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Abstract 
As the market of Network Processor (NP) has become more and more intriguing recently, a lot of 
research on architectural level has proved that NP’s performance on packet processing is quite 
satisfactory. The further look at NP’s architecture reminds people of that of embedded processors. So an 
interesting question is: How will NP perform with embedded system application? In this project, I run 
Mibench benchmark on Intel IXA 2400 NP, and compare the result with different multithreading and 
multi-microengine settings. I found that the performance of NP is also very impressive with embedded 
applications. 

1 Introduction 
Recently, Network Processor (NP) has become a hot topic in the field of computer architecture and 
networks.  The motivation of NP is to share the advantages of General Purpose Register (GPR) and 
Application Specific Integrated Circuits (ASIC), namely to have a low-cost, high-performance processor 
with programmable flexibility.  
 
Many research and study have provided positive evaluations of NP on a wide range of applications, such 
as packets classification in the router or switch (filtering/forwarding), traffic management (queuing, 
scheduling and policing packet data), and control processing (macro level control of packet operation), 
etc. However, not enough concern has been drawn in the field of embedded systems, even though the 
market of which has become more and more popular and the structure of embedded processor (ARM + 
DSPs) is quite similar to that of NP (XScale + MEs). Mostly, when it comes to embedded applications, 
the balance of device performance and power consumption is always the key issue. Like PDA and cell 
phone communication, users keep complaining about the battery life along with the response latency. 
With the help of NP embedded in such portable devices, it is expected to have a better solution to this 
problem. 
 
In this project, I test the embedded features of NP with the help of MiBench benchmarks, which is 
targeted particularly at embedded features. The first step is to use Intel’s Internet eXchange Architecture 
Software Development Kit (Intel IXA SDK) as the basic simulator to get some explicit result and 
therefore verify NP’s relevant features. After that, there is a study into the detailed impact of different 
configuration of NP components on its performances. 
 
The report will be organized as follows. In section 2, a brief introduction of the architecture of Intel IXA 
NP2400 will be given. Plus, two software programming models will also be discussed here. In section 3, 
we described the benchmarks and simulators in detail. Section 4 will present the result from the 
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simulation, analysis and comparison between different sources will also be provided. In section 5, we 
conclude the paper with future extension related to this paper. 

2 Architecture of Intel IXA NP2400 

2.1 Block Diagram and Key Features 

 
 
IXP 2400 Resource Summary 

Name Size 
(Bytes) 

Transfer 
Size 
(Bytes) 

Reference 
Latency 
(Cycles) 

Application 

XScale Core 32-bit general-purpose processor Initialize and manage the chip 
GPR 256*4 4 1 General programming purpose 
XferR 512*4 4 1 Transfer data to and from MEs 
NNR 128*4 4 1 Transfer data from previous/next 

neighbor ME 
LM 640*4 4 3 Caching data needed by ME 
Scratch 16K 4 60 General purpose use with atomic 

operations and ring support 
SRAM 64M 4 90 Control information storage 
SDRAM 2G 16 120 Data buffer storage 
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2.2 Programming models 

2.2.1 Context pipeline 

 
The advantage of the context pipeline is that the entire ME program memory space can be dedicated to a 
single function. This is important when a function supports many variations that result in a large 
program memory footprint. The context pipeline is also desirable when a pipe stage needs to maintain 
state (bit vectors, or tables) to perform its work. The context pipe stage can use the local memory to 
store this state eliminating the latency of accessing external memory. 
 
Cases where the context pipeline is not desirable are ones in which the amount of context passed to and 
from the pipe stage is so large that it affects system performance. Another disadvantage of the context 
pipe stage is that all pipe stages must execute at minimum packet arrival rates. This may make 
partitioning the application into stages more difficult. 

2.2.2 Functional pipeline 

 
In a functional pipeline, the context remains with an ME while different functions are performed on the 
packet as the time progresses. The ME execution time is divided into “n” pipe-stages and each pipe-
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stage performs a different function. A single ME can constitute a functional pipeline. The functional 
pipeline gets its name from the fact that it is the function that moves through the pipeline.  
 
Packets are assigned to the ME threads in strict order, so that if there were “n” threads executing on an 
ME, the first thread, “A” must complete processing its first packet before “n” + 1st packet arrives so that 
it can begin processing the “n” + 1 packet. 

2.2.3 Comparison between Context Pipeline and Functional Pipeline 
 Context Functional 

Advantages 1. Good for programs with a 
large code size 
2. Good for on chip storage 
of  vectors/tables 
 

1. Supports a longer 
execution period than 
context pipe-stages 
2. Exe time for each pipe-
stage is flexible 
 

Disadvantages 1. Bad for large context 
passing 
2. All pipe stages must 
execute at minimum packet 
arrival rates. (hard to 
partition) 
 

1. ME must support 
multiple functions 
2. Mutual exclusion may be 
more difficult 
 

 

3 Benchmarks and Simulators 

3.1 Introduction to MiBench 
MiBench is a benchmark suite developed by University of Michigan. The motivation of their project is 
to provide an open source benchmark for embedded applications. The figure below shows how the 
benchmark is organized. 

 
The next table shows the instruction distribution information of the benchmark suite. 

