
INSTRUCTOR’S MANUAL
TO ACCOMPANY

OPERATING
SYSTEM

CONCEPTS
SIXTH EDITION

ABRAHAM SILBERSCHATZ
Bell Laboratories

PETER BAER GALVIN
Corporate Technologies

GREG GAGNE
Westminster College

Copyright c
2001 A. Silberschatz, P. Galvin and Greg Gagne

PREFACE

This volume is an instructor’s manual for the Sixth Edition of Operating-System Concepts by
Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. It consists of answers to the exercises
in the parent text. In cases where the answer to a question involves a long program, algorithm
development, or an essay, no answer is given, but simply the keywords “No Answer” are added.

Although we have tried to produce an instructor’s manual that will aid all of the users of our
book as much as possible, there can always be improvements (improved answers, additional
questions, sample test questions, programming projects, alternative orders of presentation of
the material, additional references, and so on). We invite you, both instructors and students, to
help us in improving this manual. If you have better solutions to the exercises or other items
which would be of use with Operating-System Concepts, we invite you to send them to us for
consideration in later editions of this manual. All contributions will, of course, be properly
credited to their contributor.

Internet electronic mail should be addressed to avi@bell-labs.com. Physical mail may be sent
to Avi Silberschatz, Information Sciences Research Center, MH 2T-310, Bell Laboratories, 600
Mountain Avenue, Murray Hill, NJ 07974, USA.

A. S.
P. B. G
G. G.

iii

CONTENTS

Chapter 1 Introduction . 1

Chapter 2 Computer-System Structures . 5

Chapter 3 Operating-System Structures . 9

Chapter 4 Processes . 13

Chapter 5 Threads . 15

Chapter 6 CPU Scheduling . 17

Chapter 7 Process Synchronization . 23

Chapter 8 Deadlocks . 27

Chapter 9 Memory Management . 31

Chapter 10 Virtual Memory . 37

Chapter 11 File-System Interface . 45

Chapter 12 File-System Implementation . 53

Chapter 13 I/O Systems . 57

Chapter 14 Mass-Storage Structure . 69

Chapter 15 Distributed System Structures . 75

Chapter 16 Distributed File Systems . 77

Chapter 17 Distributed Coordination . 79

Chapter 18 Protection . 81

Chapter 19 Security . 83

Chapter 20 The Linux System . 87

Chapter 21 Windows 2000 . 97

Appendix A The FreeBSD System . 101

Appendix B The Mach System . 101

v

Chapter 1

INTRODUCTION

Chapter 1 introduces the general topic of operating systems and a handful of important concepts
(multiprogramming, time sharing, distributed system, and so on). The purpose is to show why
operating systems are what they are by showing how they developed. In operating systems, as
in much of computer science, we are led to the present by the paths we took in the past, and we
can better understand both the present and the future by understanding the past.

Additional work that might be considered is learning about the particular systems that the
students will have access to at your institution. This is still just a general overview, as specific
interfaces are considered in Chapter 3.

Answers to Exercises

1.1 What are the three main purposes of an operating system?
Answer:

� To provide an environment for a computer user to execute programs on computer
hardware in a convenient and efficient manner.

� To allocate the separate resources of the computer as needed to solve the problem
given. The allocation process should be as fair and efficient as possible.

� As a control program it serves two major functions: (1) supervision of the execution of
user programs to prevent errors and improper use of the computer, and (2) manage-
ment of the operation and control of I/O devices.

1.2 List the four steps that are necessary to run a program on a completely dedicated machine.
Answer:

a. Reserve machine time.

b. Manually load program into memory.

c. Load starting address and begin execution.

d. Monitor and control execution of program from console.

1

2 Chapter 1 Introduction

1.3 What is the main advantage of multiprogramming?
Answer: Multiprogramming makes efficient use of the CPU by overlapping the demands
for the CPU and its I/O devices from various users. It attempts to increase CPU utilization
by always having something for the CPU to execute.

1.4 What are the main differences between operating systems for mainframe computers and
personal computers?
Answer: The design goals of operating systems for those machines are quite different.
PCs are inexpensive, so wasted resources like CPU cycles are inconsequential. Resources
are wasted to improve usability and increase software user interface functionality. Main-
frames are the opposite, so resource use is maximized, at the expensive of ease of use.

1.5 In a multiprogramming and time-sharing environment, several users share the system si-
multaneously. This situation can result in various security problems.

a. What are two such problems?

b. Can we ensure the same degree of security in a time-shared machine as we have in a
dedicated machine? Explain your answer.

Answer:

a. Stealing or copying one’s programs or data; using system resources (CPU, memory,
disk space, peripherals) without proper accounting.

b. Probably not, since any protection scheme devised by humans can inevitably be bro-
ken by a human, and the more complex the scheme, the more difficult it is to feel
confident of its correct implementation.

