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ABSTRACT OF THE THESIS

Information Retrieval in Peer-to-Peer Systems

by

Demetrios Zeinalipour-Yazti

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2003

Prof. Dimitrios Gunopulos, Chairperson

Peer-to-Peer systems are application layer networks which enable networked hosts to share re-

sources in a distributed manner. An important problem in such networks is to be able to efficiently

search the contents of the other peers. Existing search techniques are inefficient because they are

either based on the idea of flooding the network with queries or because they require some form of

global knowledge.

We propose the Intelligent Search Mechanism (ISM) which is an efficient, scalable but yet simple

mechanism for improving the information retrieval problem in Peer-to-Peer systems. Our mech-

anism is efficient since it is bounded by the number of neighbors and scalable because no global

knowledge is required to be maintained. ISM consists of four components: A Profile Mechanism

which logs query-hits coming from neighbors, a Cosine Similarity function which calculates the

closeness of some past query to a new query, RelevanceRank which is an online ranking mechanism

that ranks the neighbors of some node according to their potentiality of answering the new query
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and a Search Mechanism which forwards a query to the selected neighbors.

We deploy and compare ISM with a number of other distributed search techniques. Our experiments

are performed with real data over PeerWare, our middleware simulation infrastructure which is

deployed on 50 workstations. Our results indicate that ISM is an attractive technique for keyword

searching in Peer-to-Peer systems since it achieves in some cases 100% recall rate by using only

50% of the messages used in the flooding algorithm. Further its performance is also superior with

respect to the total time for satisfying a query. Finally our algorithm improves over time as some

node develops more knowledge.
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Chapter 1

Introduction

Peer-to-peer (P2P) networks are increasingly becoming popular because they offer oppor-

tunities for real-time communication, ad-hoc collaboration [12] and information sharing [23, 11] in

a large-scale distributed environment. Peer-to-peer computing is defined as the sharing of computer

resources and information through direct exchange. The most distinct characteristic of P2P com-

puting is that there is symmetric communication between the peers; each peer has both a client and

a server role. The advantages of the P2P systems are multi-dimensional; they improve scalability

by enabling direct and real-time sharing of services and information; enable knowledge sharing by

aggregating information and resources from nodes that are located on geographically distributed

and potentially heterogeneous platforms; and, provide high availability by eliminating the need for

a single centralized component.

In this thesis we consider the information retrieval problem in the P2P networks. Assume

that each peer has a database (or collection) of documents (see figure 1.1) which represents the
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knowledge of the peer. Each peer shares its information with the rest of the network through its

neighbors. A node searches for information by sending query messages to its peers. Without loss

of generality we assume that the queries are collections of keywords and that a querying peer is

interested in finding all the documents that contain a set of keywords. A peer receiving a query

message evaluates the constraint locally against its collections of documents. If the evaluation is

successful, the peer generates a reply message to the querying peer which includes the identifier of

all the documents that correspond to the constraint. Once a querying peer receives responses from

all the peers it afterwards decides which documents to download. Each document can be associated

with a unique documentId (using for example a hash function on the contents of a document) to

uniquely identify the same documents from different peers.

Note that searching based on the file contents is not possible in most current P2P systems

today [4, 27]. In those systems searching is done using file identifiers instead (such as the name

of the file or the documentId). Although this allows deployment of efficient search and indexing

techniques it restricts the ability of P2P users to find documents based the contents of the documents.

To solve the search problem, most current systems either rely on centralized control [23]

or on query message flooding mechanisms [11]. The second approach (broadcasting the query)

can easily be extended to solve the problem we consider here. This can be achieved by modifying

the query message to include the query terms instead of the desired file identifier. This approach

is best suited for unstructured peer-to-peer networks, since all functionality (including indexing

and resource sharing) is decentralized. Such systems do not use peers with special functionality.

Gnutella is an example of such a system.

2
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Figure 1.1: Information Retrieval in P2P systems.

In hybrid peer-to-peer networks [16, 28], one (or possibly more) peers have additional

functionality in that they become partial indexes for the contents of other peers. Each peer, as it

joins the network uploads a list of its files to the index server. Commercial information retrieval

systems such as web search engines (e.g. Google [13]) are using a similar approach for indexing the

web. These are centralized processes that exploit large databases and parallel approaches to process

queries, and work extremely well. In the P2P information retrieval context however, they have

several disadvantages. The biggest disadvantage is that the index needs to be an inverted index over

all the documents in the network. This means that the index node has to have sufficient resources to

setup and maintain such settings. Although hardware performance and costs have improved, such

centralized repositories are still expensive and prohibitive in dynamic environments where nodes

are joining and leaving.
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Table 1.1: Top 20 Queries on Gnutella in June 2002. (inappropriate queries marked with

’ ’). The total set includes 15 million query messages and the last column the percentage

out of all the queries.

# Query Occur. % # Query Occur. %

1 divx avi 588, 146 3, 88% 11 divx 24, 363 0, 16%
2 spiderman avi 50, 175 0, 33% 12 spiderman 23, 274 0, 15%
3 p mpg 39, 168 0, 25% 13 xxx avi 22, 408 0, 14%
4 star wars avi 38, 473 0, 25% 14 capture the light 21, 651 0, 14%
5 avi 29, 911 0, 19% 15 buffy mpg 20, 365 0, 13%
6 s mpg 27, 895 0, 18% 16 g mpg 20, 251 0, 13%
7 Eminem 27, 440 0, 18% 17 buffy avi 19, 874 0, 13%
8 eminem mp3 25, 693 0, 16% 18 t mpg 19, 492 0, 12%
9 dvd avi 25, 105 0, 16% 19 seinfeld v 18, 809 0, 12%
10 b 24, 753 0, 16% 20 xxx mpg 18, 686 0, 12%

1.1 Motivation

Our proposed algorithm works well in environments where there is high locality of similar

queries. In order to see what the real trends are, we made an extensive analysis of the network

traffic found in a real P2P network [30]. In June 2002 we crawled the Gnutella network with 17

workstations for 5 hours and gathered 15 million query messages. Table 1.1 presents the ranking

of the top 10 queries. We can clearly see that most queries are submitted in large numbers and

hence there exist a high locality of specific queries. This observation is exploited by our proposed

Intelligent Search Mechanism. By making only local decisions we can intelligently route query

messages to those neighbors that have high probability to lead us to the most relevant answers.
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1.2 Our Contribution

In this thesis we consider a fully distributed technique for addressing the information

retrieval problem in pure P2P networks. We propose the Intelligent Search Mechanism (ISM), an

efficient, scalable but yet simple mechanism for improving the information retrieval problem in P2P

systems.

Our algorithm exploits the locality of past queries by using well established techniques

from the Information Retrieval field. To our knowledge no previous work has been done using

similar techniques. Finally our technique is distributed and a node can make autonomous decisions

without coordinating with any other peers which therefore both reduce networking and processing

costs.

The thesis is organized as following: Section 2 discusses related work and a number of

different techniques for Information Retrieval in P2P systems. Section 3 presents the components of

the Intelligent Search mechanism. In section 4 we make an analytical study of the compared tech-

niques. Section 5 describes PeerWare, our distributed simulation infrastructure which is deployed

on 50 machines. Section 6 presents our experimental results under various scenarios and section 7

concludes this thesis.
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Chapter 2

Information Retrieval in P2P Networks

In this chapter we consider a number of different techniques to search in P2P networks.

The techniques presented in sections 2.1 to 2.7 are appropriate in the context of Information

Retrieval since users can search based on keywords. In section 2.8 and 2.9 we present two distributed

lookup protocols which allow peer-to-peer applications to efficiently locate a node that stores a

particular object. These two techniques are not applicable in the context of Information Retrieval

since we are searching based on keywords rather than identifiers.

For the next sections we consider a network of n nodes (peers), with average degree d

(with d << n), that is, each peer is directly connected to around d other peers. For a given peer u,

the peers of u, N(u) are those nodes in the network that have a direct connection to u. Figure 2.1

shows an example of a peer-to-peer network. Each node in the figure represents a peer and an edge

corresponds to a direct communication between the peers.

Each peer possesses and maintains a set of documents, which can be also made available

6
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QUERYHIT


2
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 d
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Figure 2.1: Searching in a peer-to-peer network with Breadth First Search BFS: Each peer

forwards the query to all its neighbors.

to his peers. This set represents the knowledge of the peer. We assume that each document is stored

in semi-structured form: for each document we have a set of attributes, such as, date, place, title

as well as text. We assume that the queries are unstructured and that they are sampled from the

documents collections.

2.1 The ”naive” Breadth First Search (BFS) Technique

BFS is a technique widely used in P2P file sharing applications, such as Gnutella. BFS

sacrifices performance and network utilization in the sake of its simplicity. The BFS search protocol

in the peer-to-peer network N (see figure 2.1) works as follows. A node q issues search messages

when it wants to search for data and information among its peers. The node generates a Query

message with and propagates the message to all of his neighbors. When a peer A receives a Query

request, it first forwards the query to all the peers, other that the sender, and then searches its local

repository for relevant matches. If some node d receives the query and has a match, d generates

a QueryHit message to transmit the result. The QueryHit message includes information such

7



as the number of corresponding documents and the network connectivity of the answering peer. If

for example node q receives a QueryHit from more than one peer, it may choose to do the actual

download from the peer with the best network connectivity. QueryHit messages are sent along

the same path that carried the incoming Query messages.

