
2006.4.3 CS12_lab1_Danhua Guo dguo@cs.ucr.edu

An Example of MakeFile

comment on here
To generate the executable, type “make all” or “make” at the command prompt.
To remove the executable and any files, type “make clean” at the command prompt.
MakeFile = comments+variables+rules

VARIABLE = some variables here
The compiler and compiler options
CXX=g++
CXXFLAGS=-g -W -Wall -Werror -pedantic -ansi -I /usr/csshare/include
libraries to use
LIBS = -lX11 –lccc
where to look for libraries
LIBDIRS=-L/usr/X11R6/lib -L/usr/local/lib -L /usr/csshare/lib

write some rules here (Remember the “tab” after the prerequisite before the command)
"all" means we want everything including the executable and back up files after the
compilation
"clean" will delete all the unneeded files like the executable etc. you may use this target
before turn in your project.
rules = target + prerequisites + commands
Prerequisites are a space separated list of things that must exist or be done before before
any of the commands in the rule are executed. The items in the list of prerequisites can
be file names, or the targets of other rules.

compile the program
all: ccc_win_main.cpp
 $(CXX) $(CXXFLAGS) $(LIBDIRS) -o outputFileName ccc_win_main.cpp
$(LIBS)
remove unnecessary files
clean:
 rm -rf *~ outputFileName

2006.4.3 CS12_lab1_Danhua Guo dguo@cs.ucr.edu

A list of tags that is commonly used for g++

g++

This is the name of the compiler program.
-g

Leave debugging information in the executeable. This allows a programmer to use
a debugging tool to step through the program code one line at a time and watch
how variables change. This quarter we will learn how to use a debugging tool.

-Wall
The -Wall option tells the compiler, “If I do anything in this program that is really
odd, warn me.” C++ has a long long list of things that could possibly indicate a
programming mistake, but by default many of them are not checked during
compilation. Adding -Wall ensures that many of the more complex things it can
warn you about will be reported. (It is like having a very picky set of eyes
checking over your program for you.)

-W
Not all warnings are turned on by the -Wall option. Yeah, it seems kinda
redundant, but that's the way it is. The -W option tells the compiler, “I'd like you
to warn me about all of the simple mistakes that people might make. ” This lets
g++ do some of the checking for you that would otherwise cause you lots of time
and trouble. (Remember, warnings that are caught are often logic errors that you
don't have to fight! This is a very good thing.)

-Werror
The -Werror option is related to the other options in that they all deal with
warnings. Unlike the others, it doesn't enable additional warning messages.
Instead, -Werror tells the compiler, “If you ever feel like warning me about
anything, consider that an error and do not compile any further.” This way even if
you wanted to ignore the warnings, you would have to find a way to convince the
compiler that you really know what you are doing.

-pedantic
The -pedantic option tells the compiler to use only standard features of the
language and not to allow any non-standard C++ features that the compiler may
allow.

-ansi
The -ansi option tells the compiler to only allow ANSI complient C++.

-o Writer
Write the output the the file “Writer”. If you do not use the -o option, the output
will be written to a file named “a.out”.