1.6 Define the essential properties of the following types of operating systems:

a. Batch

b. Interactive

c. Time sharing

d. Real time

e. Network

f. Distributed

Answer:

a. Batch. Jobs with similar needs are batched together and run through the computer
as a group by an operator or automatic job sequencer. Performance is increased by
attempting to keep CPU and I/O devices busy at all times through buffering, off-line
operation, spooling, and multiprogramming. Batch is good for executing large jobs
that need little interaction; it can be submitted and picked up later.

b. Interactive. This system is composed of many short transactions where the results of
the next transaction may be unpredictable. Response time needs to be short (seconds)
since the user submits and waits for the result.

c. Time sharing. This systems uses CPU scheduling and multiprogramming to provide
economical interactive use of a system. The CPU switches rapidly from one user to
another. Instead of having a job defined by spooled card images, each program reads

Answers to Exercises 3

its next control card from the terminal, and output is normally printed immediately
to the screen.

d. Real time. Often used in a dedicated application, this system reads information from
sensors and must respond within a fixed amount of time to ensure correct perfor-
mance.

e. Network.

f. Distributed.This system distributes computation among several physical processors.
The processors do not share memory or a clock. Instead, each processor has its own
local memory. They communicate with each other through various communication
lines, such as a high-speed bus or telephone line.

1.7 We have stressed the need for an operating system to make efficient use of the computing
hardware. When is it appropriate for the operating system to forsake this principle and to
“waste” resources? Why is such a system not really wasteful?
Answer: Single-user systems should maximize use of the system for the user. A GUI
might “waste” CPU cycles, but it optimizes the user’s interaction with the system.

1.8 Under what circumstances would a user be better off using a time-sharing system, rather
than a personal computer or single-user workstation?
Answer: When there are few other users, the task is large, and the hardware is fast, time-
sharing makes sense. The full power of the system can be brought to bear on the user’s
problem. The problem can be solved faster than on a personal computer. Another case
occurs when lots of other users need resources at the same time.
A personal computer is best when the job is small enough to be executed reasonably on it
and when performance is sufficient to execute the program to the user’s satisfaction.

1.9 Describe the differences between symmetric and asymmetric multiprocessing. What are
three advantages and one disadvantage of multiprocessor systems?
Answer: Symmetric multiprocessing treats all processors as equals, and I/O can be pro-
cessed on any CPU. Asymmetric multiprocessing has one master CPU and the remainder
CPUs are slaves. The master distributes tasks among the slaves, and I/O is usually done by
the master only. Multiprocessors can save money by not duplicating power supplies, hous-
ings, and peripherals. They can execute programs more quickly and can have increased
reliability. They are also more complex in both hardware and software than uniprocessor
systems.

1.10 What is the main difficulty that a programmer must overcome in writing an operating
system for a real-time environment?
Answer: The main difficulty is keeping the operating system within the fixed time con-
straints of a real-time system. If the system does not complete a task in a certain time
frame, it may cause a breakdown of the entire system it is running. Therefore when writ-
ing an operating system for a real-time system, the writer must be sure that his scheduling
schemes don’t allow response time to exceed the time constraint.

1.11 Consider the various definitions of operating system. Consider whether the operating sys-
tem should include applications such as Web browsers and mail programs. Argue both
that it should and that it should not, and support your answer.
Answer: No answer.

1.12 What are the tradeoffs inherent in handheld computers?
Answer: No answer.

4 Chapter 1 Introduction

1.13 Consider a computing cluster consisting of two nodes running a database. Describe two
ways in which the cluster software can manage access to the data on the disk. Discuss the
benefits and detriments of each.
Answer: No answer.

Chapter 2

COMPUTER-SYSTEM
STRUCTURES

Chapter 2 discusses the general structure of computer systems. It may be a good idea to re-
view the basic concepts of machine organization and assembly language programming. The
students should be comfortable with the concepts of memory, CPU, registers, I/O, interrupts,
instructions, and the instruction execution cycle. Since the operating system is the interface be-
tween the hardware and user programs, a good understanding of operating systems requires an
understanding of both hardware and programs.

Answers to Exercises

2.1 Prefetching is a method of overlapping the I/O of a job with that job’s own computation.
The idea is simple. After a read operation completes and the job is about to start operating
on the data, the input device is instructed to begin the next read immediately. The CPU and
input device are then both busy. With luck, by the time the job is ready for the next data
item, the input device will have finished reading that data item. The CPU can then begin
processing the newly read data, while the input device starts to read the following data.
A similar idea can be used for output. In this case, the job creates data that are put into a
buffer until an output device can accept them.
Compare the prefetching scheme with the spooling scheme, where the CPU overlaps the
input of one job with the computation and output of other jobs.
Answer: Prefetching is a user-based activity, while spooling is a system-based activity.
Spooling is a much more effective way of overlapping I/O and CPU operations.