The disadvantage of BFS is that a query is consuming excessive network and process-

ing resources because a query is propagated along all links (including nodes with high latencies).

Therefore the network can easily become a bottleneck. One technique to avoid flooding the whole

network with messages for a single query is to associate each query with a time to live (TTL) field.

The TTL field determines the maximum number of hops that a given query should be forwarded. In

a typical Gnutella search the initial value for the TTL is usually 7, which is decremented each time

the query is forwarded. When the TTL becomes 0, the message is no longer forwarded. We will

show that this technique is not adequate for reducing messaging and that we can further improve on

that.

2.2 The Random Breadth-First-Search (RBFS) Technique

In [20] we propose and evaluate the Random Breadth-First-Search (RBFS) technique that

can dramatically improve over the naive BFS approach. In RBFS (see figure 2.2) each peer A

forwards a search message to only a fraction of its peers. Node A randomly selects a subset of its

peers to propagate the search request. The fraction of peers that are selected is a parameter 1 to the

mechanism. The advantage of this technique is that it does not require any global knowledge. Every

node is able to make local decisions in a fast manner since it only needs to select half of its incoming

1In our experiments we used a fraction of 0.5 (a peer propagates the request to half its peers, selected at random).
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P2P Network
 N


Peer
 d


unreachable


A


B


C


Peer
 q


QUERY
1


QUERYHIT


2


Figure 2.2: Searching in a peer-to-peer network with Random Breadth First Search RBFS:

Each peer forwards the query to a subset of its neighbors.

and outgoing connections. On the other hand, this algorithm is probabilistic. Therefore some large

segments of the network may become unreachable because a node was not able to understand that

a particular link would lead the query to a large segment of the graph.

2.3 Searching using Random Walkers

In [19] a search technique based on random walks is presented. In the proposed algorithm

each node forwards a query message by selecting a random neighbor and the query message is

called a walker. In order to reduce the time to receive the results the idea of the walker is extended

to a k-walker which after T steps is expected to reach approximately the same number of nodes as

1 walker after kT steps. In order to thwart duplicate messages each node may retain states. This

algorithm resembles much the Random Breadth First Search (RBFS) Technique with the difference

that in RBFS each node forwards a query message to a fraction of its neighbors and that in RBFS

the incurred increase in messages is exponential while in the k-Walker model the messages used is

9



P2P Network


Peer
 q


QUERY
1


2


2-walker


QUERY


Figure 2.3: Searching using a 2-walker. Each node forwards the query to a random neigh-

bor.

linear. Both RBFS and K-walker do not use any explicit technique to guide the search query to the

most relevant content, which is a desirable property in Information Retrieval, making it therefore

inappropriate in our context.

2.4 Directed BFS and the Most Results in Past (>RES) Heuristic.

The most closely related technique to our work is presented in [29]. The authors present

a technique where each node forwards a query to some of its peers based on some aggregated

statistics.

The authors compare a number of query routing heuristics and mention that the The Most

Results in Past (>RES) heuristic has the best satisfaction performance. A query is defined to be

satisfied if Z, for some constant Z, or more results are returned. In>RES a peer q forwards a search

message to k the peers which returned the most results for the last 10 queries. In their experiments

they chose k = 1 turning in that way their approach from a Directed BFS into a Depth-First-Search

approach.

10



RES=1000


RES=1


A


B


C

RES=10


q
QUERY


QUERYHIT


QUERYHIT


Figure 2.4: The >RES heuristic is able to identify stable neighbors, neighbors connected

with many others as well as neighbors which are not overloaded. It however fails to explore

nodes which contain content related to a query.

The technique is similar to the Intelligent Search Mechanism we propose, but uses simpler

information about the peers, and is optimized to find Z documents efficiently (for a fixed Z) rather

than finding all documents. Although the authors mention that >RES performs well because past

performance is a good indicator for future performance in our work we identify some further points

that justify the >RES’s performance.

From the experimental analysis performed in section 6 we conclude that >RES performs

well because it manages to capture one important problem in P2P systems, namely network insta-

bility. The >RES metric for a connection can be translated as a metric of stability of that particular

peer or of the network segment that particular peer connects us to. Moreover >RES captures the

network segments which are not overloaded since usually those segments return the less results. For

example in figure 2.4 node C has a loaded queue and is therefore not able to promptly route and

answer queries. Finally >RES provides an insight on the number of peers or documents which are
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Figure 2.5: A Bloom Filter that uses 4 hash functions and has a size of m=8 bits.

hidden behind a particular node. In the same example we can see that node A may lead us a big

segment with potentially many results. Although the >RES has many advantages it doesn’t manage

to explore the nodes which contain content related to the query. We therefore characterize >RES as

a quantitative rather than qualitative approach.

2.5 Using Randomized Gossiping to Replicate Global State

In PlanetP [7] an approach for constructing a content addressable publish/ subscribe ser-

vice that uses gossiping of global state across unstructured communities is proposed. Their approach

uses Bloom filters to propagate global state across the community.

A Bloom filters [2] is a method for representing a set D = {d1, d2, ..., dn} of n elements

to support membership queries. More specifically a Bloom Filter is a vector V of m bits which

is able to compress the content of D by only using m bits. D can be thought as an index of all

the keywords found in the repository of some node N . Intuitively propagating D is an expensive
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operation making it therefore inappropriate for large communities. Therefore N uses the vector V

and k independent hash functions, h1, h2, ..., hk each with range {1,..,m}, and hashes each keyword

(i.e. ∀di) with the k hash functions. Given V somebody may query the data collection by computing

the k hash functions of a particular query term and then checking if all the positions in V are set to

1. If yes then there is a high probability that the query term indeed is part of theD collection. ”False

positives” can be eliminated drastically, as shown in [9] by choosing the appropriate values for m

and k. The reason why PlanetP uses Bloom Filters is that the cost of replacing a bloom vector in

the global index is constant (i.e. m bits).

In PlanetP each node randomly propagates a membership directory and a compact content

index which are merged to the local structure of each node. Therefore given that each node N

maintains an updated list with of (IP, Bloom Filter) pairs a node can perform a local search to derive

which nodes have the searching term and then forward the query to only those peers which have

potentially some answer. Then each node that receives the query either performs an exhaustive

search or performs a selective search using the vector space rank model. The later uses, similarly

to the ISM mechanism, the cosine similarity to measure the similarity between two vectors (i.e.

the query and the document). The main distinction is that they are using the cosine similarity in a

different context (i.e. for giving the most related answers) while in ISM we use the cosine similarity

to route the query to the hosts that have answered the most related queries in the past.

The main advantage of PlanetP, with respect to the Distributed HashTable approaches, is

that the documents being shared by the nodes are not required to be replicated or moved, making

it therefore appropriate for dynamic environments. The main disadvantage though, as with every

system that uses global knowledge, is the scalability issue. Although some methods for scaling
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Table 2.1: An example of a Compound Routing Index at node A. The first row presents the

local index of A while the rest rows indicate how many documents are reachable through

each neighbor.

@A Number of Documents Database Related Network Related Theory Related

A 300 20 80 0
B 100 20 0 10
C 1000 0 300 0
D 200 100 0 150

beyond communities of 10000 nodes are proposed in the paper none of them is experimentally

evaluated.

2.6 Searching Using Local Routing Indices

In [6] Crespo et al, present a hybrid technique which addresses the issue of building and

maintaining local indices which will contain the ”direction” towards the documents. More specifi-

cally three different techniques, namely Compound Routing Indexes (CRI), Hop-Count Routing In-

dex (HRI) and Exponentially aggregated RI (ERI) are presented and evaluated over different topolo-

gies like tree, tree with cycles and powerlaw. The ideas deployed in the routing indexes schemes

can be thought as the routing tables deployed in the Bellman Ford or Distance Vector Routing Algo-

rithm, which is used in many practical routing protocols like BGP and the original ARPAnet [17].

More specifically a node knows which peers will lead him to the desirable amount of documents but

it doesn’t know the exact path to the documents. As shown in table 2.1 in CRI a node N maintains

for each neighbor some statistics which indicate how many documents are reachable through each

neighbor.
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The main limitation of CRI is that it does not take into account the number of hops

required to reach some documents. Therefore the Hop-Count Routing Index (HRI) is proposed

which uses a different neighbor goodness model (i.e. the model that defines to which neighbor to

forward the query to). and where we maintain a CRI index for k hops (i.e. {CRIi| i = [1..k]}).

Since this approach has a prohibitive storage cost for large values of k the Exponentially aggregated

RI (ERI) is proposed, and which addresses this issue by aggregating HRI using a cost formula.

Their experimentation reveals that ERI and HRI offer significant improvements over

not using any routing index while on the same time they keep the update costs low. Since the Local

indices technique is essentially a push update, where each peer sends to its peers information about

its documents (along with updates every time a local update happens), thus it is complementary to

our approach where the profiles get updated when a peer answers a query.

