INSTITUTE FOR SECURITY TECHNOLOGY STUDIES
DARTMOUTH COLLEGE

FILE SHARING PROTOCOLS:
A TUTORIAL ON GNUTELLA!

Vincent Berk and George Cybenko

Institute for Security Technology Studies
Dartmouth College
Hanover NH 03755
http://www.ists.dartmouth.edu/IRTA

March 6, 2001

This report contains short descriptions of several popular file sharing protocols.
Legal and law enforcement aspects of file sharing are briefly reviewed. File shar-
ing is also known as peer-to-peer (P2P) networking. A general overview of P2P
protocols is followed by a more detailed analysis of the GNUTELLA protocol,
specifically from the point of view of scalability and security. GNUTELLA is
designed to share files across the Internet, with each node being both client and
server. A simple analysis shows that GNUTELLA provides neither reliability
nor security for several reasons.

1Research partially supported by the National Institute of Justice, US Department of Justice and the
Defense Advanced Research Projects Agenc. Any opinions expressed in this report are solely those of the
authors.

1 Introduction

1.1 Overview

FIle sharing, also known as peer-to-peer (P2P) networking, has been called the biggest
application breakthrough on the Internet since the introduction of web browsing software
about 7 years ago. In recent months, the bulk of media attention has been focused on Nap-
ster. Napster is only one of many currently available file sharing protocols. However, the
popularity and commercial goals of Napster have resulted in highly visible, complex legal
proceedings concerning the redistribution of intellectual property. (Intellectual property
crimes typically fall under Federal jurisdication. See http://www.cybercrime.gov/ipmanual.htm
and http://www.cybercrime.gov/ipmanual/chart.htm specifically for more information).

The main goal of peer-to-peer networking is to allow users to share files without storing
them on central servers. In principle, this could already be accomplished with standard
web technology. Users could create a web site, load it with content they want to share,
allow web search engines (such as Yahoo, Google, and others) to locate and index that
content. Other users could then locate the content if they used appropriate keywords in a
web search.

The two main reasons file sharing technology was developed in spite of the existence
of traditional web technology are:

e Inexperienced end-users generally find it difficult to set up and maintain a web server
on their personal machines; by contrast, installing a P2P application like Napster
merely involves downloading and installing a simple application with minimal initial
configuration or subsequent maintenance required;

e P2P users want to share specific types of content, mainly digital music in the MP3
format although images and other media types can be shared as well; existing web
search engines do not specialize in these formats and return search results that are
much broader than the content typically sought.

Advantages of P2P file sharing include:

e Economy - During daytime working hours, it is not uncommon for over 10,000 users
to be connected to Napster and willing to share their music files; several terabytes
(a ’tera’ is one thousand ’giga’ or 1,000,000,000,000) of storage are networked and
available for sharing; by distributing the cost of disk space, an individual user carries
a relatively small part of the overall cost of storage as compared with web hosting
services; morevoer, a user does not even perceive that their cost (hundreds or even
thousands of dollars for a consumer PC and disk storage) is being carried by them
personally for such services, they focus on the “free” music to which they have access;

e Perception of immunity from prosecution - Because shared files are distributed
over thousands of consumer-owned computers, it does not appear to be cost-effective
to investigate so many individual, relatively small-scale users; Napster, by providing
an index of shared files, is a single, tangible corporate entity and has been entangled
in litigation over the legality of promoting illegal redistribution of copyrighted mate-
rial; some other P2P protocols do not require a server and so are even more difficult
to prosecute under copyright infringement statutes.

Web hosting services and Internet Service Providers (ISPs) do not enjoy these two
advantages. Concentrating the cost of the massive storage required to store large quantities

of digital content is prohibitive for consumer-oriented services. Moreover, a corporate
entity would be a much easier target for intellectual property owners and prosecutors to
go after.