2.2 How does the distinction between monitor mode and user mode function as a rudimentary
form of protection (security) system?
Answer: By establishing a set of privileged instructions that can be executed only when
in the monitor mode, the operating system is assured of controlling the entire system at all
times.

2.3 What are the differences between a trap and an interrupt? What is the use of each function?
Answer: An interrupt is a hardware-generated change-of-flow within the system. An
interrupt handler is summoned to deal with the cause of the interrupt; control is then re-

5

6 Chapter 2 Computer-System Structures

turned to the interrupted context and instruction. A trap is a software-generated interrupt.
An interrupt can be used to signal the completion of an I/O to obviate the need for device
polling. A trap can be used to call operating system routines or to catch arithmetic errors.

2.4 For what types of operations is DMA useful? Explain your answer.
Answer: DMA is useful for transferring large quantities of data between memory and
devices. It eliminates the need for the CPU to be involved in the transfer, allowing the
transfer to complete more quickly and the CPU to perform other tasks concurrently.

2.5 Which of the following instructions should be privileged?

a. Set value of timer.

b. Read the clock.

c. Clear memory.

d. Turn off interrupts.

e. Switch from user to monitor mode.

Answer: The following instructions should be privileged:

a. Set value of timer.

b. Clear memory.

c. Turn off interrupts.

d. Switch from user to monitor mode.

2.6 Some computer systems do not provide a privileged mode of operation in hardware. Con-
sider whether it is possible to construct a secure operating system for these computers.
Give arguments both that it is and that it is not possible.
Answer: An operating system for a machine of this type would need to remain in control
(or monitor mode) at all times. This could be accomplished by two methods:

a. Software interpretation of all user programs (like some BASIC, APL, and LISP sys-
tems, for example). The software interpreter would provide, in software, what the
hardware does not provide.

b. Require meant that all programs be written in high-level languages so that all ob-
ject code is compiler-produced. The compiler would generate (either in-line or by
function calls) the protection checks that the hardware is missing.

2.7 Some early computers protected the operating system by placing it in a memory partition
that could not be modified by either the user job or the operating system itself. Describe
two difficulties that you think could arise with such a scheme.
Answer: The data required by the operating system (passwords, access controls, account-
ing information, and so on) would have to be stored in or passed through unprotected
memory and thus be accessible to unauthorized users.

2.8 Protecting the operating system is crucial to ensuring that the computer system operates
correctly. Provision of this protection is the reason behind dual-mode operation, memory
protection, and the timer. To allow maximum flexibility, however, we would also like to
place minimal constraints on the user.

The following is a list of operations that are normally protected. What is the minimal set
of instructions that must be protected?

Answers to Exercises 7

a. Change to user mode.

b. Change to monitor mode.

c. Read from monitor memory.

d. Write into monitor memory.

e. Fetch an instruction from monitor memory.

f. Turn on timer interrupt.

g. Turn off timer interrupt.

Answer: The minimal set of instructions that must be protected are:

a. Change to monitor mode.

b. Read from monitor memory.

c. Write into monitor memory.

d. Turn off timer interrupt.

2.9 Give two reasons why caches are useful. What problems do they solve? What problems
do they cause? If a cache can be made as large as the device for which it is caching (for
instance, a cache as large as a disk), why not make it that large and eliminate the device?
Answer: Caches are useful when two or more components need to exchange data, and
the components perform transfers at differing speeds. Cahces solve the transfer problem
by providing a buffer of intermediate speed between the components. If the fast device
finds the data it needs in the cache, it need not wait for the slower device. The data in
the cache must be kept consistent with the data in the components. If a component has
a data value change, and the datum is also in the cache, the cache must also be updated.
This is especially a problem on multiprocessor systems where more than one process may
be accessing a datum. A component may be eliminated by an equal-sized cache, but only
if: (a) the cache and the component have equivalent state-saving capacity (that is, if the
component retains its data when electricity is removed, the cache must retain data as well),
and (b) the cache is affordable, because faster storage tends to be more expensive.

2.10 Writing an operating system that can operate without interference from malicious or un-
debugged user programs requires some hardware assistance. Name three hardware aids
for writing an operating system, and describe how they could be used together to protect
the operating system.
Answer:

a. Monitor/user mode

b. Privileged instructions

c. Timer

d. Memory protection

2.11 Some CPUs provide for more than two modes of operation. What are two possible uses of
these multiple modes?
Answer: No answer.