2.7 Centralized Approaches

In centralized systems there is an inverted index over all the documents in the collection

of the participating hosts. These include commercial information retrieval systems such as web

search engines (e.g., Google, Yahoo) that are centralized processes, as well as P2P models that

provide centralized indexes [23, 28]. Figure 2.6 illustrates the usage of centralized systems such as

Napster [23]. In the first step node A uploads an index of all its shared documents to the centralized

repository R. R then integrates the contents of A in its own index in such a way that searching for a

keyword becomes efficient (i.e. an inverted index). Of course the actual index might be partitioned

using some hashing scheme, along several machines in order to accommodate larger indexes. In the

second step some node B can search the community by sending a query message to R. Now if we
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Figure 2.6: In centralized approaches there is usually an inverted index R over all the

documents in the collection of the participating hosts .

suppose that A can satisfy B query criterion then R responds to B request with A’s address (i.e. IP

and port). In the third step node B communicates with A (using an out-of-band protocol such as

HTTP) and requests the document that B found through R.

These techniques represent an altogether different philosophy, and they are not directly

comparable. In general, one trades simplicity and robustness with improved search time and more

expensive resources. Centralized approaches are faster and guarantee to find all results while the

decentralized approaches allow always fresh contents and are less costly.

2.8 Depth-First-Search and Freenet

Freenet [4] is a distributed information storage and retrieval system designed to address

the concerns of privacy and availability. The system is transparently moving, replicating and delet-

ing files based on usage patterns and its search algorithm does not rely on flooding or centralized
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Figure 2.7: Freenet uses an intelligent Depth-First-Search mechanism along with caching

of keys/objects at intermediate nodes. The intermediate caching achieves redundancy as

well as anonymity.

indexes. The query model in freenet is based on an intelligent Depth-First-Search (DFS) mecha-

nism which tries to find a given file. A query in Freenet is identified by a 64-bit transaction ID

chosen randomly and locally at each peer, In order to bound the number of hops a query travels,

Freenet uses the Time-To-Live (TTL) parameter which is widely used in networking applications

and protocols.

In their model a user searching for file A first computes the key2 of A (i.e. h(A)) checks

its local key table and if it does not find the object it passes h(A) to some intelligently chosen neigh-

bor (see figure 2.7). The neighbor chosen is the neighbor that has the closest key3 (lexicographic

distance between keys).

Therefore h(A) passes recursively through a chain of nodes in which each node makes

a local decision about where to send the request next. Therefore their idea relies only on local

2Freenet uses a 160-bit SHA-1 [1] hash function

3The reason why they use such an approach is that newly inserted files are placed on nodes already possessing files
with similar keys, which therefore yields a topology where nodes with similar keys are clustered together.
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knowledge rather than any type of centralized or global knowledge. Once the object is found, either

from the original publisher R or from somebody who holds a replica of it S, it is sent along the

same path the query arrived. In the example of figure 2.7, S augments along with the queryhit

message a notice that he is the one who holds the document. Therefore the downloader is not able

to know whether he is the original publisher or not. The fact that requests pass through a chain of

peers ensures the privacy of the requester and the fact that data is replicated ensures that the original

publisher is never known.

Our approach is more general because Freenet allows only searching with file identi-

fiers, instead of the file contents. In addition, we use modified versions of the Breadth-First-Search

approach, where many messages are propagated in the network concurrently, rather than a Depth-

First-Search approach, where each node sends a message to one peer and waits for a reply before

forwarding it to another peer. The advantage of DFS search is that a small set of peers can be queried

quickly and efficiently; however by its nature it can take a long time if we want to find all the results

to a query, that happen to be distributed in many peers. Another drawback is that initially Freenet

might perform in the worst case as bad as the flooding algorithm but it is expected to improve over

time as a node develops more knowledge. Moreover Peer-to-Peer environments tend to be unstable

and connections in such environments might be in the order of minutes, since nodes are joining

and leaving. This inherently means that query messages may be trapped in the network because the

reverse path of a query message was lost due to a broken connection.
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2.9 Consistent Hashing and Chord

In this section we introduce Chord [27] which is a distributed lookup protocol that uses a

consistent hashing scheme. Chord like other Distributed HashTable (DHT) algorithms allows peer-

to-peer applications to efficiently locate a node that stores a particular object. In Chord one basic

operation, lookup(key), returns the address (i.e. IP) of the node storing the object with that key. This

operation allows nodes to put and get files in the community only based on their key.

In the proposed technique an m-bit identifier is used to hash both Nodes4 and Objects5.

Although Chord is not restricted to any particular hash function the scheme deploys SHA1 which is

widely used and in which collision of two keys is difficult. The next operation is to assign each Node

N and Key k in a one- dimensional circular key space which has [0..2m − 1] many slots (figure 2.8).

The key k is assigned its successor, which is the first node N that is equal or follows the value

of k. In order to make lookups more efficient a node maintains the finger table which contains a

number of successors. Therefore in the steady state a node is maintaining information about only

O(logN) other nodes, where N is the size of the network, and since data items are stored in specific

locations object lookups involve O(logN) messages. Every time a node joins or leaves the system

the protocol does not require more than O(log2N) messages for updating the finger tables of the

rest nodes.

In the example of figure 2.8, we are searching for file1 from node A. From A’s finger

table the algorithm decides to continue the lookup through node C, which’s key immediately pre-

cedes the one of file1 (i.e. 5 ≤ 7). The same happens at nodes C which continues the lookup

4The hashing is based on the IP of the node

5The hashing is based on the object itself and the result is refereed as key

19



successor [5,7)=7

successor [7,5)=0


0


2


4


6


1


3

5


7


file1


m=3


Nodes

h(A)=2

h(B)=3

h(C)=5

h(D)=7


Objects

h(file1)=7


A


B

C


D


finger table C


successor [2,3)=3

successor [3,5)=5

successor [5,2)=0


finger table A


Figure 2.8: Chord uses a consistent hashing scheme to organize objects and nodes in a

virtual circle. The proposed algorithm provides an efficient way for looking up objects.

through node D at which point the lookup completes successfully. The use of Consistent Hashing

scheme has two major advantages: (i) Little data movement in the case nodes join or leave the

network6 and (ii) there is good load balancing since each node has approximately the same amount

of keys

The main advantage of Chord over Freenet or other approaches presented in this chapter

is that we can have efficient and predictable object lookup. Although Chord is appropriate for

applications like distributed file systems, application layer multicast it is not suitable in the context

of Information Retrieval because in the later we are searching the contents of the shared documents

rather than the objects. Furthermore DHT algorithms present some drawbacks in environments

were nodes join/leave at high paces since the finger tables won’t be in steady state which can lead

to wrong routings. Furthermore data moving may take considerably long time if objects are large.

6In the event of the Nth node join only O(1/N) keys/data are moved around
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Chapter 3

The Intelligent Search Mechanism (ISM)

In this section we present the Intelligent Search Mechanism (ISM) which is a new mech-

anism for information retrieval in the P2P networks. The objective of our algorithm is to help

the querying peer to find the most relevant answers to its query quickly and efficiently rather than

finding the larger number of answers.

Keys to improving the speed and efficiency of the information retrieval mechanism is to

minimize the communication costs, that is, the number of messages sent between the peers, and

to minimize the number of peers that are queried for each search request. To achieve this, a peer

estimates for each query, which of its peers are more likely to reply to this query, and propagates

the query message to those peers only.

3.1 Design Issues of the ISM mechanism.

The design objectives of the Intelligent Search Mechanism were the following:
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1. Maintain Only Local Knowledge. Approaches that maintain global state tend to have a

significant communication overhead which makes them inefficient for dynamic environments

were the participants are not known a’ priori. ISM uses only local state information of a

constant size which therefore minimizes the communication overhead.

2. Avoid Data Replication. Distributed HashTable approaches usually distribute resources

along with the keys to nodes in a network. That approach has a significant overhead for

nodes that join the network only for a short period of time. Consider for a example a node n

that joins the network for a few minutes. This node is assigned by the global hashing scheme

some k files which will be transferred to n. The size of the k files might be in the order of sev-

eral Megabytes yielding therefore a significant communication cost. Since n decides to leave

the network after a few minutes the network did not gain anything by replicating the k files.

ISM on the other hand assumes that no replication takes place in a network of nodes. This is

also a reasonable assumption from the social point of view (i.e. ”Why would some node share

resources used by somebody else?”), although we don’t claim that DHTs are appropriate for

file sharing applications.

3. Reduce Messaging. Although brute force techniques such as Breadth-First-Search (sec-

tion 2.1) are simple since they don’t require any form of global knowledge, they are expensive

in terms of messages. ISM addresses this issue by intelligently forwarding query messages

to nodes that have a high probability of answering the particular queries.

4. Route Queries to Relevant Content. Although approaches such as Random Breadth-First-

Search (section 2.2) or the Random Walkers (section 2.3) significantly reduce messaging they
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do not address the issue of finding the most relevant content. ISM on the other hand uses the

RelevanceRank of a peer to forward a query to the peers that have the highest potentiality

of answering the particular query.

