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ABSTRACT
One important problem in peer-to-peer (P2P) networks

is searching and retrieving the correct information. How-
ever, existing searching mechanisms in pure peer-to-peer
networks are inefficient due to the decentralized nature of
such networks. We propose two mechanisms for information
retrieval in pure peer-to-peer networks. The first, the modi-
fied Breadth-First-Search (BFS) mechanism, is an extension
of the current Gnuttela protocol, allows searching with key-
words, and is designed to minimize the number of messages
that are needed to search the network. The second, the In-
telligent Search mechanism, uses the past behavior of the
P2P network to further improve the scalability of the search
procedure. In this algorithm, each peer autonomously de-
cides which of its peers are most likely to answer a given
query. The algorithm is entirely distributed, and therefore
scales well with the size of the network. We implemented
our mechanisms as middleware platforms. To show the ad-
vantages of our mechanisms we present experimental results
using the middleware implementation.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search Process; H.3.4 [Information
Storage and Retrieval]: Systems and Software—Distributed
Systems

General Terms
Algorithms, Management, Design

Keywords
Peer-to-Peer Netwroks, Distributed Information Retrieval

1. INTRODUCTION
Peer-to-peer (P2P) networks are increasingly becoming

popular because they offer opportunities for real-time com-
munication, ad-hoc collaboration and information sharing
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in a large-scale distributed environment. Peer-to-peer com-
puting is defined as the sharing of computer resources and
information through direct exchange. The most distinct
characteristic of P2P computing is that there is symmet-
ric communication between the peers; each peer has both
a client and a server role. The advantages of the P2P sys-
tems are multi-dimensional; they improve scalability by en-
abling direct and real-time sharing of services and informa-
tion; enable knowledge sharing by aggregating information
and resources from nodes that are located on geographically
distributed and potentially heterogeneous platforms; and,
provide high availability by eliminating the need for a single
centralized component.

The P2P network creates a virtual point-to-multipoint
network of many peers built on top of the physical infras-
tructure. The basic characteristic of the P2P network is
that there is a group of nodes with the same type of inter-
ests connected over the same communication system. The
P2P network is self-organized and self-administrative as the
nodes autonomously discover their peers, and self-healing as
the nodes automatically try to find new peers if their cur-
rent peers are (temporarily or permanently) disconnected
from the network. The peers are connected in an ad-hoc
manner; there is no restriction on the number of peers in
the network. A node connects to the network of peers, by
establishing a relationship with at least one peer currently
on the network. The connections are driven by the inter-
ests of the peers. For example, Clip2 [5] shows that the
number of peers found in the Gnutella [10] network dur-
ing a given weekday was 43,546 peers who shared 1,843,549
files. Peers can arrive and disappear dynamically, their ar-
rival times are not known a priori. This contrasts with the
web, where the majority of the web pages are statically al-
located and change less frequently. The advantage is that
the peers can join and leave the group dynamically without
explicit knowledge of their memberships or need for group
membership algorithms. Moreover, the topology of the re-
sulting network could be arbitrary with various connectivity
degrees between the peers, which makes searching and re-
trieving the correct information a difficult problem.

Current peer-to-peer applications are used for sharing re-
sources, such as music files or videoclips, and consecutively
support only rudimentary search mechanisms. Typically the
user specifies the name of the file he/she is looking for and
searches for the file using a brute force mechanism, as we
described in the previous section. Clearly, to support higher
level resources (such as, databases) for more sophisticated
applications more efficient query mechanisms are required.



These mechanisms however should accommodate the dis-
tinctive characteristics that make the peer-to-peer compu-
tational model attractive: scalability, no centralized control,
fluidity.

In this paper we consider the information retrieval prob-
lem in the P2P networks. Assume that each peer has a
database (or collection) of documents, that is also made
available to all peers connected in the network; this repre-
sents the knowledge of the peer. A node searches for infor-
mation by sending query messages to its peers. We assume
that the queries are collections of keywords. The querying
peer is interested to find all the documents that contain all
the keywords. A peer receiving a query message, evaluates
the constraint locally against its collections of documents. If
the evaluation is successful, the peer generates a reply mes-
sage to the querying peer which includes all the documents
that correspond to the constraint. Once it receives responses
from all the peers, the querying peer can afterwards decide
which documents to download. Each document can be asso-
ciated with a unique documentId (using for example a hash
function) to uniquely identify the same documents from dif-
ferent peers.