2.12 What are the main differences between a WAN and a LAN?
Answer: No answer.

8 Chapter 2 Computer-System Structures

2.13 What network configuration would best suit the following environ- ments?

a. A dormitory floor

b. A university campus

c. A state

d. A nation

Answer: No answer.

Chapter 3

OPERATING-SYSTEM
STRUCTURES

Chapter 3 is concerned with the operating-system interfaces that users (or at least programmers)
actually see: system calls. The treatment is somewhat vague since more detail requires picking
a specific system to discuss. This chapter is best supplemented with exactly this detail for the
specific system the students have at hand. Ideally they should study the system calls and write
some programs making system calls. This chapter also ties together several important concepts
including layered design, virtual machines, Java and the Java virtual machine, system design
and implementation, system generation, and the policy/mechanism difference.

Answers to Exercises

3.1 What are the five major activities of an operating system in regard to process management?
Answer:

� The creation and deletion of both user and system processes

� The suspension and resumption of processes

� The provision of mechanisms for process synchronization

� The provision of mechanisms for process communication

� The provision of mechanisms for deadlock handling

3.2 What are the three major activities of an operating system in regard to memory manage-
ment?
Answer:

� Keep track of which parts of memory are currently being used and by whom.

� Decide which processes are to be loaded into memory when memory space becomes
available.

� Allocate and deallocate memory space as needed.

9

10 Chapter 3 Operating-System Structures

3.3 What are the three major activities of an operating system in regard to secondary-storage
management?
Answer:

� Free-space management.

� Storage allocation.

� Disk scheduling.

3.4 What are the five major activities of an operating system in regard to file management?
Answer:

� The creation and deletion of files

� The creation and deletion of directories

� The support of primitives for manipulating files and directories

� The mapping of files onto secondary storage

� The backup of files on stable (nonvolatile) storage media

3.5 What is the purpose of the command interpreter? Why is it usually separate from the
kernel?
Answer: It reads commands from the user or from a file of commands and executes them,
usually by turning them into one or more system calls. It is usually not part of the kernel
since the command interpreter is subject to changes.

3.6 List five services provided by an operating system. Explain how each provides conve-
nience to the users. Explain also in which cases it would be impossible for user-level pro-
grams to provide these services.
Answer:

� Program execution. The operating system loads the contents (or sections) of a file
into memory and begins its execution. A user-level program could not be trusted to
properly allocate CPU time.

� I/O operations. Disks, tapes, serial lines, and other devices must be communicated
with at a very low level. The user need only specify the device and the operation to
perform on it, while the system converts that request into device- or controller-specific
commands. User-level programs cannot be trusted to only access devices they should
have access to and to only access them when they are otherwise unused.

� File-system manipulation. There are many details in file creation, deletion, allocation,
and naming that users should not have to perform. Blocks of disk space are used by
files and must be tracked. Deleting a file requires removing the name file information
and freeing the allocated blocks. Protections must also be checked to assure proper file
access. User programs could neither ensure adherence to protection methods nor be
trusted to allocate only free blocks and deallocate blocks on file deletion.

� Communications. Message passing between systems requires messages be turned
into packets of information, sent to the network controller, transmitted across a com-
munications medium, and reassembled by the destination system. Packet ordering
and data correction must take place. Again, user programs might not coordinate ac-
cess to the network device, or they might receive packets destined for other processes.

Answers to Exercises 11

� Error detection. Error detection occurs at both the hardware and software levels. At
the hardware level, all data transfers must be inspected to ensure that data have not
been corrupted in transit. All data on media must be checked to be sure they have not
changed since they were written to the media. At the software level, media must be
checked for data consistency; for instance, do the number of allocated and unallocated
blocks of storage match the total number on the device. There, errors are frequently
process-independent (for instance, the corruption of data on a disk), so there must be a
global program (the operating system) that handles all types of errors. Also, by having
errors processed by the operating system, processes need not contain code to catch and
correct all the errors possible on a system.

3.7 What is the purpose of system calls?
Answer: System calls allow user-level processes to request services of the operating sys-
tem.

3.8 Using system calls, write a program in either C or C++ that reads data from one file and
copies it to another file. Such a program was described in Section 3.3.
Answer: Please refer to the supporting Web site for source code solution.

3.9 Why does Java provide the ability to call from a Java program native methods that are
written in, say, C or C++? Provide an example where a native method is useful.
Answer: Java programs are intended to be platform I/O independent. Therefore, the
language does not provide access to most specific system resources such as reading from
I/O devices or ports. To perform a system I/O specific operation, you must write it in a
language that supports such features (such as C or C++.) Keep in mind that a Java pro-
gram that calls a native method written in another language will no longer be architecture-
neutral.

