
CS179G : Project in C.S (Databases)
Department of Computer Science & Enginnering

University of California - Riverside
Spring 2003

TA: Demetris Zeinalipour csyiazti@cs.ucr.edu

Introduction to the Architecture of a DBMS

Structure of a DBMS

Fig1: The Achitecture of a DBMS

• USER INTERFACE (the user)

o The DBMS accepts SQL commands generated from variety of User
Interfaces.

• DATABASE MANAGEMENT SYSTEM (the management)

o Query Evaluation Engine
 Parser: parses the users SQL and pass it to Optimizer.
 Optimizer: The optimizer uses the lower levels and knows

how the data is stored what type of Indexes are available

CS179G

CS166

xxx
xxx

xxx

xxx

1

1

2

2

3

4

5
7

6

8

(from the system catalog), what is the distribution of data
(with histograms) and many others. Therefore the optimizer
selects from a list of execution plans the most appropriate one
(the one that has the least estimated cost)
The Optimizer has 2 subcomponents which are the Plan
Generator and the Plan cost Estimator.

 Plan Executor: Generates a set of Execution Plans which are

basically trees of relational operators with additional
information about which access methods to use.

• DATABASE (the core)
Files: A collection of pages. Picture that Pages are chunks of bits stored on
a Hard Disk. The size of a DBMS PAGE is a parameter to the DBMS
usually 4Kb to 8Kb).

o Data Files: These basically contain the DATA in terms of pages or
sometimes records.

o Index Files: These files again contain any indexes stored on disk.
o System Catalog = Data Files + Index Files

3

More about Pages

o Reading or Writing pages requires the disk arm and heads to move and
transfer a Disk-Block (also called DB-page) between Main Memory and
Disk. This is called an I/O operation.

o In other words suppose you want to read 1 record (which is not in main
memory – referred later on as the buffer manager). You need to transfer 1
Block which may contain e.g. 10 records/block. Therefore you are
bringing in 10 records

o The time to read or write a block varies depending on the location of the
data:

o AccessTime= SeekTime + RotationalDelay + TransferTime

Fig1: Structure of a Disk The values of the parameters shown in the disk picture are disk-specific.
This implies that they vary from disk to disk. The Operating System is in charge of dealing with
those parameters. Reading or Writing to disk is done in disk blocks which are contiguous
sequences of bytes. The DBMS uses its own parameters (i.e. pages) in order to provide an
abstraction layer between the hardware specific details of a disk and the database
implementation.

1 DiskBlock =1 DB page

Issues Omitted
1) How are pages organized on disk
In other words we know that pages are stored either contiguously or are
dispersed on some area of the disk but how do the higher levels know where
is each page located

a. We will see Heap Files as Linked List of pages (unordered pages)
=> adding easy, finding without indexes is difficult

b. OR Heap Files as Directory of Pages (unordered pages but

searching is done through the Directory which is much faster) =>
adding easy

2) Page Formats

Each Page has N slots which can accommodate 1 or more records
a. Using Fixed Length Records

i. Each Page contains same number of records
ii. Fetching/Inserting a record is easy => simply by offset

manipulation (if occupied slots are always stored in the first
K positions) if Not stored in first K slots occupy 1 slot as a
bitmap index which will indicate which is empty

iii. Drawback: We may end up wasting too much sequential
space

b. Using Variable Length Records
i. Good space utilization

ii. Inserting a new record might be difficult because we have to
find just the right space which might not be available.

iii. Directory of slots <record offset (start), record length (end)>
solution

3) Record Formats
a. RecordID= < PageID, SlotID>
b. Information Common to all records of a table is stored in System

Catalog rather than in the record

DATABASE MANAGEMENT SYSTEM (continued)
• Disk Space Manager (DSM)

o It hides the details of the underlying hardware (and OS) and allows
higher levels of the software to think of the data as a collection of
pages

o It provides commands to read/write/allocate/deallocate units of
data (i.e. a PAGE)

o Initially the DSM allocates a big (sequential) portion of the disk
o The DSM keeps track of DiskBlocks in use. Therefore addition and

deletion may create areas with “holes”
o The DSM has its own Disk Management policy and does not rely

on OS files for many reasons
 A DBMS cannot assume any specific features of the OS

filesystem
 A 32-bit OS uses files of size 2^32=4GB. A DBMS may need

to store and address larger files

• Buffer Manager (7.4)

o The role of the Buffer Manager is to keep track of the pages that are
used most (so that access to those pages becomes cheap)

4

5

o Every Page(DiskBlock) required from the DBMS must be brought into
the buffer pool which resides in main memory (if it is not already
there)

o If a page X is updated by the higher level (application - e.g. updating
the employees salary) then the Buffer Pool must be aware of that so
that it can WRITE the page X once it decides to remove X from the pool

o The Buffer Pool has a pre-specified space. Therefore some
Replacement Policy must be in place which will save to secondary
storage the e.g. Least Used Pages. We will discuss more policies LRU,
MRU, Random, FIFO

o Each Frame (page) in the Buffer Pool has 2 flags associated with it
o Dirty Flag – Indicates that the page was modified
o Pin_count counter – The number of times a page was requested

but not released.
o Pinning means incrementing counter
o Unpinning means decrementing counter

o It is much more complex in reality. For instance what happens in case

of system of a crash, concurrent access to the same records by different
users or processes?

• Recovery Manager

It maintains a log and restores the system to a consistent state after a crash

• Transaction Manager & Lock Manager
They ensure that Transactions request & release locks according to a
suitable locking protocol and they schedule transactions.
The Lock Manager keeps track for locks and grants locks on database
objects When they become available

• Files & Access Methods
Maintains the System Catalog and provides method to access the
underlying data and indexes. It organizes information within a page,
records + other functionality.

Buffer Pool
FRAME

Pin_count
counter

Dirty Flag

6

7

8