Additional background and tutorial material about P2P protocols and related tech-
nologies can be found at the following web sites:

e http://www.zeropaid.com - Zeropaid is an excellent resource with links to all
major P2P sites, tutorials and how-to’s;

e http://www.wired.com/wired/archive/8.10/p2p_pages_pr.html- WIRED mag-
azine has compiled a list of P2P and digital media sites on this page.

1.2 Legal and Criminal Issues

Law enforcement issues surrounding P2P protocols fall into four broad categories:
e Abuse of intellectual property rights and licenses;
e Distribution of illegal content, such as child pornography;
e Covert communication channels supporting criminal activity;
e Increased vulnerability to malicious code and weakened computer security.

Web resources dealing with potential law enforcement aspects of P2P file sharing pro-
tocols are:

e http://www.cybercrime.gov/ipmanual.htm - This is a comprehensive US De-
partment of Justice web site devoted to legal issues surrounding US intellectual
property law;

e http://www.cybercrime.gov/ipmanual/chart.htm - The chart on this page
provides details of successful and pending prosecutions of intellectual property use
and licensing violations;

e http://www.zeropaid.com/busted/ - Zeropaid set up a Gnutella server with
bogus files, named to suggest child pornography material; for a period of time, they
tracked downloads and posted the IP addresses of downloaders on their “Wall of
Shame”; their brief and limited experiment demonstrates the existence of a large
and active potential market within the P2P user community for illegal content;

e http://freenet.sourceforge.net/index.php?page=faq#secl.6 - This posting
briefly describes the philosophy of the P2P community regarding use of the protocols
for criminal and terrorist activities, claiming that channels supporting such activities
already exist anyway and that unfettered distribution of information is an social
imperative;

e http://www.nwfusion.com/newsletters/sec/2000/0828secl.html?nf - This
page is an overview of computer security issues related to P2P networking and a
good place to start reading about the vulnerabilities introduced by those protocols;

e http://www.wired.com/news/print/0,1294,40443,00.html - This is another
WIRED magazine posting about security issues raised by P2P networking;

e http://www.ktsi.net/pdf_files/Security_Concerns_Peer-to-Peer KTSI.pdf-
This is a PDF file with a comprehensive analysis of P2P vulnerabilities from the point
of view of network and computer security, addressing corporate issues and the prob-
lems that open protocols create with respect to Trojans and other malicious code
that could be introduced by shareware implementations.

At the present time, http://www.zeropaid.com is the most comprehensive and up-to-
date site dealing solely with most aspects of P2P networking and the reader is encouraged
to monitor this site for new protocols and developments in the technology.

2 Major File Sharing Protocols

This section contains a brief description of the major P2P protocols at the time of this
writing, March 2001. Links to web sites with more detailed information are provided at
the end of each description.

2.1 NAPSTER, OPENNAP and RAPSTER

NAPSTER (and its open source counterpart OPENNAP) was originally designed to share
MP3 music files across the Internet. It is based on a client-server architecture. The clients
connect to a central server and report what files they provide for sharing. The server
adds these files to its search list. Clients issue search requests to the server, which then
responds with the search results, consisting of filenames and clients providing those files.
File transfers are peer-to-peer, meaning that the server isn’t involved in storing or trans-
fering the actual MP3 files. It only tells clients where to get what they’re looking for,
which is located on another client. The protocol is well-defined and there are numerous
implementations of both the client and the server available. Napster does not provide en-
cryption of any kind, files are shared and transferred in the open. RAPSTER is a MacOS
implementation of the NAPSTER protocol.

Websites:
NAPSTER: www.napster.com
OPENNAP: opennap.sourceforge.net
RAPSTER: www.macnews.com.br/overcaster/products/rapster.html

2.2 GNUTELLA

GNUTELLA is a general file-sharing protocol designed to elimitate the need for a central
server. Each client can provide files for sharing with the community. Search requests get
propagated from client to client and responses follow the same path back. The network is
based on peer-groups. Each client builds up a (constantly changing) peer-group of other
clients. Whenever a client receives a request it forwards it to its peer-group. The cum-
mulative effect is that in very short time a large number of clients receive and process
the request. The downside of this is, of course, the generated network traffic. A small
number of requests can add up and clog a network completely. Various implementations of
clients are available in the open source community. More information about GNUTELLA
is contained in the following sections.