3.10 What is the purpose of system programs?
Answer: System programs can be thought of as bundles of useful system calls. They
provide basic functionality to users and so users do not need to write their own programs
to solve common problems.

3.11 What is the main advantage of the layered approach to system design?
Answer: As in all cases of modular design, designing an operating system in a modular
way has several advantages. The system is easier to debug and modify because changes
affect only limited sections of the system rather than touching all sections of the operating
system. Information is kept only where it is needed and is accessible only within a defined
and restricted area, so any bugs affecting that data must be limited to a specific module or
layer.

3.12 What are the main advantages of the microkernel approach to system design?
Answer: Benefits typically include the following (a) adding a new service does not require
modifying the kernel, (b) it is more secure as more operations are done in user mode than
in kernel mode, and (c) a simpler kernel design and functionality typically results in a more
reliable operating system.

3.13 What is the main advantage for an operating-system designer of using a virtual-machine
architecture? What is the main advantage for a user?
Answer: The system is easy to debug, and security problems are easy to solve. Virtual
machines also provide a good platform for operating system research since many different
operating systems may run on one physical system.

12 Chapter 3 Operating-System Structures

3.14 Why is a just-in-time compiler useful for executing Java programs?
Answer: Java is an interpreted language. This means that the JVM interprets the byte-
code instructions one at a time. Typically, most interpreted environments are slower than
running native binaries, for the interpretation process requires converting each instruction
into native machine code. A just-in-time (JIT) compiler compiles the bytecode for a method
into native machine code the first time the method is encountered. This means that the Java
program is essentially running as a native application (of course, the conversion process of
the JIT takes time as well but not as much as bytecode interpretation.) Furthermore, the JIT
caches compiled code so that it may be reused the next time the method is encountered. A
Java program that is run by a JIT rather than a traditional interpreter typically runs much
faster.

3.15 Why is the separation of mechanism and policy a desirable property?
Answer: Mechanism and policy must be separate to ensure that systems are easy to
modify. No two system installations are the same, so each installation may want to tune
the operating system to suit its needs. With mechanism and policy separate, the policy may
be changed at will while the mechanism stays unchanged. This arrangement provides a
more flexible system.

3.16 The experimental Synthesis operating system has an assembler incorporated within the
kernel. To optimize system-call performance, the kernel assembles routines within kernel
space to minimize the path that the system call must take through the kernel. This ap-
proach is the antithesis of the layered approach, in which the path through the kernel is
extended so that building the operating system is made easier. Discuss the pros and cons
of the Synthesis approach to kernel design and to system-performance optimization.
Answer: Synthesis is impressive due to the performance it achieves through on-the-fly
compilation. Unfortunately, it is difficult to debug problems within the kernel due to the
fluidity of the code. Also, such compilation is system specific, making Synthesis difficult
to port (a new compiler must be written for each architecture).

Chapter 4

PROCESSES

In this chapter we introduce the concepts of a process and concurrent execution; These concepts
are at the very heart of modern operating systems. A process is is a program in execution and
is the unit of work in a modern time-sharing system. Such a system consists of a collection
of processes: Operating-system processes executing system code and user processes executing
user code. All these processes can potentially execute concurrently, with the CPU (or CPUs)
multiplexed among them. By switching the CPU between processes, the operating system can
make the computer more productive. We also introduce the notion of a thread (lightweight
process) and interprocess communication (IPC). Threads are discussed in more detail in Chapter
5.

Answers to Exercises

4.1 MS-DOS provided no means of concurrent processing. Discuss three major complications
that concurrent processing adds to an operating system.

Answer:

� A method of time sharing must be implemented to allow each of several processes to
have access to the system. This method involves the preemption of processes that do
not voluntarily give up the CPU (by using a system call, for instance) and the kernel
being reentrant (so more than one process may be executing kernel code concurrently).

� Processes and system resources must have protections and must be protected from
each other. Any given process must be limited in the amount of memory it can use
and the operations it can perform on devices like disks.

� Care must be taken in the kernel to prevent deadlocks between processes, so processes
aren’t waiting for each other’s allocated resources.

4.2 Describe the differences among short-term, medium-term, and long-term scheduling.

Answer:

13

14 Chapter 4 Processes

� Short-term (CPU scheduler)—selects from jobs in memory those jobs that are ready to
execute and allocates the CPU to them.

� Medium-term—used especially with time-sharing systems as an intermediate schedul-
ing level. A swapping scheme is implemented to remove partially run programs from
memory and reinstate them later to continue where they left off.

� Long-term (job scheduler)—determines which jobs are brought into memory for pro-
cessing.

The primary difference is in the frequency of their execution. The short-term must select a
new process quite often. Long-term is used much less often since it handles placing jobs in
the system and may wait a while for a job to finish before it admits another one.