Note that searching based on the file contents is not pos-
sible in most current P2P systems [8, 10, 19]. In those sys-
tems searching is done using file identifiers instead. This
allows for efficient search and indexing techniques [8, 19,
24], however this limitation restricts the ability of users to
share documents in a P2P network. Techniques for efficient
searching P2P networks have been recently proposed in [6,
20, 21].

To solve the search problem, most current systems either
rely to centralized control ([16]) or broadcast the query mes-
sages ([10]). The second approach (broadcasting the query)
can be easily extended to solve the problem we consider here,
searching with keywords: we have to modify the query mes-
sage to include the query terms instead of the desired file
identifier. This approach works best for pure peer-to-peer
networks, were all functionality (including indexing and re-
source sharing) is decentralized. Such systems do not use
peers with special functionality [20]. Gnutella is an example
of such a system. In hybrid peer-to-peer networks [12, 16],
one (or possibly more) peers have additional functionality in
that they become partial indexes for the contents of other
peers. Each peer, as it joins the network uploads a list of its
files to the index server. Commercial information retrieval
systems such as web search engines (e.g., Google, Yahoo)
are using this approach for indexing the web. They are cen-
tralized processes that exploit large databases and parallel
approaches to process queries, and work extremely well. In
the P2P information retrieval context however, they have
several disadvantages: first, for the index to be useful, it
needs at least an inverted index of all the documents in all
the peers it indexes. This means that the index node has
to have sufficient resources, and have large bandwidth avail-
able to serve all queries. Although hardware performance
and cost have improved, such centralized repositories are
expensive to set up and hard to maintain. They require ef-
ficient human intelligence to build and keep the information
they contain relevant and current. It is also difficult to cap-
ture all the information available, when this information can
be updated in a daily basis; the current search engines per-
form periodic crawling which is typically a number of days
old. Furthermore, they fail to capture information that is

available in private databases since they do not have access
to the private repositories maintained by the peers. For ex-
ample, current search engines cannot show reservations for
a given flight. Also, these systems assume that there is con-
tinuous availability (always on) of the peers and therefore
the information. Yang et al [20] compared different hybrid
P2P architectures that use centralized index nodes. The
experimental results suggest that a distributed centralized
index is the most efficient and scalable choice. They do not
consider fully decentralized distributed systems however.

1.1 Our Contribution
In this paper we consider a fully distributed technique

for addressing the information retrieval problem in pure
P2P networks. We consider the pure peer-to-peer network
(Gnutella network) and we propose new techniques that are
more efficient than the Gnutella search.

The first, the modified Breadth-First-Search (BFS) mech-
anism, is an extension of the current Gnuttela protocol, al-
lows searching with keywords, and minimizes the number of
messages that are needed to search the network. The mech-
anism runs locally on each peer and automatically selects a
random subset of the peer’s neighbors to forward each query
message.

The second technique, the Intelligent Search mechanism,
improves on the first by having each peer in the network
build a profile of its peers, and use the profile to find, for each
query, which peers are likely to answer. It then forwards the
query to those peers only. The profiles are aggregated and
collected in real-time.

The mechanisms are distributed so we can avoid the prob-
lems with single points of failure that systems like Napster
([16]) have. At the same time, they minimize the number
of messages and avoid the scalability problems of systems
like Gnutella ([10]) that use broadcasts. The system has
been implemented as a middleware platform that extends
the Gnutella protocol. The reason is that we wanted to use
existing infrastructure and investigate its behavior and its
limitations.