Website:
gnutella.wego.com

2.3 FREENET

Like GNUTELLA, FREENET is a general file-sharing protocol. Also, it does not require
a central server, however message-passing is done in a less demanding manner. Instead
of forwarding requests to all known peers, a FREENET node forwards a request to the
node that is most likely to have a match. If a match is found the request chain terminates
and an answer is returned. File transfers are done immediately between two nodes. The
FREENET protocol is also freely available and various clients have already been written.
FREENET supports encrypted file transfer but clients are still hard to configure.

Website:
freenet.sourceforge.net

2.4 GROOVE

GROOVE is very much unlike the protocols described above. GROOVE is in early release
but is ultimately positioned to be a commercial product for worksgroup collaboration. De-
signed mainly for use within a local network the GROOVE is more like a shared workspace.
There is no central server and all clients are peers and of equal importance. All connected
users see the same window, in which files can be shared, pictures can be drawn or the
Web can be browsed. All communications are encrypted but the GROOVE protocol is
not open so reverse engineering will be difficult and time consuming. GROOVE uses a
considerable amount of bandwidth. No Unix clients are available.

Website:
www.groove.net

2.5 HOTLINE

HOTLINE is client-server based, much like the traditional BBS systems. Everyone can
create a server on which they provide files and a chatbox on a certain topic. Clients lo-
cate servers through “trackers,” that keep updated lists of active servers and their topics.
Clients can upload and download files and engage in a conversation. HOTLINE features
picking up on discontinued downloads but does not support encryption. HOTLINE pro-
vides both client and server software for Windows and Mac OS’s. Since the protocol is
not publicly available most Unix and open source clients are not fully functional.

Website:
www.bigredh.com/hotline3

2.6 PUBLIUS

PUBLIUS is build mainly with “Censorship Resistance” in mind. A file gets encoded using
a key, K, which is in turn split up into n shares, such that any k of them can regenerate
the original key K. Next, the encrypted file is stored on multiple servers, together with
a share of the key. In order to retrieve the file, at least k different key shares have to
be collected from the various servers. As long as there are at least k different keyshares
distributed among the available servers, the file is retrievable. Each server has a complete
copy of the encrypted file and one keyshare. The protocol is fully described in a paper
and both client (proxy) and server software is available.

Website:
csl.cs.nyu.edu/waldman/publius

2.7 Comparison of Described P2P Protocols

| Protocol | NAPSTER/OPENAP | GNUTELLA | FREENET | GROOVE | HOTLINE | PUBLIUS |
Central Server | Y N N N Y (partial) | Y (multiple)
Open Protocol Y Y Y N N Y
Sharing Type MP3 All files All files All files All files All files
Encryption N N Y Y N Y

Table 1: Overview of Different P2P Protocol Features

3 Gnutella Details

The first time a GNUTELLA node (node A) connects to another GNUTELLA node (node
B), which already has a peer-group, it does this by sending a ”GNUTELLA CONNECT”
request. Node B replies by returning a ”GNUTELLA OK”. At this point node A has
a connection with B and can start expanding its own peer-group (which currently only
consists of node B). In order to do so, node A sends a ”PING” to B.

The most important feature of GNUTELLA is that all nodes forward all incoming mes-
sages to all members of their peer-group. Each GNUTELLA message contains a unique
identifier number in its header. (Actually this number is chosen randomly or generated
using the Microsoft Globally Unique Identifier function. There seems to be no guaran-
tee that this really is a unique number.) When a node receives a message, it stores this
message ID in a table before sending it on to its peer-group. If the message ID is already
in the table, it discards the message because it has already been passed on. When the
message gets passed on, the Time To Live (TTL) is decremented. As soon as the TTL is
zero, the message also gets discarded.