4.3 A DECSYSTEM-20 computer has multiple register sets. Describe the actions of a context
switch if the new context is already loaded into one of the register sets. What else must
happen if the new context is in memory rather than in a register set and all the register sets
are in use?
Answer: The CPU current-register-set pointer is changed to point to the set containing the
new context, which takes very little time. If the context is in memory, one of the contexts
in a register set must be chosen and be moved to memory, and the new context must be
loaded from memory into the set. This process takes a little more time than on systems
with one set of registers, depending on how a replacement victim is selected.

4.4 Describe the actions a kernel takes to context switch between processes.
Answer: In general, the operating system must save the state of the currently running
process and restore the state of the process scheduled to be run next. Saving the state of a
process typically includes the values of all the CPU registers in addition to memory alloca-
tion. Context switches must also perform many architecture-specific operations, including
flushing data and instruction caches.

4.5 What are the benefits and detriments of each of the following? Consider both the systems
and the programmers’ levels.

a. Symmetric and asymmetric communication

b. Automatic and explicit buffering

c. Send by copy and send by reference

d. Fixed-sized and variable-sized messages

Answer: No answer.

4.6 The correct producer–consumer algorithm in Section 4.4 allows only n � 1 buffers to be
full at any one time. Modify the algorithm to allow all buffers to be utilized fully.
Answer: No answer.

4.7 Consider the interprocess-communication scheme where mailboxes are used.

a. Suppose a process P wants to wait for two messages, one from mailbox A and one
from mailbox B. What sequence of send and receive should it execute?

b. What sequence of send and receive should P execute if P wants to wait for one
message either from mailbox A or from mailbox B (or from both)?

Answers to Exercises 15

c. A receive operation makes a process wait until the mailbox is nonempty. Either
devise a scheme that allows a process to wait until a mailbox is empty, or explain
why such a scheme cannot exist.

Answer: No answer.

4.8 Write a socket-based Fortune Teller server. Your program should create a server that listens
to a specified port. When a client receives a connection, the server should respond with a
random fortune chosen from its database of fortunes.
Answer: No answer.

Chapter 5

THREADS

The process model introduced in Chapter 4 assumed that a process was an executing program
with a single thread of control. Many modern operating systems now provide features for a
process to contain multiple threads of control. This chapter introduces many concepts associated
with multithreaded computer systems and covers how to use Java to create and manipulate
threads. We have found it especially useful to discuss how a Java thread maps to the thread
model of the host operating system.

Answers to Exercises

5.1 Provide two programming examples of multithreading giving improved performance over
a single-threaded solution.
Answer: (1) A Web server that services each request in a separate thread. (2) A paral-
lelized application such as matrix multiplication where different parts of the matrix may
be worked on in parallel. (3) An interactive GUI program such as a debugger where a
thread is used to monitor user input, another thread represents the running application,
and a third thread monitors performance.

5.2 Provide two programming examples of multithreading that would not improve perfor-
mance over a single-threaded solution.
Answer: (1) Any kind of sequential program is not a good candidate to be threaded. An
example of this is a program that calculates an individual tax return. (2) Another example
is a ”shell” program such as the C-shell or Korn shell. Such a program must closely monitor
its own working space such as open files, environment variables, and current working
directory.

5.3 What are two differences between user-level threads and kernel-level threads? Under what
circumstances is one type better than the other?
Answer: (1) User-level threads are unknown by the kernel, whereas the kernel is aware
of kernel threads. (2) User threads are scheduled by the thread library and the kernel
schedules kernel threads. (3) Kernel threads need not be associated with a process whereas
every user thread belongs to a process.

17

18 Chapter 5 Threads

5.4 Describe the actions taken by a kernel to context switch between kernel-level threads.
Answer: Context switching between kernel threads typically requires saving the value of
the CPU registers from the thread being switched out and restoring the CPU registers of
the new thread being scheduled.

5.5 Describe the actions taken by a thread library to context switch between user-level threads.
Answer: Context switching between user threads is quite similar to switching between
kernel threads, although it is dependent on the threads library and how it maps user
threads to kernel threads. In general, context switching between user threads involves
taking a user thread of its LWP and replacing it with another thread. This act typically
involves saving and restoring the state of the registers.

5.6 What resources are used when a thread is created? How do they differ from those used
when a process is created?
Answer: Because a thread is smaller than a process, thread creation typically uses fewer
resources than process creation. Creating a process requires allocating a process control
block (PCB), a rather large data structure. The PCB includes a memory map, list of open
files, and environment variables. Allocating and managing the memory map is typically
the most time-consuming activity. Creating either a user or kernel thread involves allocat-
ing a small data structure to hold a register set, stack, and priority.