2. INFORMATION RETRIEVAL IN A PURE
PEER-TO-PEER (P2P) NETWORK

We consider a network of n nodes (peers), with average
degree d (with d << n), that is, each peer is directly con-
nected to around d other peers. For a given peer u, the peers
of u, N(u) are those nodes in the network that have a direct
connection to u. Figure 1 shows an example of a peer-to-
peer network. Each node in the figure represents a peer and
an edge corresponds to a direct communication between the
peers.

Each peer possesses and maintains a set of documents,
which can be also made available to his peers. This set rep-
resents the knowledge of the peer. We assume that each doc-
ument is stored in semi-structured form: for each document
we have a set of attributes, such as, title, author, keywords,
history, owner as well as text. Without loss of generality,
we assume that the queries are in XML format. Such docu-
ments may be replicated between peers. Note though, that
data possessed by the peers are not necessarily unique. They
can be replicated at the edges of the network, but not all
documents or files are fully replicated or replicated an equal
number of times. Generally, those documents or files that



Figure 1: Searching in a peer-to-peer network: Each
peer forwards the query to all its neighbors. In the
figure we show the messages that the original peer
sends, and the messages that one of the peers that
receive the query sends.

are most requested by the users, will be available from more
peers, and therefore, will be highly replicated. Allowing
replication of the documents is important for two reasons.
First, it distributes the workload across multiple peers and
eliminates the burden from a single node. Second, it re-
duces the network traffic and minimizes the latency by data
replication on the edges, closer to the location of the users.

Peers generate queries to search for data. The queries in-
clude attributes that characterize the documents. Examples
of queries are “American Airlines” or “U.S. Banks”. Each
node sends messages only to its peers. If a node receives
the same message more than once from different peers, it
discards all the duplicated messages as it replies only to the
first message it receives.

2.1 Extending the Gnutella search: searching
using keywords in a fully distributed peer-
to-peer network

The search protocol in the peer-to-peer network works
as follows. A node issues search messages when it wants
to search for data and information among its peers. The
node generates a Query message with the search query and
propagates the message to all of his peers. When a peer
receives a Query request, it searches its local repository for
relevant matches. If there is a match, the peer generates a
QueryHit message to reply with the result. The QueryHit

message along with the results, also includes the address of
the peer and its network connectivity. For example, if the
node receives the same data from more than one peers, it
may choose to obtain the data from that peer with the best
network connection. QueryHit messages are sent along the
same path that carried the incoming Query messages. In
addition, the peer will propagate the search to all of his own
peers (Figure ??).

The current search mechanisms have the disadvantage
that they propagate all the queries across the network (in-
cluding nodes with high latencies), therefore the network can
easily become a bottleneck. To avoid flooding the network
with messages, in the Gnutella protocol each search message
is associated with a time to live (TTL) field that determines
the maximum number of times the message will be propa-
gated in the network. The TTL is decremented each time
the message reaches a peer. When the TTL becomes 0, the
message is no longer forwarded.

2.2 The Modified Random BFS Search mech-
anism

We first consider an intermediate search technique, Mod-
ified BFS Search. In this technique, each peer instead of
forwarding a search message to all its peers, it randomly se-
lects a subset of its peers to propagate the search request.
The fraction of peers that are selected is a parameter to
the mechanism. In our experiments we used a fraction of
0.5 (the peer propagated the request to half its peers, se-
lected at random). The advantage of this technique is that,
given a P2P network with a random graph topology, a peer
can search the nodes of the graph more efficiently (that is,
with a smaller number of messages overall) than the brute
force Gnutella protocol. On the other hand, this algorithm
is probabilistic,

3. INTELLIGENT SEARCH IN P2P NET-
WORKS

In this section we present a new mechanism for informa-
tion retrieval in the P2P networks. The objective is to help
the querying peer to find the most relevant answers to its
query quickly and efficiency.

The keys to improving the speed and efficiency of the in-
formation retrieval mechanism is to minimize the communi-
cation costs, that is, the number of messages sent between
the peers, and to minimize the number of peers that are
queried for each search request. To achieve this, a peer es-
timates, for each query, which of its peers are more likely to
reply to this query, and only propagates the query message
to those peers.