3.2 Components of the ISM mechanism.

The Intelligent Search mechanism for distributed information retrieval consists of four

components:

1. A Search Mechanism to send the query to the peers. This is the only mechanism used by

a node to communicate with its peers. It is the same mechanism employed by the Gnutella

protocol for communications between peers.

2. A Profile Mechanism, that a peer uses to keep a profile for each of its neighbors. The profile

keeps the most recent past replies coming from each neighbor.

3. RelevanceRank, which is a peer ranking mechanism that a peer runs locally using the profiles

of its peers and the specific query. The mechanism ranks the peers in N(u) in order to send

the search query to the most likely peers.

4. A Cosine Similarity function that a peer uses locally to find the similarity between different

search queries.
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3.3 The Search Mechanism

Assume that a peer initiates a search to find documents about a specific topic. Since it is

initiating the search, we call him the querying peer. The querying peer generates a Querymessage

that describes his request, finds which of his peers are most likely to provide an answer (using the

profile mechanism and the peer ranking mechanism) and broadcasts the Query message to those

peers only.

If a peer receives a query message we call him the receiver peer. If the receiver peer

can provide an answer, it returns an answer to the requesting querying peer. It also propagates the

Query message only to those of his peers it considers most likely to provide the answer (Figure

3.1). To provide a termination condition so that the messages are not propagated indefinitely in

the network, the querying peer sets a bound on the depth of the recursion. When a reply QueryHit

message is sent back to the querying peer, the peers in the answer path (which is the same as the

query path) record the query and the name of the peer that provided the answer in a (query, peer)

table, illustrated in Table 3.1. Each peer sets a bound on the number of pairs to be recorded, and

uses a least recently used strategy to allow space for new queries.

3.4 Peer Profiles

To decide to which peers a query will be sent, a node ranks all its peers with respect to the

given query. The number of peers that a query will be sent is a parameter that is defined by the user.

To rank its peers, each node maintains a profile for each of its peers. The profile contains the list of

the most recent past queries, which peers provided an answer for a particular query as well as the
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Figure 3.1: Searching in a peer-to-peer network with the Intelligent Search Mechanism

ISM: Each peer uses the knowledge it obtains from monitoring the past queries to propa-

gate the query messages only to a subset of the peers.

number of results that a particular peer returned. Although logically we consider each profile to be

a distinct list of queries, in the implementation we use a single Queries table (see table 3.1) which

records the described information.

The node accumulates the list of past queries by continuously monitoring and recording

the Query and the corresponding QueryHit messages it receives. The node keeps the list of

queries in its local repository. For each node this list is incomplete, because each node can only

record information about those queries that were routed through it. The node uses a size limit T

that limits the number of queries in each profile. Once the repository is full, the node uses a Least

Recently Used (LRU) policy to keep the most recent queries in the repository. Since the node keeps

profiles for its (d) neighbors only, the total size of the repository is O(Td).
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Table 3.1: The Peer’s Profile Mechanism snapshot. It shows from which neighbors (i.e.

{P1,P2...}) each queryhit came from and on which time (timestamp).

Query Keywords GUID Connections & Hits Timestamp

Columbia NASA Nevada G568FS (P1,50),(P4,80),...,(P5,10) 10000000
Elections Usa Bush OF34QA NULL 10001000
... ... .... ...
Superbowl San Diego LQI65D (P2,20), (P3,30) 10012300

3.5 Peer Ranking

For each query received by a node Pl, Pl uses the profiles of its peers to find which

ones are more likely to have documents that are relevant to the query. To compute the ranking,

Pl compares the query to previously seen queries and finds the most similar ones. To find the

similarity between the queries, it uses the Nearest Neighbor classification mechanism. The reason

that we employ this technique is that it is simple, and it has shown to have good accuracy in many

different settings.

Since it is likely that some peers will be associated with many similar queries and others

with some, we compute the RelevanceRank (RR), which is the aggregate weighted similarity of a

peer to a given query. Given the K most similar queries to q, peer Pl computes the RelevanceRank

RRPl(Pi, q), of peer Pi to query q as follows:

RelevanceRankPl(Pi, q) =
∑

∀qjansweredbyPi
Qsim(qj , q)

α ∗ S(Pi, qj)

where, qj is one of the K most similar queries to q. This parameter limits the influence to the

similarity to the most similar queries only. In addition S(Pi, qj) is the number of results returned
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by Pi for query qj . This allows us to rank higher the peers that returned more results. Finally, we

use the parameter α, which allows us to add more weight to the most similar queries. For example,

when α is very large, RR reduces to one-nearest neighbor. For α = 0, RR reduces to K-nearest

neighbor. If α = 1, RR adds up the similarities of all queries that have been answered by the peer.

Pl then sends the query to the m peers (for a user defined constant m < d) that have the higher

RelevanceRank.

Consider the following example where we assume that K = 5, α = 1 and that ∀i, j

S(Pi, qj) = 2. Peer Pl wants to send a query q to two of its peers. Let q1, q2, q3, q4, q5 be the

most similar queries to q, among the ones Pl has information about, with Qsim(q, q1) = 0.8,

Qsim(q, q2) = 0.6, Qsim(q, q3) = 0.5, Qsim(q, q4) = 0.4, and Qsim(q, q5) = 0.4. If peer P1

answered q1, peer P2 answered queries q2 and q3, and peer P3 answered queries q4 and q5, then

we compute the aggregate similarities of the three peers to the query q as follows: RRPl(P1, q) =

0.81 ∗2 = 1.6, RRPl(P2, q) = (0.61 +0.51)∗2 = 2.2, and RRPl(P3, q) = (0.41 +0.31)∗2 = 1.4.

Therefore Pl chooses to send the query only to peers P1 and P2.

The Profile Mechanism of a host Pl is shown in table 3.1. As we can see, each query qj

that was routed through Pl is logged along with the peers {P1, P2, ..., Pd} from where a queryhit

came from. The S(Pi, qj) pair which shows the number of results that came from Pi for qj can

be found in the Connections & Hits column. The ranking mechanism performance is bounded by

the number of entries and therefore yields good performance when the table has not an excessive

amount of entries.
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3.6 Distance Function: The Cosine Similarity

In order to find the most likely peers to answer a given query we need a function Qsim :

Q2 → [0, 1] (where Q is the query space), to compute the similarity between different queries.

Since the queries are sets of keywords, we can use a number of different techniques that have been

used effectively in information retrieval. We make the assumption that a peer that has a document

that is relevant to a given query is likely to have documents that are relevant to similar queries. This

is a reasonable assumption if each peer concentrates on a set of topics.

The cosine similarity (formula 3.1) metric between 2 vectors (~q and ~qi) has been used

extensively in information retrieval, and we use this distance function in our setting. Let L be the

set of all words that have appeared in queries. We define an |L|-dimensional space where each query

is a vector. For example, if the set L is the words {A,B,C,D} and we have a query A,B, then

the vector that corresponds to this query is (1,1,0,0). Similarly, the vector that corresponds to query

B,C is (0,1,1,0). In the cosine similarity model, the similarity sim of the two queries is simply the

cosine of the angle between the two vectors.

sim(q, qi) = cos(q, qi) =

∑
(~q ∗ ~qi)√∑

(~q)2 ∗
√∑

(~qi)2
(3.1)

3.7 Random Perturbation

One problem of the technique we outline above is that it is possible for search messages

to get locked into a cycle. The problem is that the search will fail then to explore other parts of the

peer-to-peer network and may not discover many results.
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Figure 3.2: With Random Perturbation we give node A the opportunity to break the cycle

(A,B,C,D) in which queries may get locked and therefore allow it to explore a larger part of

the network and find the correct answers.

Consider for example figure 3.2 and the following scenario: Peer A receives a query q

which has no answer from any of the displayed nodes (i.e. A,B,C or D). Further each node answers

to the conjunction of the terms found in q. Suppose that A chooses to forward q to B,C and D

because these nodes have successfully answered to a similar query in the past. Therefore A doesn’t

choose node E which this time would lead him to the correct results. Query q gets consequently

locked in a cycle (i.e. A,B,C,D) and fails to explore the segments of the network which contain the

correct answer.

To solve this problem, we pick a small random subset of peers1 and add it to the set of

best peers for each query. As a result, even if the best peers form a cycle, with high probability the

mechanism will explore a larger part of the network and will learn about the contents of additional

peers.

1In our experiments we additionally select 1 random peer.

29



Chapter 4

Performance Analysis of the Proposed

Techniques

In this section we describe the characteristics of the proposed techniques, in comparison

with the Gnutella protocol which is a BFS Algorithm with some TTL (Time-to-Live) parameter

that limits the depth that a query travels. We concentrate on the recall rate, that is, the fraction of

documents our search mechanism retrieves compared to the other mechanisms, and the efficiency of

the technique, that is, the ratio of number of messages that the different techniques use for the same

search.

4.1 Performance of the BFS Algorithm

Assume a graph G of n nodes and e edges where each node ni has a degree of di. If each unique

query q is forwarded exactly once by each node ni, then q will be forwarded a total number of
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n∑
i=1

(di − 1) times.

The reason for this is that when a given node ni receives a query q from some query peer Q, ni

sends d − 1 messages to its neighbors (i.e. except the sender), Since each ni forwards q exactly

once, q is forwarded a total number of
n∑
i=1

(di − 1) times.

