the cache warm for
pattern matching.

4.5 A Life-of-Packet Analysis

In this subsection, we decompose the tuned L7-filter to study
the behavior of each component with different number of
matching threads. The execution time for each experiment is
scaled to 100% to better represent the fractional contribution.
Note that all the measurements in Figures 7 and 8 are based on the
lifetime of one packet rather than the complete trace file because
of the timing overlap in preprocessing thread and matching
thread. While the PT runs the libnids routines, it also dispatches
packets to the proper MT runqueue. In the mean time, the desired
MT is also classifying connections in its runqueue in a FIFO
manner. Therefore, it is necessary to use per packet profiles to
explain the inter-relations among different components in the
system. Due to page limitation, we provide the life-of-packet for
the affinity-based system in Figure 7 and only add the statistics for
7 MTs in the original non-affinity-based L7-filter as a
comparison.

Our first observation from Figure 7 is that preprocessing
incurs very limited overhead, while most of the execution
time is for the scheduler and pattern matching. The
execution times include queuing times at individual
components. With a limited number of MTs, the scheduler
is very likely to stall due to the capacity limitation of the
runqueues, hence takes a large proportion of the execution.
On the other hand, when the number of MTs increases,
more runqueues are provided to the scheduler. A packet is
consequently reassembled into its connection buffer sooner,
while more time is spent in MT. A large time share for MT
in Figure 7 means it either gets more opportunity for
connection classification, or it sleeps frequently because it

1.6 1
1.4
1.2

mori_L2_miss
maff L2_miss

0.8 -
0.6 -
0.4 -
0.2 -

L2 Cache Misses (M times)

1 2 3 4 5 6 7 8
of MTs

Figure 6. L2 Cache Miss.

450 -
400 -
350 -
300 -
250 | O aff_mt
200 -
150 -
100 -

50

— mori_sched
mori_mt
O aff_sched

Execution Time (usec)

1 2 3 4 5 6 7
DT + # of MTs

Figure 8. T-sched V.S. T-mt

runs so fast that its runqueue is empty very often. Figure 8§
shows that for each packet, it always takes longer to match
than scheduling, which dismisses the chance of MT
sleeping. Therefore, we conclude that the system distributes
more time for pattern matching in MT and reduces the
latency of scheduling stall. This observation is in line with
the throughput results demonstrated in Figure 5.

As Figure 7 only presents results in percentage, we give
the absolute execution time for the two largest contributors
in the system in Figure 8. A consistent observation from the
figure is that affinity-based L7-filter scales better than the
default case, on a per packet basis. Recall that packet
processing by libnids incurs very limited overhead to L7-
filter and that PT reads in a packet as soon as the previous
packet was scheduled to a runqueue, with no unnecessary
inter-packet latency introduced. We can therefore project
the data pattern in Figure 8 to the system throughput, as
demonstrated earlier in Figure 5.

4.6 Memory Requirement (8 threads):
Assembling Buffer Size

A significant concern about application performance in a
router/switch is memory requirements. A large memory

~
—_
]
=
=

I I]

of MTs

= N WO A 00 O N

0% 20% 40% 60% 80% 100%
Scaled Proportional Execution Time
@mDisk /O @ TCP/IP O Buffer 0 Scheduler @mMT

Figure 7. A Life-of-Packet Analysis.

14000 -
12000
10000 4 i ; ;
8000

6000 4

Buffer Size(Bytes)

4000 4

2000 4

o ¥ : 5
i} 2000 4000 G000 8OO0 10000 12000 14000 18000 18000 20000
#Total Connections

Figure 9. Memory Requirement of L7-filter.

requirement not only incurs overhead for intensive memory
accesses, it also costs extra software and/or hardware unit to
provide memory management. We therefore conduct
experiments to measure the memory bound for our affinity-
based multithreading system.

In the experiment, we measure the total size of
connection buffers every time a new connection buffer is
scheduled to a runqueue of an MT. We used all the core
resources with 1 core specified for PT, and the other 7
cores each running 1 MT. The last section of the trace is
pruned to simulate the real scenario in the network (packets
keep coming, so that there is no system down time). As
Figure 9 illustrates, despite some scarce growth to 12 KB,
the required memory is around 2 KB. Since a magnitude of
KB in memory is acceptable for a router application, we
believe our model is very practical to be implemented in a
router.

5. RELATED WORK
5.1 Optimizations for DPI

There are a rich set of literature on accelerating DPI for
edge (e.g. router/switch) nodes. Most of these literatures
focus on the algorithm of regular expression pattern
matching, from both software and hardware perspectives.

For software solutions, [7, 18, 26] focus on optimizing the
representation of regular expression. They developed
different techniques to take advantage of the spatial locality
of Non-deterministic Finite Automaton (NFA) and temporal
locality of Deterministic Finite Automaton (DFA). For
hardware solutions, For hardware solutions, [12]
implements an NFA-based regular expression engine on an
SGI Altix 4700 workstation with FPGA support, and
significantly improves the throughput of NFA while
maintaining a compact memory requirement. Piyachon et al.
[19] chose Network Processor (NP) as the deployment
platform for fast DPI.

However, our work focuses on the efficient utilization of
multi-core servers to improve overall system performance
and scalability. L7 Filter uses NFA-based GNU Regular
Expression engine. The stateless NFA requires duplicated
packet copies to maintain the status of pattern matching for
a given connection. Hence, the efficiency of cache
utilization directly influences system performance. Our
optimizations are based on the understanding of program
characteristics and OS support for multi-core architectures.
The solutions we have proposed (connection-level
parallelism plus the core affinity) can be easily deployed on
industrial products, independent of pattern matching
mechanisms.