3.1 The Intelligent Search Mechanism
The Intelligent Search mechanism for distributed informa-

tion retrieval consists of 4 parts:

1. A search mechanism to send the query to the peers.
This is the only mechanism used by a node to commu-
nicate with its peers. It is the same mechanism em-
ployed by the Gnutella protocol for communications
between peers.

2. A profile mechanism, that a peer u uses to keep a pro-
file for each of its peers in N(u). The profile keeps the
most recent past replies of the peer.

3. A peer ranking mechanism that a peer runs locally,
using the profiles of its peers and the specific query,
that ranks the peers inN(u) in order to send the search
query to the most likely peers.

4. A similarity function that a peer uses locally to find
the similarity between different search queries.

3.1.1 The Search Mechanism
Assume that a peer initiates a search to find documents

about a specific topic. Since he is initiating the search, we
call him the querying peer. The querying peer generates a
Query message that describes his request, finds which of his
peers are most likely to provide an answer (using the profile
mechanism and the peer ranking mechanism) and broad-
casts the Query message to those peers only.

If a peer receives a query message we call him the re-
ceiver peer. If the receiver peer can provide an answer, it



Figure 2: Intelligent searching in the peer-to-peer
network: Each peer uses the knowledge it obtains
from monitoring the past queries to propagate the
query messages only to a subset of the peers.

returns the document to the requesting querying peer, oth-
erwise, it propagates the Query message only to those of his
peers it considers most likely to provide the answer (Figure
2). To provide a termination condition so that the messages
are not propagated indefinitely in the network, the query-
ing peer sets a bound on the depth of the recursion. When
a reply is sent back to the querying peer, the peers in the
answer path (which is the same as the query path) record
the query and the name of the peer that provided the an-
swer in a (query, peer) table. Each peer sets a bound on the
number of pairs to be recorded, and uses a least recently
used strategy to allow space for new queries.

3.1.2 Peer Profiles
To decide to which peers a query will be sent, a peer ranks

all its peers with respect to the given query. The number of
peers that a query will be sent is a parameter that is defined
by the user.

To rank its peers, each node maintains a profile for each of
its peers. The profile contains the list of the most recent past
queries, that the specific peer that provided the answer for.
(Although logically we consider each profile to be a distinct
list of queries, in the implementation we use a single Queries
table with (Query,Node) entries that keeps the most recent
queries the peer has recorded).

The node accumulates the list of past queries by two dif-
ferent mechanisms. In the first mechanism the peer is con-
tinuously monitoring and recording the Query and the cor-
responding QueryHit messages it receives.

In the second, each peer, when replying to a Query mes-
sage, broadcasts this information to its neighbor peers. This
operation increases the accuracy of the system, at the ex-
pense of O(d) extra messages (where d is the average degree
of the network) per answering node.

The node keeps the list of queries in its local repository.
For each node this list is incomplete, because each node
can only record information about those queries that were
routed through it. The node uses a size limit T that limits
the number of queries in each profile. Once the repository
is full, the node uses a Least Recently Used (LRU) policy
to keep the most recent queries in the repository. Since the
node keeps profiles for its neighbors only, the total size of
the repository is O(Td).

3.1.3 Peer Ranking
For each query it receives, the receiver peer uses the pro-

files of its peers to find which ones are more likely to have

documents that are relevant to the query. To compute the
ranking, the receiver peer compares the query to previously
seen queries and finds the most similar ones in the reposi-
tory. To find the similarity between the queries, it uses the
function provided (described below). The reason that we
employ a Nearest Neighbor classification technique is that it
is simple, and it has shown good accuracy in many different
settings. It has also been shown that the Nearest Neighbor
classification has asymptotic error rate at most twice the
Bayes error rate, independent of the distance metric used
[7].

Since it is likely that some peers will be associated with
many similar queries, and others with some, we compute an
aggregate similarity of a peer to a given query. Given the
K most similar queries to q, the aggregate similarity of peer
Pi to query q that peer Pk computes is:

PsimPk (Pi, q) =
∑

qj was answered by Pi

Qsim(qj , q)
α

In this sum, qj is one of the K most similar queries to q.
This parameter limits the influence to the similarity to the
most similar queries only. In addition, we use the parameter
α, which allows us to add more weight to the most similar
queries. For example, when α is very large, Psim reduces
to one-nearest neighbor. For α = 0, Psim reduces to K-
nearest neighbor. If α = 1, Psim adds up the similarities of
all queries that have been answered by the peer.