Node A sends a "PING” request to B, which forwards it to its peer-group and replies
to it with a "REPLY”. All nodes which receive this ping, reply to it and the packets
get routed back, through B, to A. These reply packets contain the IP of the replier, its
port, the number of files shared and the total number of bytes. Now node A has the IP
addresses and the port numbers of all reachable hosts, through node B. (These obviously

contain the peer-groups of the peer-group of node B, etc. etc.) So A can now construct
its own peer-group from the addresses received back.

Node A is now fully up and running and can conduct searches, forward messages to its
peer-group and, of course, expand its own peer group by pinging again.

Suppose node A receives a search request. This is a GNUTELLA message with the
search string as its message body. First, node A checks if it has seen this message ID al-
ready (if so, the message is dropped.) Assuming that this is a new search, node A forwards
the search message to all members of its own peer-group (after decrementing the TTL).
Next, node A looks in its list of shared files. If a match is found, A returns a packet with
all the matches, indexed with unique numbers.

Lets say, for instance, that node C sends out the search packet described above, and
that node A indeed found several matches. A returned the (indexed) matches to C. If
node C decides to download one of the files from A, which matched its search query, C
makes a direct connection with node A and requests the file by the index number. The
file is transported via the HTTP protocol, directly between A and C. Node C doesn’t
necessarily have to be part of A’s peer-group.

If node C is behind a firewall, A cannot connect to it to download the file. In that
case, node A sends a so called PUSH packet to C. This is a request to C to connect to A
and upload the file. This way the connection can be made through the firewall protecting

C.

For a technical description of the GNUTELLA protocol, please refer to the appendix.

4 Gnutella Scalability

Recent testing has showed that GNUTELLA produces a lot of network traffic just to keep
the connections alive. A typical node drops a peer-group connection after a minute or
so. This happens for several reasons. First, this eliminates the problem of nodes shutting
down, since this could happen without notice. Furthermore, this makes the peer-group
dynamic and with it, the search scope. Two exactly equal search queries could have com-
pletly different results when issued only five minutes apart. After each change in the
peer-group, a node has to send out a PING to find out which nodes are reachable.

We construct a simple formula to get an idea of the scaling issues. As said before,
all GNUTELLA messages are treated equally. Let C' be the (average) amount of direct
connections (peer-group) at each node. Let T be the (average) Time To Live of the issued
messages.

| Position in network (Hops) | Amount of messages

0 (issuer) C messages +C replies
1 (level 1 peer group) C? messages +C? replies
2 (level 2 peer group) C® messages +C° replies

T (TLL=1 expires next hop) | C7T messages +C7T replies

Table 2: Maximum number of messages with respect to TTL and Peer-Group Size

This boils down to:
Total amount of messages = 2 x Ztho ct~oT)

Even in the minimal case (typically C' = 25 and T = 5) this already adds up to 500
milion packets for one PING. Normally, C' would be around 100 and T up to 7.

Because of the limited number of actual nodes on the internet and the vast intercon-
nectivity of the structure, most of the messages get terminated after the first two or three
hops. Our experience is that currently an average peer-group (of 25 hosts) reaches about
500 hosts, generating sustained bandwidth of 150 KB/sec. These numbers include all
(routed) message traffic (thus excluding the direct file transfers). With 2000 reachable
hosts, it filled-up a T1 line. (And still there weren’t any file transfers, just messages.)

(For clarity we will only refer to the group of reachable nodes from our local host as
static, regardless of the fact that this group continuously changes.)

The amount of bandwidth required is highly dependent on the number of reachable
hosts. As the total number of GNUTELLA nodes on the internet increases, it is clear
that the total number of reachable hosts increases, thus meaning that there will be more
search requests to process. Since the connection topology is so dynamic it is very hard
to give an exact model for network traffic and bandwidth. Although searches get selected
on network speed, connections are not. Important parts of the peer-group might only be
reachable through a phone line, thus decreasing performance drastically.