4.2 Performance of the Random BFS Algorithm

We first consider the performance of the modified random BFS technique where each peer

selects a random subset of its peers to propagate a request (that is, here a profile of its peers is not

used). In a P2P network with a random graph topology, this mechanism searches the nodes of the

graph more efficiently (that is, it sends fewer messages) than the BFS algorithm.

Consider a random graph G with n nodes and e edges, that has average degree d. For

a given node u, let Nk(u) be the set of nodes at distance at most k from u. When a node u

starts a Gnutella search with a TTL = k (Time To Live, as per the Gnutella search protocol),

u sends approximately d messages to its neighbors, each being propagated k times. Since the

BFS mechanism explores all the edges in the graph, the number of messages send by the Gnutella

protocol is at least |Nk(u)| |Nk(u)|
n d.

Assume on the other hand that each node only propagates the message to a randomly

chosen subset of its neighbors, of size d
m (for a suitably chosen m). Using the same TTL (k), if

|Nk(u)| is smaller than n/2, the expected total number of messages sent is ( dm)k, and the expected

number of vertices that this modified BFS process visits is at least 1
2( dm)k. This is because if |Nk(u)|

is smaller than n/2, then most of the nodes visited in each iteration are new nodes. Consider a node
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v of distance i (i < k) from u. If |Nk(u)| < n/2, with high probability each edge of v is connected

to a node not in Ni(u). Setting 1
2( dm)k = |Nk(u)|, we have that, if |Nk(u)| ≈ n/2, the modified

BFS needs at most a fraction of 4
d of the number of messages used by the Gnutella protocol to visit

approximately the same number of vertices.

4.3 Performance of the Intelligent Search Mechanism

The previous discussion indicates that propagating a query to a random subset of one’s

peers is more efficient when searching nodes in a P2P network with random graph topology than

using the Gnutella protocol (with respect to the total number of messages). However this approach

is approximate, and cannot guarantee that all nodes in Nk(u) are found. Consider for example a

case where two large sub-graphs are connected by one edge. If the node attached to that edge does

not choose this edge, the other sub-graph will never be explored.

The Intelligent Search technique we outlined in the previous section attempts to identify

edges that are likely to have good information. Nevertheless, the accuracy of the mechanism clearly

depends on how accurately a peer can compute which of its peers is likely to answer a given query.

Work on distributed information retrieval has shown that current techniques for database selection

can give good performance. Experiments show that requesting a random set of documents from a

collection is sufficient to obtain accurate estimates on the word frequencies in this collection. These

results are directly applicable only for the case that each peer has full statistical information for its

peers. Our setting is different because the information we collect is incomplete; these are only the

queries that peers reply to, rather than all the documents in the actual replies. This is certainly very

useful when very similar queries repeat.
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We also note that the more efficient search allows us to use a larger TTL compared with

the Gnutella protocol, while still having a smaller number of messages overall. As a result, this

mechanism can visit nodes that the Gnutella protocol would not visit without sending a large number

of messages. We explore this trade-off in the experimental evaluation of the technique.

In summary, the Intelligent Search mechanism for distributed information retrieval that

we propose has the following characteristics:

1. The algorithm uses fewer messages compared to the standard Gnutella strategy, and scales

better with respect to the size of the network (because it can search a larger network using the

same number of messages)

2. The size of the profiles is proportional to the number of direct connections per peer. This is

likely to remain small (constant) even for very large networks.

3. The scheme uses the combined knowledge about the peers, and adapts and modifies its be-

havior as each peer learns more information about its peers. On the other hand, peers do not

have to export any information about their databases.
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Chapter 5

PeerWare Simulation Infrastructure

In order to benchmark the applicability and efficiency of our algorithms we have imple-

mented PeerWare, a distributed middleware infrastructure which allows us to benchmark different

routing algorithms over large-scale P2P systems. Probing different query-routing algorithms over

middleware P2P systems can be interesting from many points of views:

1. In real settings the scalability of various query-routing algorithms may be explored to the

fullest extend since there are no assumptions which are typical in simulation environments.

2. Moreover many properties, such as network failures, dropped queries due to overloaded peers

and others may reveal many interesting patterns.

3. Finally, in a middleware infrastructure we are also able to capture the actual time to satisfy

queryhits.
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Unfortunately most simulators fail to capture these properties and their results are there-

fore inadequate. Other approaches such as [29] tend to build simulation environments based on

statistics obtained from real P2P networks. We mention that our middleware infrastructure can be

adjusted to many different parameters making it appropriate for many different settings.

5.1 Simulating Peer-to-Peer Systems

The Anthill Project [3] developed at the University of Bologna uses Jtella [21] Java API

as a basis for building a fully customizable API for the Gnutella network. The aim of the project is

to create a simulation framework which will allow researchers to develop and validate new P2P al-

gorithms. The system itself is inspired from the biological metaphor of Ant colonies. They mention

that real Ants are known to locate the shortest path to a food source using as only information the

trails of chemical substances called pheromones deposited by other ants. Moreover they mention

that although individual ants are unintelligent and have no explicit problem solving capability, ant

colonies manage to perform several complicated tasks with high degrees of consistency. Although

the project doesn’t emphasize particularly on P2P case studies, it is worth it to mention that they

are currently using their framework to investigate the properties of the Freenet [4] algorithm by

modifying its protocol and comparing the performances of different implementations.

Their framework intends to obtain:

1. Information about the queries performed by users and their distribution. More specifically
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they aim to find popular queries or keywords that may be exploited to implement intelligent

caching algorithms.

2. Information about the files stored in the Gnutella network, which might be obtained by log-

ging the Gnutella QUERYHIT messages.

3. Information about the shape of the network, which might be obtained by actively probing

Gnutella PING and PONG messages. They also intend to take advantage of the Gnutella

PUSH messages in order to partially investigate which files are downloaded by users.

Although Anthill uses the notion of scenarios, which is composed of a collection of interconnected

nodes and a scheduling of requests to be performed, there is no documentation on that.

5.2 Modeling Large-Scale Peer-to-Peer Networks

Jovanovic et al. study [15], of Modeling Large-scale Peer-to-Peer Networks, is to our

knowledge the only comprehensive work done in the area of modeling Peer-to-Peer systems.

Their study reveals that Gnutella has some important structural properties, such as small-

world properties and several power-law distributions of certain graph metrics. They mention the

famous Milgram’s experiment [22] which was conducted in the early 1960’s, and in which a number

of letters, addressing a person in the Boston area, were posted to a randomly selected group of people

in Nebraska. Each person who received the letter forwarded it to someone that they knew, on a first

name basis. As many of the letters finally reached the designated person, the average number of

hops observed was between five and six. Their study reveals that a similar, small world property
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existed in the Gnutella Network. More specifically in 5 different snapshots of the Gnutella Network

they found that the diameter of the network ranged from 8-12.

In their work they have also discovered that the Gnutella Network obeys all four of the

power-laws described in Faloutsos et al. work. [8]. More specifically they found, on a Gnutella

snapshot gathered on the 28th of December 2000, that the Rank Exponent R (Power-Law 1) holds

with R = −0.98 and a correlation coefficient of |r| = 0.94. It is important to mention that similar

results which were obtained one month earlier by an independent group at U. of Chicago [26]. The

same group claims that this power law faded-out in repeated experiments in the March-June 2001

period.

Jovanovic’s study on the same snapshot of data also revealed that the Outdegree ExponentO (Power-

Law 2) also holds with O = −1.4, although this comes in disagreement with the O = −2.3

exponent found in the 6 month earlier study of the DSS [5] group.

Their study finally shows that the Hop-Plot Exponent H (Power-Law 3) and Eigen Exponent E

(Power-Law 4) hold for four different snapshots with very high coefficients of |h| = 0.99, H = 3.5

and |i| = 0.94, E = 2.83 respectively.

The general belief is that earlier versions of the Gnutella Network were Power-Law but

as the network has grown this property doesn’t hold any more. One important fact is that as the

Gnutella network became more mature, more intelligent clients were added to the network. In-

telligent clients can affect dramatically the way a Network Crawler operates. The latter relies on

the fact that clients will respond to its requests but in the case the clients do not comply with this

requirement, the Network crawler will generate inaccurate data.
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Table 5.1: A sample XML record from a dataPeer’s XML repository.

< REUTERS ID = ”413” >
<DATE>2-MAR-1987 09:36:46.03< /DATE>
<PLACE>NETHERLANDS< /PLACE>
<TEXT>
<TITLE>Netherlands 47 mln...< /TITLE>
<BODY>This raised the amount of...< /BODY>

< /TEXT>
< /REUTERS>

They are also presenting interesting visualizations of their gathered data, which were

visualized with LEDA [18]. The main disadvantage of their study is that their experiments were

performed on a small set of peers (1000), which is not representative of the today’s picture of the

network. Additionally, their Gnutella Crawler Implementation is in some sense static since it starts

from a pre-specified seed file of peers and relies on the fact that it will discover new nodes on

runtime.