Consider the following example: Assume K = 5 and
α = 1. Peer P wants to send a query q to two of its peers.
Let q1, q2, q3, q4, q5 be the most similar queries to q, among
the ones P has information about, with Sim(q, q1) = 0.8,
Sim(q, q2) = 0.6, Sim(q, q3) = 0.5, Sim(q, q4) = 0.4, and
Sim(q, q5) = 0.4. If peer P1 answered q1, peer P2 answered
queries q2 and q3, and peer P3 answered queries q4 and
q5, then we compute the aggregate similarities of the three
peers to the query q as follows: PsimP (P1, q) = 0.81 = 0.8,
PsimP (P2, q) = 0.61 + 0.51 = 1.1, and PsimP (P3, q) =
0.41 + 0.31 = 0.7. Therefore P chooses to send the query
only to peers P1 and P2.

The receiver peer then sends the query to the m peers (for
a user defined constant m < d) that have the higher rank.

3.1.4 Distance Function: The cosine similarity
In order to find the most likely peers to answer a given

query we need a function Qsim : Q2 → [0, 1] (where Q is
the query space), to compute the similarity between differ-
ent queries. Since the queries are sets of keywords, we can
use a number of different techniques that have been used
effectively in information retrieval. We make the assump-
tion that a peer that has a document that is relevant to a
given query is likely to have documents that are relevant to
similar queries. This is a reasonable assumption if each peer
concentrates on a set of topics.

The cosine similarity metric has been used extensively in
information retrieval, and we use this distance function in
our setting. Let L be the set of all words that have appeared
in queries. We define an |L|-dimensional space where each
query is a vector. For example, if the set L is the words
{A,B,C,D} and we have a query A,B, then the vector that
corresponds to this query is (1,1,0,0). Similarly, the vector
that corresponds to query B,C is (0,1,1,0). In the cosine
similarity model, the similarity of the two queries is simply
the cosine of the angle between the two vectors.



3.1.5 Random perturbation
One problem of the technique we outline above is that it is

possible for search messages to get locked into a cycle. The
issue is that the search will fail then to explore a significant
part of the peer-to-peer network and may not discover many
results. Consider for example the following case: Peer A
sends a query to peers B, C, and D. If none of them has
the answer, D considers A,C,D the best peers, C considers
A,B,D the best peers and D considers A,B,C the best peers,
then the query will never go to other peers. To solve this
problem, we pick a small random subset of peers (1 peer in
the experiments) and add it to the set of best peers for each
query. As a result, even if the best peers form a cycle, with
high probability the mechanism will explore a larger part of
the network and will learn about the contents of additional
peers.

4. PERFORMANCE OF THE PROPOSED
TECHNIQUES

In this section we describe the characteristics of the pro-
posed techniques, in comparison with the Gnutella protocol.

4.1 Performance of the modified BFS Search
We first consider the performance of the modified random

BFS technique where each peer randomly selects a subset of
its peers to propagate a request (that is, here a profile of its
peers is not used). In a P2P network with a random graph
topology, this mechanism searches the nodes of the graph
more efficiently (that is, it sends fewer messages) than the
Gnutella protocol.