Different packages Integer/floating Memory control Function 
Telecommunication 50%++   Find and generate 

entropy by repeatedly 
operate on a datum 

Security 50%++    
Network     
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Consumer  ++  Large image data is 
processed 

Office, Automation  ++ ++ Function calls to string 
library to manipulate 
ASCII data (lots of 
branches) 

SPEC 57%++ 57% 57%  
ADPCM 
encode/decode 

80%+(integer)   Part of 
Telecommunication 

++: the package has a strong attribute of certain category. 
 
Embedded system application is always evaluated in three aspects. Firstly is a control intensive 
application, such as branch instructions where many control flow is concerned. The second group is 
computational intensive application, like integer and floating point ALU operations. The last group 
involves I/O intensive applications. E.g. memory (load and store). In my project, I select one application 
from Office package, which is a control intensive application and another one from security, which has 
more computational operations. 

3.2 Introduction to Intel IXP SDK 
Intel IXP SDK is provided to simulate its network processor and evaluate the result with specific 
component configuration, such as the number of micro-engines and the context mode (4, 8) as well as 
the number of threading running in each micro-engine. 
 
However, one of the things that are not convenient for the user is that SDK only supports limited sources 
of input stream. They call it MicroC or MicroCode, depending on the level of language similarity to 
assembly. The reason for the existence of such “mid-ware” language in my opinion is 1) NP needs 
explicit configuration, therefore requires the compiler to figure out which value to be distribute to each 
component; 2) the new compiler doesn’t fully implement all the ASCII C library. A list of the ASCII C 
library that is not supported by Intel C Compiler is provided in the table below. As a result, the input 
should be specified valid to the compiler. 
A list of unsupported ASCII C attributes: 

1. The full standard C runtime library. 
2. Automatic parallelization of code. 
3. C++ 
4. Floating point data types (float and double). 
5. Function pointers and recursion. 
6. Functions with a variable number of arguments (varargs). 

 
Unfortunately, most of the input benchmarks are written in standard C. Hence a preprocessing port-
mapping is required before it is taken by NP. More detail about port-mapping will be provided in the 
next section. 
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4 Performance Result 

4.1 Step of the experiment 
Below is the flow diagram of the experiment. As we can see, before we run the benchmark in SDK, it is 
required to be port-mapped into MicroC first. Then with the help of SDK, we could get the .list file and 
then feed it back to SDK or other NP simulator to get the result. 

 
The tricky part in this project is how to port map the original C program into MicroC. First we need to 
consider Data Allocation, namely where to store the data. Remember we could store a variable in a 
register (GPR, NN, Xfer), or we could use Memory (LM, Scratch, SRAM, DRAM). As long as we 
figure out which one of the regions to allocate for the data, the keyword __declspecs will help to do the 
job.  
 
Now the problem is how to decide which region to use. The answer is to draw a balance between the 
size of the data and the requirement of accessing speed of it. Usually the smaller a region is, the shorter 
time it takes to read and store a data from it. In Intel C Compiler, if one of the registers or memory is 
used up, but the user write explicitly in the code to allocate data to the same place, a “register spillage” 
will happen. And the compiler will automatically allocate the next fastest register or memory to that data. 
For example, a variable will be automatically allocated in the following order: GPR -> NN -> Local 
Memory -> SRAM so on and so forth. 
 
After we port map the benchmark into the compiler-friendly version, it’s time to configure the SDK with 
component specific information. First it is required to tell the compiler which library to include for the 
project and where to locate the library. This is important if some system functions are used. It is also 
possible to reserve memory locations for certain variables. Meanwhile, the number of ME to use and 
context model for each ME could also be set up in SDK.  By setting up a microengine to run in 4-

Input

Output
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context mode, each context can access twice as many context relative registers. In this mode, odd 
contexts 1, 3, 5, and 7 are disabled and the even contexts 0, 2, 4, and 6 have full access to their registers. 

4.2 Result 
I did my project with the following environment set up. 

 Intel IXP SDK 4.1 (Select IXP2400) 
 600MHz ME configurations 
 200-MHz SRAMs 
 150-MHz RDRAMs  
 Executed in Multi-threads 
 Executed in Multi-MicroEngines 

4.2.1 Micro-engine Utilization Percentage (On 8-Context Mode on 1 ME)  
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4.2.2 Throughputs (Mips) 
Multi-Core                                                                     Multi-threading 

Throughput on Different # of MicroEngines
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5 Conclusion 
As we can see from the Micro-engine utilization diagram, both string_search and AES application have 
an increase on the percentage of execution time on each ME with the increment of the # of threads. 
 
In multi-core diagram, changing the number of MEs is based on fixed number of threads. In my 
experiment, it’s on 4-Context Mode with 4 threads. In multi-threading diagram, changing the number of 
Threads is based on fixed number of MEs. In our experiment, it’s on 8-Context Mode with 1ME. 
 
The reason why we select 4-Context Mode is because with the increasing number of ME, the 
competition for memory is fiercer. So we reduce the number of threads on each ME to make sure all the 
data are allocated to valid slots in the limited memory. 
 
We can see that with multi-threading and multi-core, the throughputs of NP increase almost in a linear 
fashion. Therefore we can conclude that embedded system application should be efficient to run with a 
NP and the performance is also guaranteed to be satisfactory. 
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