In the rest of this chapter we will provide a technical description of the four components

which comprise the PeerWare simulation testbed. These components are dataGen the dataset gen-

erator, graphGen the network topology generator, dataPeer a hybrid xml-p2p client which answers

to queries from its local xml repository and searchPeer a P2P client which performs the queries in

the dataPeer network.

5.3 dataGen - The Dataset Generator

dataGen is a Reuter’s [25] dataset transformer which takes as input the Reuter’s set of

documents and transforms it into a collection of XML documents by some of the following criteri-

ons, which are found in the collection:
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Table 5.2: PDOM-XQL and Retrieving an XQL ResultSet of all articles of a given country.

static final String query = ”//REUTERS//TEXT//BODY ”;
public XQLResult getAllRecords() {

XQLResult r = XQL.execute(query, doc);
System.out.println(”Row(s) found : ” + r.getItem(0) + ” ” + r.getLength());
return r;
}

{Date, Topics, Places, People, Orgs, Companies}.

For our experiments we have chosen the Places criterion which clusters the documents

by country. There were 104 different countries with at least 5 documents, and the total number of

documents for these 104 countries was 22, 769 (some documents belong to more than one country).

We created a network of 104 peers. The topology was a random graph with average degree 8

(random graphs with more than log n average degree are almost certainly connected). Each peer

was assigned data from exactly one country.

The objective of the Dataset Generator was to generate sets of documents about specific

topics in order to represent the specialized knowledge of each peer. The dataset generator is im-

plemented in Java and uses IBM’s XML Parser [14] along with the GMD-IPSI XQL engine [10],

which is a Java based storage and query application for large XML documents.

The GMD-IPSI XQL engine offers the Persistent Document Object Model (PDOM) class

which implements the full W3C-DOM API on indexed, binary XML files. Therefore documents

are parsed only once and stored in binary form for future usage. The cache architecture of the

39



Table 5.3: The country-hosts.graph file for ”australia” shows the outgoing connec-

tions that will be established during initialization.

#UCR Random Graph generator

country=australia
ip=283-20.cs.ucr.edu
port=10002

#Peers that ”australia” should connect to
china=283-20.cs.ucr.edu,10013
india=283-25.cs.ucr.edu,10008
vietnam=283-28.cs.ucr.edu,10016
lebanon=283-25.cs.ucr.edu,10021
mexico=283-26.cs.ucr.edu,10000
spain=283-26.cs.ucr.edu,10024
chile=283-20.cs.ucr.edu,10012

engine makes the engine a Memory-Disk structure highly appropriate for large XML documents

which can’t physically fit in main memory. PDOM has increased performance as compared to the

Document Object Model (PDOM) implemented by most of the XML Parsers and which tries to build

an in-memory data structure of the XML documents and which usually has a great performance

penalty. The XQL processor is used to query PDOM files by providing both the PDOM Document

and the query to be processed (Table 5.2).

5.4 graphGen - Network Graph Generator

graphGen, is the component responsible for generating the simulation topology. More

specifically, it generates a set of configuration files which can be read by the various nodes that

comprise the simulation network topology. graphGen starts out by reading graph.conf, which

contains among others the following parameters:
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Table 5.4: Distribution of Gnutella IP Addresses to Domains.

# Country Domain IP Addresses Total Percentage%

1 Network .net 94, 456 38, 88%
2 US Commercial .com 81, 943 33, 73%
3 Canada .ca 8, 039 3, 31%
4 France .fra 5, 565 2, 29%
5 US Educational .edu 5, 102 2, 10%
6 England .uk 4, 118 1, 69%
7 Germany .de 3, 693 1, 52%
8 Australia .au 3, 663 1, 51%
9 Austria .at 2, 962 1, 22%
10 Netherlands .nl 2, 625 1, 08%

1. Outdegree of a node, which is used in the case a random graph.

2. Topology of the P2P network (e.g. random graph).

3. IP List of hosts that will participate in a simulation. This allows us to map a logical topology

(e.g. Node1 -> Node10) to many different IP topologies

The output of graphgen is a directory of several country-hosts.graph files (see

table 5.3). Each file contains the IP and port address of hosts to which a particular country must

connect to. We are currently working on incorporating various other topology alternatives, such as

tree, tree-with added cycles, or power-law.

On table 5.4 we can see the distribution of domains from a set of 300,000 IP addresses

found in the Gnutella Network. These results, which we gathered in [30], will be used in our future

work, to build a more realistic network topology that will again facilitate the evaluation of our query

routing techniques.

These alternatives can easily be embodied in our system since it requires only changes on
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Figure 5.1: Visualization of a random graph with 104 peers & degree=4, with graphGen.

graphGen rather than the whole system. grahGen, also generates output which can be piped into

Visualization Tools, such as GraphViz [24], and generate graphical representations (i.e. directed or

undirected graphs) of the network topology.

Figure 5.2: Visualization of a random graph with 104 peers & degree=2, with graphGen.

The graph is connected which is not typical for graphs with a small degree.

Figures 5.1 and 5.2, present a random graph generated with graphGen using Graphviz’s dot 2D

undirected graph layout. It is important to mention that generating visualizations for huge graphs

can take a considerably large amount of time and may finally not provide the adequate help in under-
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Figure 5.3: The Components of a dataPeer Brick.

standing how the network looks like. Visualizing P2P network graphs is described in some extend

in [15]. They try to visualize the Gnutella backbone (i.e. interconnected nodes with degree > 10)

rather than the whole network in order to obtain some more understandable results.

5.5 dataPeer - The Data Node

dataPeer, is a P2P client which maintains a local repository of XML documents. Typical

P2P clients answer to queries only based on filename descriptions. dataPeer on the other hand

queries its repository each time a query arrives.

dataPeer consists of three sub-components : 1) The PDOM-XML Manager, which queries

efficiently the local xml repository with XQL, 2) A P2P Network module, which provides an inter-

face to the rest of the network and which implements the various query-routing algorithms, and 3)

Routing State Structures, which capture the implementation specific logic of the proposed query-

routing algorithms.

Each dataPeer d reads upon initialization a country-hosts.txt file which contains
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Figure 5.4: The Components of searchPeer.

the IP and ports of other dataPeer’s to which d must connect. Each dataPeer tries continuously to

establish and maintain its outgoing connections. Therefore we are not required to incorporate any

topological sort algorithm. Connections among dataPeers are achieved by the use of TCP Sockets

and are persistent (they remain open until d shuts down). If a TCP connection goes down because

of an overloaded peer then a node automatically re-establishes the connection after some small

interval.

Obviously launching a large number of dataPeers on many different machines is a tedious

procedure. We have therefore constructed a set of UNIX shell scripts which automatically (by the

use of ssh and public/private keys) connect to any number of machines and launch the dataPeers.

Bringing up a PeerWare Network of 104 dataPeers, on 20 machines, including latencies such as xml

repository manager initialization and others takes about a minute.

5.6 searchPeer - The Search-Node

searchPeer (Figure 5.4), is a P2P client which submits a number of queries in a PeerWare

network and harvests the returned results. In contrast with dataPeer, searchPeer consists only of a
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Table 5.5: Sample set of unstructured queries posted by searchPeer. Each keyword con-

sists of at least 3 characters and the keywords are sampled from the dataset.

# Query

1 AUSTRIA INTERVENE DOES DOLLAR
2 APPROVES MEDITERRANEAN FINANCIAL PACKAGES
3 ABANDONS DEFEATS STRONGHOLD AFTER
4 AGREES PEACE NEW MOVES
5 AID KENYA DEBT MOI
6 AND CALLS FORCE NATO
7 BUDGET BIG RULING JAPAN
8 BANGLADESH PROPOSALS TAX GOVERNMENT
9 BANGLADESH FOR GRANT BRIDGE
10 BANS ZIMBABWE FOR OILSEEDS

Network Module and a Result Logging Mechanism. Besides logging the number of results it also

gathers a number of other statistics such as the number of nodes answered to a particular query and

the time to receive the results.

searchPeer reads upon initialization the keywords.txt file(see table 5.5), which con-

tains a set of unstructured queries sampled randomly from the dataset. These queries are submitted

sequentially with a small sleep interval between consecutive queries. The reason for that choice was

twofold; firstly it would allow each host to have enough time to process a query request (e.g. a query

message wouldn’t stuck in some queue and suffer from long queuing delays) and secondly it would

make sure that the query response time would have some meaningful value and that it would not

be a function of how much traffic is currently in the network. The searchPeer maintains a different

session for each query it sent out. In that way it is able to listen to queryhits that were delayed and

which arrive after some new query was already send out.
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5.7 Implementation

The PeerWare infrastructure is implemented entirely in Java. Its implementation consists

of approximately 10000 lines of code, 6200 of which correspond to the ucr.core.* which con-

tains code related to the P2P Network Module as well as the different query routing algorithms,

1000 to ucr.graphgen.* which contains the graph generator, 1300 to ucr.nodes.* which

contains the implementation of the dataPeer and searchPeer, 450 to ucr.datagen.* which in-

cludes the code of the dataset generator and the rest 1050 to common I/O libraries. ucr.core.*

initial codebase was based on the Jtella [21] which is an API for the Gnutella protocol. A shorten

version of the dataPeer implementation is shown in the Appendix.