Consider a random graph G with n nodes and e edges,
that has average degree d. For a given node u, let Nk(u) be
the set of nodes at distance at most k from u. When a node
u starts a Gnutella search with a TTL = k (Time To Live,
as per the Gnutella search protocol), u sends approximately
d messages to its neighbors, each being propagated k times.
Since the BFS mechanism explores all the edges in the graph,
the number of messages send by the Gnutella protocol is at

least |Nk(u)| |Nk(u)|
n

d.
Assume on the other hand that each node only propagates

the message to a randomly chosen subset of its neighbors, of
size d

m
(for a suitably chosen m). Using the same TTL (k),

if |Nk(u)| is smaller than n/2, the expected total number of
messages sent is ( d

m
)k, and the expected number of vertices

that this modified BFS process visits is at least 1
2
( d
m

)k. This
is because if |Nk(u)| is smaller than n/2, then most of the
nodes visited in each iteration are new nodes. Consider a
node v of distance i (i < k) from u. If |Nk(u)| < n/2,
with high probability each edge of v is connected to a node
not in Ni(u). Setting 1

2
( d
m

)k = |Nk(u)|, we have that, if
|Nk(u)| ≈ n/2, the modified BFS needs at most a fraction
of 4

d
of the number of messages used by the Gnutella protocol

to visit approximately the same number of vertices.

4.2 Performance of the Intelligent Search
Mechanism

The previous discussion indicates that propagating a query
to a random subset of one’s peers is more efficient in search-
ing nodes in a P2P network with random graph topology
than using the Gnutella protocol with respect to the total
number of messages. However this approach is approximate,
and cannot guarantee that all nodes in Nk(u) are found.

Consider for example a case where two large subgraphs are
connected by one edge. If the node attached to that edge
does not choose this edge, the other subgraph will never be
explored.

The Intelligent Search technique we outlined in the pre-
vious section attempts to identify edges that are likely to
have good information. Nevertheless, the accuracy of the
mechanism clearly depends on how accurately a peer can
compute which of its peers is likely to answer a given query.
Work on distributed information retrieval has shown that
current techniques for database selection can give good per-
formance. Recent work ([3]) shows that even incomplete
knowledge is sufficient to achieve good results. Experiments
show that requesting a random set of documents from a col-
lection is sufficient to obtain accurate estimates on the word
frequencies in this collection. These results are directly ap-
plicable only for the case that each peer has full statistical
information for its peers. Our setting is different because
the information we collect is the queries that peers reply to,
rather than the documents in the actual replies. This is cer-
tainly very useful when very similar queries repeat. For a
large number of queries, it also gives an approximation of a
peer’s collection of documents.

We also note that the more efficient search allows us to use
a larger TTL compared with the Gnutella protocol, while
still having a smaller number of messages overall. As a
result, this mechanism can visit nodes that the Gnutella
protocol would not visit. We explore this trade-off in the
experimental evaluation of the technique.

In summary, the Intelligent Search mechanism for dis-
tributed information retrieval that we propose has the fol-
lowing characteristics:

1. The algorithm uses fewer messages compared to the
standard Gnutella strategy, and scales better with re-
spect to the size of the network (because it can search
a larger network using the same number of messages)

2. The size of the profiles is proportional to the number
of direct connections per peer. This is likely to remain
small (constant) even for very large networks.

3. The scheme uses the combined knowledge about the
peers, and adapts and modifies its behavior as each
peer learns more information about its peers. On the
other hand, peers do not have to export any informa-
tion about their databases.

5. EXPERIMENTS
To illustrate the intelligent search mechanism we have

built a decentralized online newspaper application. The
newspaper is organized as a network of peers; each peer
maintains a set of articles. The peer uses our information
retrieval mechanism to efficiently search for articles in the
newspaper. The user uses the graphical user interface to
give keywords and the system retrieves all the articles that
contain these keywords. The system has been used in an
internal HP network and was implemented on top of the
Gnutella P2P network in Java.

In our experimental study we compared the performance
of the Intelligent Search mechanism with the Gnutella search,
and with the modified BFS mechanism where each peer for-
wards the query to a random subset of half of its peers. Our
evaluation metrics were the recall rate, that is, the fraction
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of documents our search mechanism retrieves compared to
the other mechanisms, and the efficiency of the technique,
that is, the ratio of number of messages that the different
techniques use for the same search.