5.2 Scheduling in OS

Aside from our baseline O(1) scheduler, coscheduling [1,
5, 14] also favors SMP performance. With coscheduling,
processes of a parallel job run at the same time across
processors in either an explicit or implicit manner,
depending on whether synchronization is conducted
globally. The latency of inter-process synchronization and
communication is the major bottleneck for coscheduling.
Despite that implicit coscheduling alleviates this problem
with suboptimal local knowledge, it sacrifices the accuracy
of scheduling decisions.

Compared to coscheduling, our connection affinity based
scheduling mechanism incurs very little performance
overhead. This is because our scheduler only idles when
MTs are busy. When our scheduler runs, it only polls for
the depth of the runqueue in each MT. In fact, the more
MTs run for classification, the less overhead the scheduler
introduces.

6. CONCLUSION AND FUTURE WORK

In this paper, we developed a multithreaded programming
model for L7-filter to exploit the connection level
parallelism in packets. We proposed a thread scheduling
technique on a multi-core architecture based on cache
affinity and showed that the throughput is increased by 51%
and core utilization is reduced by 15% compared to native
Linux. Our experimental results were based on the

configuration with one preprocessing thread running on
core #0 and one matching thread on each of the remaining
core. Our maximum throughput is close to linear speedup
compared to the sequential version. We also conducted a
life-of-a-packet analysis to analyze latencies due to
different stages of L7-filter processing. This unique analysis
showed that CPU time is more effectively distributed to the
pattern matching threads in our design, which consequently
eliminates the latency of scheduling stalls.

In the future, we plan to apply our design to the real-
world network products. Our immediate deployment
candidates will be on a Cisco switch and a Cisco appliance.
We will further optimize our multithreaded L7-filter on
non-x86 based multi-core processor architectures. We also
plan to make our multithreaded L7-filter software available
to the open source community.

7. AKNOWLEDGEMENT

This project is partially supported by a Cisco University
Research Grant, NSFC (60573121, 60625201), and 863
high-tech (2007AA01Z2216, 2007AA01Z468).

8. REFERENCES

[1] C. Anglano, "A Comparative Evaluation of Implicit
Coscheduling Strategies for Networks of Workstations",
HPDC 2000.

[2] Application Layer Packet Classifier for Linux (L7-filter),
http:// 17-filter.sourceforge.net/.

[3] Cisco Internetworking Operating System (I0S) IPS
Deployment Guide, http://www.cisco.com.

[4] Cisco Systems, Inc., “Application-Oriented Networking:
Products and Services”,
http://www.cisco.com/en/US/products/ps6692/Products_Sub
_Category Home.html.

[5] A.C. Dusseau, et al., "Effective Distributed Scheduling of
Parallel Workloads", SIGMETRICS 1996.

[6] A.P.Foong, etal., “An In-depth Analysis of the Impact of
Processor Affinity on Network Performance”, IEEE
International Conference on Networks (ICON), 2004.

[7] C.Hayesand Y. Luo, “DPICO: A High Speed Deep Packet
Inspection Engine using Compact Finite Automata”, ANCS
2007.

[8] L. Kencl, et al., “Adaptive load sharing for network
processors”. INFOCOM 2002.

[9] S. Kumar, et al., “Advanced Algorithms for Fast and
Scalable Deep Packet Inspection”, ANCS 2006.

[10] Libnids, http://libnids.sourceforge.net/.

[11] MIT DARPA Intrusion Detection Data Sets,
http://www.ll.mit.edu/IST/ideval/data/2000/2000 data index
.html.

[12] A. Mitra, W. Najjar and L. Bhuyan, “Compiling PCRE to
FPGA for Accelerating SNORT IDS”, ANCS 2007.

[13] 1. Molnar, “Goals, Design and Implementation of the New
Ultra-Scalable O(1) Scheduler”, Linux Kernel, April 2002.
Docomentation/sched-design.txt.

[14] S. Nagar, "A Closer Look At Coscheduling Approaches for a
Network of Workstations", SPAA 1999.

[15] G. Narayanaswamy, et al, “An Analysis of 10-Gigabit
Ethernet Protocol Stacks in Multicore Environments”, HOT
Interconnects 2007.

[16] O(1) scheduler,
http://www.ibm.com/developerworks/linux/library/1-
scheduler/.

[17] Performance Application Programming Interface (PAPI),
http://icl.cs.utk.edu/papi/.

[18] P. Piyachon and Y. Luo, “Compact State Machines for High
Performance Pattern Matching”, DAC 2007.

[19] P. Piyachon and Y. Luo, “Efficient Memory Ultilization on
Network Processors for Deep Packet Inspection”, ANCS
2006.

[20] Receive Side Scaling (RSS),
http://www.microsoft.com/whdc/device/network/NDIS_RSS.
mspx/.

[21] G. Regnier et al, “ETA: Experience with An Intel Xeon
Processor As A Packet Processing Engine”, HOT
Interconnects 2003.

[22] G. Regnier et al, “TCP Onloading for Data Center Servers”,
IEEE Computer 2004.

[23] W. Shi, et al., “Load Balancing for Parallel Forwarding”,
Transactions on Networking, 13(4):790-801, Aug. 2005.

[24] W. Shi, et al., “Sequence-preserving Adaptive Load
Balancers”, ANCS 2006.

[25] B. Veal, et al., “Performance Scalability of a Multi-core Web
Server”, ANCS 2007.

[26] F. Yu, et al., Fast and memory-efficient regular expression
matching for deep packet inspection, ANCS 2006.