Java was chosen for a variety of reasons. Its object-oriented design enhances the soft-

ware development process, supports rapid prototyping and enables the re-use and easy integration

of existing components. Java class libraries provide support for key features of PeerWare: plat-

form independence, multithreading, network programming, high-level programming of distributed

applications, string processing, code mobility, compression, etc. Other Java features, such as au-

tomatic garbage collection, persistence and exception handling, are crucial in making our system

more tolerant to run-time faults.

The choice of Java, however, comes with a certain risk-factor that arises from known

performance problems of this programming language and its run-time environment. Notably, per-

formance and robustness are issues of critical importance for a distributed system like PeerWare,

which is expected to run on several machines and to sustain high-loads at short periods of time. In

our experiments, we found the performance of Java SDK 1.3 satisfactory.

46



Chapter 6

Experiments

In order to compare our intelligent search mechanism with the other Query-routing algo-

rithms described in section 2, we have built a decentralized newspaper network. The newspaper is

organized as a network of dataPeers; each dataPeer maintains a set of articles related to a particular

country. In that way each dataPeer shares some specialized knowledge (i.e. documents related to

the country). dataPeers are connected among them using a pre-specified random topology. We then

use a searchPeer to connect to a single point in the network and perform a number of queries.

Our experiments were deployed with 104 dataPeers running on a network of 20-50 work-

stations, each of which has an AMD Athlon4 1.4 GHz processor with 1GB RAM running Mandrake

Linux 8.0 (kernel 2.4.3-20) all interconnected with a 10/100 LAN connection.

Our evaluation metrics were: (i) the recall rate, that is, the fraction of documents our

search mechanism retrieves compared to the other mechanisms, and (ii) the efficiency of the tech-

nique, that is, the ratio of number of messages used to find the results.
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Figure 6.1: Analysis of Gnutella Network Traffic: Message breakdown by Message Type.

6.1 Reducing Query Messages

Our prior analysis on the Gnutella Network Traffic (figure 6.1) revealed that 37% of the

network messages where spent on query/queryhits pairs. The ultimate goal of a P2P network is the

resource discovery part. We can see from the pie-chart that the Ping/Pong messages, which are used

for the host discovery part, occupy a significant share of the total network traffic. This is attributed to

weak network connections in the Gnutella Network. In this work we don’t consider host discovery

related issues. Our goal is to decrease the number of Query/QueryHit messages while being able to

discover the same resources.

In our first experiment we performed 10 queries, each of which was run 10 consecutive

times over a PeerWare of 104 nodes where each host has a degree of 8. We allow a 5 second interval

between each query in order to avoid congesting the network. The queries are keywords randomly

sampled from the dataset.

In this set of experiments we measured the number of messages used and the percentage of
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Figure 6.3: Recall Rate by the 4 Algorithms

for 10x10 queries (TTL=4)

documents found in the case where the query messages has TTL=4. Figure 6.2 shows the number of

messages required by the 4 query routing techniques. The figure indicates that Breadth-First-Search

(BFS) requires almost 2,5 times as many messages as its competitors with around 1050 messages per

query. BFS’s recall rate is used as the basis for comparing the recall rate of the other techniques and

is therefore set to 100%. Random Breadth-First-Search (RBFS), the Intelligent Search Mechanism

(ISM) and the Most Results in the Past (>RES) on the other hand use all significantly less messages

but ISM is the one that finds the most documents. That is attributed to the fact that ISM improves

its knowledge over time. More specifically ISM achieves almost 90% recall rate while using only

38% of the BFS’s messages. From figure 6.3 we can see that both >RES and ISM start out with

a low recall rate (i.e. 40-50%) because they are initially both choosing their neighbors at random.

Therefore their recall rate performance is comparable to that of RBFS. In both figures 6.2 and 6.3,

the values shown are the averages of 10 consecutive requests. The above experiments justify our

hypothesis that a large number of peers receive unnecessary messages.
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for 10x10 queries (TTL=5)

6.2 Digging Deeper by Increasing the TTL

In the second experiment we investigated what is the effect of increasing the TTL parame-

ter to our results. Figure 6.5 shows that by increasing the value of the time to live field of the search

requests (TTL = 5) the Intelligent search mechanism discovers almost the same documents with

what BFS finds for TTL = 4. More specifically, our experimental results show that our mechanism

achieves 99% recall rate (figure 6.5) while using only 54% (figure 6.4) of the number of messages

used in BFS. Again, the recall rate increases as the number of queries increases over time. Another

important observation is that the results for both RBFS and ISM are consistent with our analysis, and

show that it is possible to search the majority of the P2P network with significantly fewer messages

than the brute force algorithm.

6.3 The Discarded Message Problem

We define the Discarded Message Problem (DMP) (see figure 6.6) in the following way:

A node Pk receives some query q with some TTL1 at some time t1. Pk first checks if it has for-
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Figure 6.6: The Discarded Message Problem.

warded the same query (identified by GUID) in the past. If yes it will immediately discard the mes-

sage in order to avoid forwarding the message several times. If not, it will decrease TTL1=TTL1-1

and forward q to some of Pk’s peers.

Now what happens if node Pk receives q with some TTL2, where TTL2 > TTL1 at

some time t2, where t2 > t1. Most of the commercial P2P clients will again discard q. The result

of the DMP problem is that a query reaches less nodes that estimated. We fix the DMP problem

by allowing the TTL2 message to proceed, since this may allow q to reach more peers that its

predecessor TTL1. Of course there is some redundancy which will add up in the ”number of

messages” graph. Unfortunately without this fix the BFS behavior is not predictable and therefore

is not able to find the nodes that we were supposed to find.

Our experiments revealed that almost 30% of the forwarded queries were discarded be-

cause of DMP. The experimental results presented in sections 6.1 and 6.2 are not suffering from

DMP . This is the reason why the number of messages is slightly higher (≈ 30%) than the expected

number of messages. For example in the BFS case our analysis (section 4.1) shows that the total

number of messages should be msgs =
n∑
i=1

(di − 1) for n nodes each of which with a degree di.
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For n=104 nodes and each of degree di = 8 we would expect msgs=104*(8-1)=728 messages. By

re-running the experiments without fixing DMP we get averagely 763 messages per query which is

close to the estimated amount.

6.4 Reducing the Query Response Time

Since a query may get an arbitrary large number of query results we define the Query

Response Time (QRT) as the interval which elapses between t1 which is the time a node q sends out

a query, until t2 which is the time that q receives the last result from the network. This result is again

taken from the experiment where we perform 10 queries 10 consecutive times. Figure 6.7 shows

the Query Response Time (QRT), as a percentage of the BFS algorithm, for the three algorithms

ISM, >RES and RBFS. BFS’s QRT is in the order of 6 seconds while the others use only ≈30-60%

for TTL=4 and ≈ 60-80% for TTL=5 of that time. This happens because BFS uses more messages

which are consequently congesting the network and therefore increasing the average QRT. The
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reason why ISM requires slightly more time than >RES and RBFS is that ISM decision involves

more manipulation over the past queries.

6.5 Improving the Recall Rate over Time

In the previous experiments we used 10 queries which are performed 10 consecutive

times. This scenario suits well the ISM algorithm since the queries are correlated. In this ex-

periment we use 400 queries which are randomly sampled from the dataset. The sampling is biased

since we choose to pick approximately 4 queries per country (which consequently also means per

dataPeer), for 104 dataPeers. With this assumption we make sure that the queries will refer to all the

dataPeers rather than only a subset of them. Each query q consists of 4 keywords q = {A,B,C,D}

and a dataPeer answers to q by evaluating the union A ∪B ∪ C ∪D.

On figure 6.9 we can see that during queries 150-200 two major outbreaks occur in BFS.

This is basically an indication that some connections (i.e. sockets) broke down and that some query

messages were not able to go through. This network instability is incurred by the overwhelming
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amount of messages propagated by the BFS algorithm. This might also has to do something with

the 63% of Ping/Pong messages (figure 6.1) which are found in the Gnutella Network where weak

network connections are translated into an endless effort of peers to discover new hosts.

In this set of experimental results we can see that our ISM mechanism improves its recall

rate (figure 6.10) over time approaching nearly 95% recall rate while using again ≈ 38% of BFS’s

messages. The reason for this is that, as the nodes accumulate more knowledge about their peers,

peers that provided answers in the past are still queried in subsequent queries. As more peers

become likely to be queried, they themselves continue to explore the network by propagating the

requests to their peers.
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Chapter 7

Conclusions & Future Work

Peer-to-Peer systems are application layer networks which enable networked hosts to

share resources in a distributed manner. Such systems offer several advantages in simplicity of

use, robustness and scalability. In this thesis we address the problem of efficient Information Re-

trieval in such systems. We analyze a number of different techniques and then present the Intelligent

Search Mechanism.

The Intelligent Search mechanism (ISM) uses the knowledge that each peer collects about

its peers to improve the efficiency of the search. The scheme is fully distributed and scales well with

the size of the network. ISM consists of four components: A Profile Mechanism which logs query-

hits coming from neighbors, a Cosine Similarity function which calculates the closeness of some

past query to a new query, RelevanceRank which is an online ranking mechanism that ranks the

neighbors of some node according to their potentiality of answering the new query and a Search

Mechanism which forwards a query to the selected neighbors.
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We deploy and compare ISM with a number of other distributed search techniques. Our

experiments were performed with real data over PeerWare, our middleware simulation infrastructure

which is deployed on 50 workstations.