We used a simulation testbed for the experiments, rather
than our middleware implementation because it was easier
to simulate large numbers of peers than running large num-
bers of Gnutella clients on a small number of machines. Nev-
ertheless, our simulation computes the metrics we use ex-
actly. We used the document collection from the REUTERS
dataset [18] as the set of documents that are available to the
various peers. We partitioned the dataset into documents
that are relevant to each country (using the metadata infor-
mation available in the collection). There were 84 different
countries with at least 10 documents, and the total number
of documents for these 84 countries was 22531 (some docu-
ments belonged to more than one country. We created a net-
work of 100 peers. The topology was a random graph with
average degree 7 (random graphs with more than logn aver-
age degree are almost certainly connected). Each peer was
assigned collections from three countries (with large coun-
try collections split into groups of 50 documents) leading to
an average of 135 documents per peer. Our objective was to
simulate the situation where each peer has sets of documents
about specific topics.

For brevity we present one set of experiments, where we
ran 400 user requests arriving “sequentially” in the system.
At each time interval, a peer submits a query in the net-
work. The queries are generated automatically and include
query sets (keywords) from the documents of the dataset.
To generate the query sets we used a set of 100 keywords.
All queries were generated by the same peer. The TTL for
each query was set to 4 and 5.

In the first experiment we measured the number of mes-
sages per query that the three techniques generate when the
time to live (TTL) field of the request messages is set to
4. In the Intelligent Search mechanism, each peer in the
query path determines the 3 best peers to which to send the
query requests. In addition, it sends the query request to
a randomly chosen peer. Figure 3 indicates that the brute

force algorithm always sends 763 messages, and the modi-
fied random BFS algorithm sends 131 messages on average,
regardless of whether they are likely to have responses to the
requests. In the figures, the values shown are the averages of
10 consecutive requests. The figure shows that the number
of messages for our mechanisms is significantly smaller than
the Gnutella algorithm.

Figure 4 shows that in this situation our mechanism dis-
covers over half of the documents found by the brute force
algorithm, and always more than what the modified BFS
mechanism finds.

It is also important to note that the recall ratio improves
over time, as peer profiles are learned, unlike the modified
BFS mechanism.

In the second experiment we show that we can improve the
results substantially by increasing the TTL parameter. Fig-
ure 5 shows that by increasing the value of the time to live
field of the search requests (TTL = 5) the Intelligent search
mechanism discovers almost the same documents that the
Gnutella search finds for TTL = 4. Our experimental re-
sults (Figures 5, 6) show that our mechanism achieves 90%
recall rate while using 35% of the number of messages of the
Gnutella search. Again, the recall rate increases as the num-
ber of queries increases over time. The results of the mod-
ified BFS mechanism are consistent with our analysis, and
show that it is possible to search the majority of the P2P
network with significantly fewer messages than the brute
force algorithm. This justifies our hypothesis that in the
pure P2P network, a large number of peers receive unneces-
sary messages.

The number of messages in the Intelligent Search mecha-
nism increases over time. The reason for this is that, as the
nodes accumulate more knowledge about their peers, peers
that provided answers in the past are still queried in subse-
quent queries. As more peers become likely to be queried,
they themselves continue to explore the network by propa-
gating the requests to their peers.

In conclusion, our preliminary experimental results show
the following. First, the performance of the Intelligent Search
mechanism improves over time as the peers learn more in-
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formation about their peers and therefore becomes better
than the modified BFS algorithm, although the initial per-
formance was similar. Second, we get almost as good recall
rate as that of Gnutella using a much smaller number of
messages.

6. RELATED WORK
Directed DFS Search and Freenet: In [21] a technique
for searching a P2P network is proposed where each node
propagates the query to one of its peers based on some aggre-
gated statistics (including which peer was the last to answer
a query, a random peer). If the peer does not reply, the re-
questing peer selects a new peer. The technique is similar to
the Intelligent Search Mechanism we propose, but uses sim-
pler information about the peers, and is optimized to find k
documents efficiently (for a fixed k) rather than finding all
documents so a Depth-First-Search approach rather than a
Breadth-First-Search approach is used.