5.7 Assume an operating system maps user-level threads to the kernel using the many-to-
many model where the mapping is done through LWPs. Furthermore, the system allows
the developers to create real-time threads. Is it necessary to bound a real-time thread to an
LWP? Explain.
Answer: No Answer.

5.8 Write a multithreaded Pthread or Java program that generates the Fibonacci series. This
program should work as follows: The user will run the program and will enter on the
command line the number of Fibonacci numbers that the program is to generate. The
program will then create a separate thread that will generate the Fibonacci numbers.
Answer: Please refer to the supporting Web site for source code solution.

5.9 Write a multithreaded Pthread or Java program that outputs prime numbers. This program
should work as follows: The user will run the program and will enter a number on the
command line. The program will then create a separate thread that outputs all the prime
numbers less than or equal to the number that the user entered.
Answer: Please refer to the supporting Web site for source code solution.

Chapter 6

CPU SCHEDULING

CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU
among processes, the operating system can make the computer more productive. In this chap-
ter, we introduce the basic scheduling concepts and discuss in great length CPU scheduling.
FCFS, SJF, Round-Robin, Priority, and the other scheduling algorithms should be familiar to the
students. This is their first exposure to the idea of resource allocation and scheduling, so it is
important that they understand how it is done. Gantt charts, simulations, and play acting are
valuable ways to get the ideas across. Show how the ideas are used in other situations (like
waiting in line at a post office, a waiter time sharing between customers, even classes being an
interleaved Round-Robin scheduling of professors).

A simple project is to write several different CPU schedulers and compare their performance
by simulation. The source of CPU and I/O bursts may be generated by random number genera-
tors or by a trace tape. The instructor can make the trace tape up in advance to provide the same
data for all students. The file that I used was a set of jobs, each job being a variable number of
alternating CPU and I/O bursts. The first line of a job was the word JOB and the job number.
An alternating sequence of CPU n and I/O n lines followed, each specifying a burst time. The
job was terminated by an END line with the job number again. Compare the time to process a
set of jobs using FCFS, Shortest-Burst-Time, and Round-Robin scheduling. Round-Robin is more
difficult, since it requires putting unfinished requests back in the ready queue.

Answers to Exercises

6.1 A CPU scheduling algorithm determines an order for the execution of its scheduled pro-
cesses. Given n processes to be scheduled on one processor, how many possible different
schedules are there? Give a formula in terms of n.
Answer: n! (n factorial = n � n – 1 � n – 2 � ... � 2 � 1)

6.2 Define the difference between preemptive and nonpreemptive scheduling. State why strict
nonpreemptive scheduling is unlikely to be used in a computer center.
Answer: Preemptive scheduling allows a process to be interrupted in the midst of its exe-
cution, taking the CPU away and allocating it to another process. Nonpreemptive schedul-

19

20 Chapter 6 CPU Scheduling

ing ensures that a process relinquishes control of the CPU only when it finishes with its
current CPU burst.

6.3 Consider the following set of processes, with the length of the CPU-burst time given in
milliseconds:

Process Burst Time Priority
P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0.

a. Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a
nonpreemptive priority (a smaller priority number implies a higher priority), and RR
(quantum = 1) scheduling.

b. What is the turnaround time of each process for each of the scheduling algorithms in
part a?

c. What is the waiting time of each process for each of the scheduling algorithms in part
a?

d. Which of the schedules in part a results in the minimal average waiting time (over all
processes)?

Answer:

a. The four Gantt charts are

2 3 4 5 1 5 1 5 1 51 13 1 5

1 2 4 53

2 4 3 5 1

1 3 452

SJF

RR

FCFS

Priority

b. Turnaround time

FCFS RR SJF Priority
P1 10 19 19 16
P2 11 2 1 1
P3 13 7 4 18
P4 14 4 2 19
P5 19 14 9 6

c. Waiting time (turnaround time minus burst time)

Answers to Exercises 21

FCFS RR SJF Priority
P1 0 9 9 6
P2 10 1 0 0
P3 11 5 2 16
P4 13 3 1 18
P5 14 9 4 1

d. Shortest Job First

6.4 Suppose that the following processes arrive for execution at the times indicated. Each
process will run the listed amount of time. In answering the questions, use nonpreemptive
scheduling and base all decisions on the information you have at the time the decision
must be made.

Process Arrival Time Burst Time
P1 0.0 8
P2 0.4 4
P3 1.0 1

a. What is the average turnaround time for these processes with the FCFS scheduling
algorithm?

b. What is the average turnaround time for these processes with the SJF scheduling al-
gorithm?

c. The SJF algorithm is supposed to improve performance, but notice that we chose to
run process P1 at time 0 because we did not know that two shorter processes would
arrive soon. Compute what the average turnaround time will be if the CPU is left
idle for the first 1 unit and then SJF scheduling is used. Remember that processes P1

and P2 are waiting during this idle time, so their waiting time may increase. This
algorithm could be known as future-knowledge scheduling.