Regardless of the physical network layer, some things are certain. The number of mes-
sages generated is linear with respect to the number of reachable hosts. To see this, every
message that propagates through the network will only be sent on if it is unique. All
duplicates get discarded. If one host is added, one extra message gets send on. Testing
showed that the linearity holds roughly until the connection starts to fill up. That is also
the point where requests get discarded.

It is still unclear which type of messages are the main cause of the bandwidth problem
and if it really is just one message type. Depending on the structure of the GNUTELLA
net (which obviously changes every second), wildly varying results have been reported.
In some cases the PING/REPLY took 70% of the total bandwidth, in other the PUSH
requests took 60%. Of course, depending on the intensity of search, the bandwidth taken
by SEARCH/SEARCH REPLY messages will vary greatly. Cases have been reported it
taken up to 90% of the total bandwidth.

5 Gnutella Reliability

Due to the constant changing of the peer-group, it is very difficult to ensure a connection
between two given machines. It is even possible for a node to completly drop out of the
network, although that is unlikely. Also, due to limited network bandwidth and processor
power, search queries get dropped frequently. This typically happens when a GNUTELLA
message has to pass through a node which cannot handle the huge amount of traffic.

The GNUTELLA protocol doesn’t guarantee any reliability in any form.

6 Gnutella Security

6.1 General

Security is not part of the GNUTELLA protocol. All messages are sent in plain text,
readable, and modifiable, by everyone. GNUTELLA has seen some serious cases of SPAM
lately. This is quite simple. Nodes just return a commercial message on each and every
search query. This can be done even without an actual GNUTELLA client because the
message header of all GNUTELLA messages is formatted the same way. Filtering for the
pattern allows a custom application to do this.

It would be very hard to embed conventional security technologies in the protocol.
Every node through which a message passes should be able to read the full contents of the
message. Encryption doesn’t make sense since everyone with a GNUTELLA client/server
should be able to to decrypt the package.

To avoid alteration of the message digital fingerprinting could be used, but this still
leaves the problem of nodes returning SPAM on every search query. The actual file transfer,
which is done between client and server directly, could be made secure with conventional
methods for obvious reasons. This is a regular peer-to-peer file transfer.

To keep GNUTELLA within a specified domain, the software implementation should
prevent connects to and from the outside world. This case offers more possibilities for
encryption.

6.2 General threats to GNUTELLA
This section deals with the possible threats to the GNUTELLA network and its users.

As noted above, none of the transmitted information is encrypted. This leaves all mes-
sages vulnerable to any sort of attack, aimed at modifying the transmitted information.
Furthermore, anyone connected to the internet through a static link (ie. uses the same
link every time a connection is made) can be monitored on that link. Personal interests
and search habits can be easily extracted from the packets originating from the users host.

Another threat is the well known DOS (Denial Of Service) attack, or its bigger brother
the DDOS (Distributed DOS) attack. DOS attacks are usually aimed at one host, though,

through the GNUTELLA protocol, a whole network can be crippled. First of all, the
bandwidth of the network connecting the GNUTELLA hosts can be flooded quite easily
by sending tons of GNUTELLA messages. As described earlier, all messages are propa-
gated through the network and, if appropriate, retransmitted by the receiving hosts. So
by sending an enormous amount of messages to a GNUTELLA net, the bandwidth can
be filled up easily, as normal operation already takes up a large amount of bandwidth.

Another type of (D)DOS attack is aimed at the slower hosts on a GNUTELLA net. By
sending a lot of random search queries, connected hosts can loose substantial amounts of
time trying to reply those queries. Even during normal operation slower hosts are reported
to drop most of the search queries due to limited system resources.