Our results indicate that ISM is an attractive technique for keyword searching in Peer-to-

Peer systems since it achieves in some cases 100% recall rate by using only 54% of the messages

used in the flooding algorithm. The results further show that ISM improves over time because

nodes learn more information about their neighbors as time elapses. ISM achieves therefore a better

recall rate than its competitors, although its initial performance is similar to them. Lastly we have

shown that ISM requires approximately the same Query Response Time (QRT) with its two main

competitors RBFS and >RES and far less QRT than BFS.

For future work we plan to probe our algorithms over new network topologies such as

powerlaw and tree. Stemming and Stop Word Lists are another improvement that can be incorpo-

rated in our algorithm. In that way we will be able to route queries to the appropriate hosts even if

the past queries contain different query terms which have the same semantics. We believe that the

Peerware simulation infrastructure is an invaluable tool in evaluating the applicability and perfor-

mance of different routing techniques. We further plan to introduce different degrees of data sources

replication and see how do these affect the performance of our search techniques. We are also inter-

ested in deploying PeerWare over a Wide Area Network including hosts which are geographically

distributed.

56



Bibliography

[1] American National Standards Institute American National Standard X9.30.21997: Pub-
lic Key Cryptography for the Financial Services Industry - Part 2: The Secure Hash
Algorithm (SHA-1) (1997)

[2] B. H. Bloom. ”Space/Time Trade-Offs in Hash Coding with Allowable Errors”, Com-
munication of the ACM, 13(7):422-426, 1970

[3] Ozalp Babaoglu, Hein Meling and Alberto Montresor ”The Anthill Project” In Proceed-
ings of the 22th International Conference on Distributed Computing Systems (ICDCS
’02), Vienna, Austria, July 2002.

[4] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong, ”Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System” in Designing Privacy
Enhancing Technologies: International Workshop on Design Issues in Anonymity and
Unobservability, LNCS 2009, Springer: New York (2001).

[5] Clip2, ”Gnutella: To the Bandwidth Barrier and Beyond”, November 6, 2000,
http://www.clip2.com/gnutella.html

[6] A. Crespo, H. Garcia-Molina. Routing Indices For Peer-to-Peer Systems. Proc. of Int.
Conf. on Distributed Computing Systems, Vienna, Austria, 2002.

[7] Francisco Matias Cuenca-Acuna and Thu D. Nguyen. ”Text-Based Content Search and
Retrieval in ad hoc P2P Communities”, International Workshop on Peer-to-Peer Com-
puting, Springer-Verlag Vol:2376, May 2002

[8] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relation-
ships of the internet topology. In SIGCOMM, pages 251-262, 1999.

57



[9] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, ”Summary cache: A scalable wide-area
web cache sharing protocol,” IEEE/ACM Transactions on Networking, vol.8 number
3”, pages 281–293, 2000.

[10] Peter Fankhauser, Gerald Huck and Ingo Macherius ”Components for Data Intensive
XML Applications” ERCIM News No.41 - April 2000

[11] Gnutella, http://gnutella.wego.com.

[12] Groove Networks http://www.groove.net/.

[13] Google http://www.google.com/.

[14] IBM alphaWorks, XML Parser for Java,
http://www.alphaworks.ibm.com/tech/xml4j/

[15] M. Jovanovic, ”Modeling Large-scale Peer-to-Peer Networks and a case study of
Gnutella”, Master’s Thesis, University of Cincinati, April 2001.

[16] Kazaa, http://www.kazaa.com

[17] James F. Kurose and Keith W. Ross ”Computer Networking: A Top-Down Approach
Featuring the Internet” pages 286–289, Addison Wesley Longman 1999

[18] Leda, Algorithmic Solutions Software GmbH,
http://www.mpi-sb.mpg.de/LEDA.

[19] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. ”Search and replication in unstructured
peer-to-peer networks”, ICS02, New York, USA, June 2002.

[20] V. Kalogeraki, D. Gunopulos and D. Zeinalipour-Yazti Proceedings of the ACM
CIKM International Conference on Information and Knowledge Management (CIKM),
McLean, VA, USA, pages: 300–307, November 2002

[21] Ken Mccrary, ”The JTella Java API for the Gnutella network”, October 2000,
http://www.kenmccrary.com/jtella/.

[22] Stanley Milgram Milgram’s experiment description, available at:
http://smallworld.sociology.columbia.edu/description.html.

58



[23] Napster, http://www.napster.com.

[24] Stephen North, Emden Gansner, John Ellson, ”Graphviz - open source graph drawing
software”, http://www.research.att.com/sw/tools/graphviz/

[25] REUTERS-21578 dataset. http://www.research.att.com/ lewis

[26] M.Ripeanu, ”Peer-to-peer Architecture Case Study: Gnutella Network”, Technical Re-
port, University of Chicago, 2001.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for Internet applications. Proc. of ACM SIGCOMM, pages
149–160, August 2001.

[28] B. Yang and H. Garcia-Molina, Comparing hybrid peer-to-peer systems. Proc. 27th
Int. Conf. on Very Large Data Bases (Rome), pages 561-570, September 2001.

[29] B. Yang, H. Garcia-Molina, Efficient Search in Peer-to-Peer Networks. Proc. Int. Conf.
on Distributed Computing Systems, 2002.

[30] D. Zeinalipour-Yazti and T. Folias, ”Quantitative Analysis of the Gnutella Network
Traffic”, Dept. of Computer Science, University of California, Riverside, June 2000

59



Appendix

JAVA source code for dataPeer

/∗
∗ (C) Copyright University of California Riverside. 2001–2002.
∗
∗ dataNode – A reuters XML News servent
∗
∗ Version : 1.0
∗ Document author : Demetris Zeinalipour (csyiazti@cs.ucr.edu)
∗ Supervisor : Dimitris Gunopulos (dg@cs.ucr.edu)
∗ Computer Science Department , University of California, Riverside
∗
∗ Our code makes use of some classes from the GMD–IPSI XQL Engine developed
∗ at the German National Research Center or Information Technology.
∗ The initial version of ucr.core was based on the JTella API
∗
∗ Notice: This file is not self–containing since it refers to many classes
∗ that could not be presented due to space limitations. The purpose of the file
∗ is to provide the general ouline of the structure of dataPeer.
∗/

package ucr.gnudb;

// P2P classes
import ucr.core.NetConnection;
import ucr.core.ConnectionData;
import ucr.core.FileServerSession;
import ucr.core.Host;

// PDOM–XQL classes
import de.gmd.ipsi.xql.∗;
import org.w3c.dom.∗;

60



import java.util.∗;
import java.net.InetAddress;

/∗∗
∗ A dataNode Node.
∗
∗/

public class dataNode
{

// The interface to the P2P network.
private NetConnection conn;

// A PDOM Manager that parses and handles the XML repository.
private static PDOMmanager pdom;

// An XQL resultset for queries.
private static XQLResult rxql;

/∗∗
∗ The main loop
∗/

public static void main(String[] args)
{
// get my id a command line argument e.g. australia
CONFIG. COUNTRY = args[0];

// initialize parameters such as path,ttl,socket timeouts, log dirs, etc.
CONFIG.initGlobalConfig(“config.txt”);

// get details about the hosts that this node should connect to
CONFIG.initLocalConfig(CONFIG. CONF BASE + CONFIG. COUNTRY + “.txt”);

System.out.print(“UCR ” + CONFIG. COUNTRY + “ dataNode starting ...\n”);

System.out.println(“\n\nTTL = ” + CONFIG. TTL);
System.out.println(“SOCKET TIMEOUT = ” + CONFIG. SOCKET TIMEOUT);

// Create PDOM Object
pdom = new PDOMmanager(CONFIG. COUNTRY + “.xml”);
//rxql = pdom.getALLCriterionNodes();
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try
{

// create a ConnectionData object that sets connection preferences
ConnectionData connectionData = new ConnectionData();
connectionData.setIncomingPort(CONFIG. MYPORT);

// create a NetConnection that launches a server on this IP and port
// and accepts incoming messages
NetConnection c = new NetConnection(connectionData);

// populate the HostCache Object so that we start outgoing connections
for (int i=0; i<CONFIG.myPeers.size(); i++)
{

Host host = new Host( (String) CONFIG.myPeers.elementAt(i),
(Integer)CONFIG.myPeers.elementAt(i) );

c.getHostCache().addHost( host );
}

// start the outgoing connections
c.start(CONFIG.ALGORITHM, CONFIG. TTL, CONFIG. SOCKET TIMEOUT);

// listen for any incoming queries and reply with QueryHits
QueryReceiver receiver = new QueryReceiver(pdom);
FileServerSession s = c.createFileServerSession(receiver);
receiver.setFileServerSession(s);

// run forever – endless loop
while (true)
{

Thread.sleep(30000);
}

}
catch (Exception e)
{

// catch and print errors
e.printStackTrace();

}
}

}

62