Freenet [8] also uses an intelligent DFS search mechanism
to find files in the P2P network. The approach, which is
based on keeping in local caches pairs of document keys and
the peer that contain the document. This technique was fur-
ther improved by [24]. Our approach is more general because
Freenet allows only searching with file identifiers, instead
of the file contents. In addition, we use a Breadth-First-
Search approach, where many messages are propagated in
the network concurrently, rather than a Depth-First-Search
approach, where each node sends a message to one peer and
waits for a reply before forwarding it to another peer. The
advantage of DFS search is that a small set of peers can be
queried quickly and efficiently; however by its nature it can
take a long time if we want to find all the results to a query,
that happen to be distributed in many peers.

Using Local Indices: [6] present a hybrid technique where
each peer builds indices using aggregate information on the
contents of the documents of its peers. This technique is
essentially a push update technique where each peer sends
to its peers information about its documents (and has to
send updates every time an update happens), thus it is com-

plementary to our approach where the profiles get updated
when a peer answers a query.

Distributed Information Retrieval: In distributed in-
formation retrieval, the main problem is, assuming that we
want submit an information retrieval query to a subset of the
databases available only, decide which databases are more
likely to contain the most relevant documents. A number
of algorithms have been proposed and experimental results
show that these algorithms achieve good results [3, 9, 11,
23, 22]. Recent work [14, 17] shows that good performance
can be achieved in this setting, if the collections are con-
ceptually separated. However, these algorithms assume that
the querying party has some statistical knowledge about the
contents of each database (for example, word frequencies in
documents), and therefore has to have a global view of the
system. In addition, most techniques assume an always-on
environment. Nevertheless, the metrics we use in our tech-
nique are similar to the ones used in such techniques.

Collaborative Filtering: Our technique has similarities
with collaboration filtering approaches [2]. In particular a
number of approaches have been proposed for collaboration
filtering algorithms that work over the web [4, 13]. In gen-
eral these techniques assume that documents are public and
known to all participants, and therefore are difficult to use
in the peer-to-peer environment.

Exploiting the peer-to-peer network structure to im-
prove the search performance: Recent approaches to
improve search performance in peer-to-peer networks use a
consistent hashing scheme to distribute the objects in the
peer-to-peer network, so that an efficient location algorithm
can be implemented [19]. This approach is not possible here
because we are searching using keywords, rather than us-
ing a unique identifier of an object (such as a name). As a
result, we want to find all documents that contain the key-
words because they may contain different information. An-
other approach uses a gossiping protocol to propagate the
searches in the peer-to-peer network. The problem with this



approach is that the rate of gossiping is slow and therefore
the messages are not propagated fast to the peers. In a dif-
ferent approach, local search strategies that take advantage
of the structure of power-law networks can be employed [1].
The algorithm explores nodes with high connectivity first.
Essentially this is a directed depth-first-search mechanism.

Centralized Approaches: These include commercial in-
formation retrieval systems such as web search engines (e.g.,
Google, Yahoo) that are centralized processes, as well as
P2P models that provide centralized indexes [16, 20, 15].
These techniques represent an altogether different philos-
ophy, and they are not directly comparable. In general,
one trades simplicity and robustness with improved search
time and more expensive resources. Centralized approaches
are faster and guarantee to find all results while the decen-
tralized approaches allow always fresh contents, can index
databases and are less costly.

7. CONCLUSIONS AND FUTURE WORK
Peer-to-peer networks offer several advantages such as sim-

plicity of use, robustness and scalability. In this paper we
propose and implement a middleware platform that extends
the Gnutella protocol to support information retrieval in
a peer-to-peer network. We present the Intelligent Search
mechanism, that uses the knowledge that each peer collects
about its peers to improve the efficiency of the search. The
scheme is fully distributed and scales well with the size of
the network.

For future work we plan to address the problem of ac-
tively changing the topology of the P2P network in order to
improve the performance of the search. We also plan to con-
sider the problem of security and privacy, and how such con-
siderations affect the quality of search in P2P networks. We
plan to do deploy the mechanism and experiment on larger
P2P networks. Finally we plan to consider the problem of ef-
ficiently maintaining the profiles of the peers, combining the
information from different queries, and updating the profiles
when the document collections of the peers change.
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