A different type of direct threat is the modification of messages in transmit. This has
already been seen on GNUTELLA net as SPAM. Since packets have a very flexible struc-
ture and no encryption or signing at all, they can be modified at every hop. Attackers have
been reported to add random messages to search query replies and ping-reply messages.

Using IP spoofing it is possible to disconnect a client from GNUTELLA net. By per-
sistantly connecting a node (eg. once every second) using bogus connections, thus offering
no files to download and no message forwarding. A bogus connection can consist of one
or several (owned or compromised) hosts with modified clients. These clients do not for-
ward messages and do not offer any files, thus blocking all GNUTELLA traffic. With the
node accepting the new (bogus) connections in rapid succession, it aquires no new hosts
because its ping messages don’t get forwarded. This node can become separated from the
net, since the bogus connections keep filling up its peer-group while its group of known
GNUTELLA hosts is shrinking quickly.

Finally, depending on the quality of the client, bugs could present various other prob-
lems. Security breaches have been reported where the whole root filesystem tree was
exported by a faulty client.

For an exploration on effectively implementing a GNUTELLA-like protocol (also named
Gossip protocol) for productive purposes, see the appendix. This is not a part of the
GNUTELLA analysis.

7 Other Issues

7.1 Network Traffic

The enormous amount of message traffic is, as already noted, the most serious problem of
the GNUTELLA protocol. We would like to point out two other probable causes.

First, the repeated queries are problematic. A lot of queries are issued multiple times
by either the same or different hosts. It might be wise to store search-query replies in
all nodes they are routed through. There should be a small timeout on this information
because of the potential rapidly changing structure of the GNUTELLA net. Instead of
forwarding the search query, a node can look it up in its search-reply cache and answer

the query.

Second, there are a lot of duplicate messages on the net. This is due to the currently
high interconnectedness of the participating hosts. This means a lot of messages arrive at
any given hosts via different paths. Meaning that each host has to discard several messages
which it already received. All these messages are duplicates and generate unnecessary net-
work traffic. In some situations more than 80% of all incoming messages are discarded
because they have already been processed. The major problem here is that there is no
way of knowing if a node in your peer-group already received the message, unless it sent
it to you in the first place.

7.2 Locating the First GNUTELLA Host

To get a client running, it is important to have one or more initial hosts. These hosts
provide the portal to finding other hosts and forwarding the GNUTELLA messages. Since
most of the nodes in a GNUTELLA net are usually only up for several hours a day, there is
no one reliable way to connect to a running GNUTELLA network. Currently most clients
tackle this problem by keeping a large lists of all hosts they’ve ever heard of, hoping that
at least one of them will still be running next time this client is used. This is no reliable
method to bootstrap a GNUTELLA network though.

Scripts have been proposed to search random IP addresses trying to find a working
GNUTELLA port. Since the number of hosts on the internet not running a GNUTELLA
client by far exceeds the ammount of hosts running a client, this approach is not a realistic
option.

8 Conclusion

This report has reviewed several of the currently popular peer-to-peer (P2P) file sharing
protocols. Pointers to additional reference material and details have been included. Legal
and law enforcement issues have been briefly reviewed as well.

Our detailed analysis of the GNUTELLA protocol has lead us to conclude that GNUTELLA
seems to be a viable protocol for informal file sharing across the internet. There is no se-
curity, anonymity or reliability imbedded in the current versions of the protocol. It suffers
from a lot of free-riding (users which only download, but offer no files themselves) and
spamming (users replying on every search query with an inappropriate response.) The
biggest problem right now seems to be the enormous amount of network traffic involved.
Network traffic scales linearly with the numbers of nodes connected, but is already very
high for very low numbers of nodes. Measurements have shown typically 300 bytes/sec
per connected host, for just routed messages. So this excludes file transfers. This makes
GNUTELLA an option for users who would like to share files on the internet, not mind-
ing the shortcomings noted above. GNUTELLA is, in its current from, not suited for a
production environment where both reliability and security are required. Most reliability
problems are a direct result of bandwidth problems and the rapid dynamic changing of
peer-groups.

10

A Requirements for Using P2P Protocols in a Produc-
tion Environment

This section deals with the possible use of GNUTELLA like Gossip protocols in produc-
tion environments.

A.1 General

The strongest and most important feature of peer-to-peer protocols is that each connected
node is both client and server. This is useful in environments where no one server can
be guaranteed to exist or be reliable. Reasons for this to be the case include constant
changing of network topology (mobile agents) or explicitly not wanting one strategically
weak point in the network (military applications.)

Besides this, two other things are important. First, reliability. The network has to
be reliable to ensure messages reach all hosts. Second, security. The messages are not to
be read/modified by anyone other than sender and receiver. Furthermore, security means
that the nodes in the network are known. No ’strangers’ can infiltrate the communications
network.

So what we have is a group of nodes, each with a means of unique identification. Ide-
ally, every node knows of the (possible) existence of every other node. This can be done
by enforcing a specific mathematical verification on the identification. Only valid hosts
can pass the test.

To ensure message integrity, only the sender can modify the message and only the
receiver can read the message. This point is discussed later on. GNUTELLA type peer-
groups should be used to reduce traffic.

A.2 Layered Protocol

The peer-group is formed by the lower layer, while the actual communication and forward-
ing is done by the upper layer. The lower layer is the hardware layer physically making
connections with other nodes (eg. mobile agents working out a proper network topology)
and reporting a group of closest or best connected peers to the upper layer. Ideally these
are all the nodes in the network. Furthermore, the lower layer identifies and verifies all
other nodes to which it is connected. This is the first authentication and ensures no un-
wanted guests can infiltrate the network.

The upper layer provides the communication and forwarding. The peer-group was pro-
vided by the lower layer and the upper layer has to take care of the routing. In this layer,
messages get encrypted and signed, preferably using a public/private keypair system to
protect messages in transmit.

11

A.3 Routing and Network Traffic

GNUTELLA and other P2P protocols are known to generate enormous amounts of network
traffic. Fortunately the number of messages scales linearly with the number of connected
hosts.

Several ideas have been proposed to keep the traffic under control. Mark Hayden and
Ken Birman proposed the model of Probablistic Broadcast, which, instead of forwarding
all incoming messages to the every node in the peer group, forwards messages with some
probability. A message gets forwarded depending on a probability P. Ideally, this P
depends on:

e Number of participating nodes.
e Size of peergroup.
e Connectedness of the network.

Thus, some sort, of metric function must be defined which, for each case, doesn’t flood the
network with packets, or starves nodes from information.

Another possible solution is to include sender information in every packet. When a
node sends a packet to another node, it includes all the other hosts to which it has send
that same packet. The receiving hosts then knows which hosts at least received the packet
already. It will than add its own list to the forwarded packets.

This works as follows. The originator of the message creates the packet, adds the list of
hosts to which the packet will be send, signs it and encrypts it. The receiving peer-group,
will decode the packet, verify the encryption and digital signature and create a list of hosts
to which they are going to forward the packet. They subtract the hosts which already
received it and add this list. The packet is signed and encrypted and the whole process
starts all over again, until the TTL expires.

This system only reduces network traffic if this list doesn’t exceed the amount of data
(payload), which is send on.

A.4 Note on key-pairs and digital signatures

When the sender transmits a message, it can be encrypted using the private key of the
sender. A digital certificate may then be added. This requires all hosts participatong in
the network to know each other, so each host can act as a certficate authority for every
transaction. This shouldn’t be necessary if the lower layer verifies the identity, though. To
ensure that only the recipent can read the message, the already encrypted message should
be encrypted again with the public key of the recipent. That way only the recipent can
decode the message. The decoded message is still encrypted with the private key of the
sender, so the recipent should use the public key of the sender to decode the message.

12

B Technical Description of the GNUTELLA Protocol

This description conforms to the reverse-engineerd protocol description as proposed by
” Cap7n Bry”.

All GNUTELLA connections are passed on through TCP/IP STREAM socket connec-
tions. Data is thus guaranteed to arrive. All messages are routed. This means that a reply
on a message always returns through the same path as the request was sent. All messages
have a unique message ID number which is stored, at every node, and used to check if
the message is new or already processed and should thus be discarded. All new messages
get passed on to the nodes with which there is a direct connection. Each message gets
an initial TTL, which is decremented each hop, thus every time a node passes it on to
its direct connections. A message gets discarded when the TTL reaches 0. File transfers
are done through a direct HTTP connection between the sending and receiving node. If
the sender resides behind a firewall and the receiver is thus not allowed to connect to the
sender, the receiver sends a PUSH request to the sender. The sender then connects to the
receiver and uploads the requested file. A PING request is always replied to. A search
request is executed when the receiving node has at least the specified minimum connection
speed. A reply is sent back only when a match is found.

The connection is opened by sending a packet containing only:
GNUTELLA CONNECT/0.4\n\n

The other side answers by sending a packet containing;:
GNUTELLA OK\n\n

HTTP GET request:

GET /get/[File Index Number]/[File Name] HTTP/1.0\r\n
Connection: Keep-Alive\r\n

Range: bytes=0-\r\n

\r\n

The [File Index Number] is the file index number as returned by a query response packet.
The [File Name] is the full name of the file as returned by the query response packet. The
server will respond with normal HTTP headers.

| Byte Position | Name | Description |
0-15 Message ID Unique message ID. Pick one
16 Function ID Type of message, see below
17 TTL remaining | Maximum hops left for this packet
18 Hops taken Total hops already taken
TTL of response messages are set to this
19-22 Data Length Size in bytes of the message payload

Table 3: GNUTELLA message header

13

Function Code Description

0x00 Ping. Datalen=0. Request 0x01 from every node reached
0x01 Ping reply. Replier supplies IP, port, numer of files and total bytes
0x40 Client push request. For servers behind a firewall. Client

cannot reach it, server is requested to connect to client instead

0x80 Search. Payload contains querry

0x81 Search results. List of indexed search results

Table 4: GNUTELLA function ID

The following formats are all preceded by the GNUTELLA message header, since they
are all routed messages.

| Byte Position | Name Description
23-24 Host port TCP port number of listening host
25-28 Host IP IP address of listening host, network byte order
29-32 File Count | Total amount of shared files
33-36 Total Size Total amount of KB shared

Table 5: GNUTELLA ping response

Byte Position Name Description

23-24 Minimum speed | Minimum connection speed for servers

which should perform the search

254+ Search query NULL terminated character string

Table 6: GNUTELLA query header

Byte Position Name Description

23 Num records Number of GNUTELLA query response RECORDS
which follow this headera
24-25 Host port Listening port number of host returning

this query response packet

26-29 Host IP IP of this host

30-33 Host speed Speed of this host

34+ Results Array of GNUTELLA query response RECORDS
containing the search results

Last 16 Footer GNUTELLA query response FOOTER is the

clientID128 of this host, an unique number.

Table 7: GNUTELLA query response header

14

Byte Position Name Description

+0 File index | Index number of file

+4 File size File size in bytes

+8 File name Name of file, without path information.
Double NULL terminated.

Table 8 GNUTELLA query response RECORD

Byte Position Name Description
23-38 ClientID128 ClientID128 of server the client requests

the push from. Obtained from query response.
39-42 File Index Index of requested file, see query response.
43-46 Requester IP IP of client requesting the file. (Network order)
47-48 Requester port | Port of requesting client.

Table 9: GNUTELLA push request
C Bibliography

o www.gnutella.wego.com
o freenet.sourceforge.net

e Mark Hayden, Ken Birman. Probablistic Broadcast, Department of Computer Sci-
ence, Cornell University, 1995

15