Answer:

a. 10.53

b. 9.53

c. 6.86

Remember that turnaround time is finishing time minus arrival time, so you have to sub-
tract the arrival times to compute the turnaround times. FCFS is 11 if you forget to subtract
arrival time.

6.5 Consider a variant of the RR scheduling algorithm where the entries in the ready queue are
pointers to the PCBs.

a. What would be the effect of putting two pointers to the same process in the ready
queue?

b. What would be the major advantages and disadvantages of this scheme?

c. How would you modify the basic RR algorithm to achieve the same effect without
the duplicate pointers?

Answer:

22 Chapter 6 CPU Scheduling

a. In effect, that process will have increased its priority since by getting time more often
it is receiving preferential treatment.

b. The advantage is that more important jobs could be given more time, in other words,
higher priority in treatment. The consequence, of course, is that shorter jobs will
suffer.

c. Allot a longer amount of time to processes deserving higher priority. In other words,
have two or more quantums possible in the Round-Robin scheme.

6.6 What advantage is there in having different time-quantum sizes on different levels of a
multilevel queueing system?
Answer: Processes that need more frequent servicing, for instance, interactive processes
such as editors, can be in a queue with a small time quantum. Processes with no need
for frequent servicing can be in a queue with a larger quantum, requiring fewer context
switches to complete the processing, making more efficient use of the computer.

6.7 Consider the following preemptive priority-scheduling algorithm based on dynamically
changing priorities. Larger priority numbers imply higher priority. When a process is
waiting for the CPU (in the ready queue but not running), its priority changes at a rate �;
when it is running, its priority changes at a rate �. All processes are given a priority of 0
when they enter the ready queue. The parameters� and � can be set to give many different
scheduling algorithms.

a. What is the algorithm that results from � > � > 0?

b. What is the algorithm that results from � < � < 0?

Answer:

a. FCFS

b. LIFO

6.8 Many CPU scheduling algorithms are parameterized. For example, the RR algorithm re-
quires a parameter to indicate the time slice. Multilevel feedback queues require parame-
ters to define the number of queues, the scheduling algorithms for each queue, the criteria
used to move processes between queues, and so on.
These algorithms are thus really sets of algorithms (for example, the set of RR algorithms
for all time slices, and so on). One set of algorithms may include another (for example, the
FCFS algorithm is the RR algorithm with an infinite time quantum). What (if any) relation
holds between the following pairs of sets of algorithms?

a. Priority and SJF

b. Multilevel feedback queues and FCFS

c. Priority and FCFS

d. RR and SJF

Answer:

a. The shortest job has the highest priority.

b. The lowest level of MLFQ is FCFS.

c. FCFS gives the highest priority to the job having been in existence the longest.

Answers to Exercises 23

d. None

6.9 Suppose that a scheduling algorithm (at the level of short-term CPU scheduling) favors
those processes that have used the least processor time in the recent past. Why will this al-
gorithm favor I/O-bound programs and yet not permanently starve CPU-bound programs?
Answer: It will favor the I/O-bound programs because of the relatively short CPU burst
request by them; however, the CPU-bound programs will not starve because the I/O-bound
programs will relinquish the CPU relatively often to do their I/O.

6.10 Explain the differences in the degree to which the following scheduling algorithms dis-
criminate in favor of short processes:

a. FCFS

b. RR

c. Multilevel feedback queues

Answer:

a. FCFS—discriminates against short jobs since any short jobs arriving after long jobs
will have a longer waiting time.

b. RR—treats all jobs equally (giving them equal bursts of CPU time) so short jobs will
be able to leave the system faster since they will finish first.

c. Multilevel feedback queues—work similar to the RR algorithm—they discriminate
favorably toward short jobs.

Chapter 7

PROCESS
SYNCHRONIZATION

Chapter 7 is concerned with the topic of process synchronization among concurrently executing
processes. Concurrency is generally very hard for students to deal with correctly, and so we have
tried to introduce it and its problems with the classic process coordination problems: mutual
exclusion, bounded-buffer, readers/writers, and so on. An understanding of these problems
and their solutions is part of current operating-system theory and development.

We first use semaphores and monitors to introduce synchronization techniques. Next, Java
synchronization is introduced to further demonstrate a language-based synchronization tech-
nique.

Answers to Exercises

7.1 What is the meaning of the term busy waiting? What other kinds of waiting are there in an
operating system? Can busy waiting be avoided altogether? Explain your answer.
Answer: No answer.

7.2 Explain why spinlocks are not appropriate for uniprocessor systems yet may be suitable
for multiprocessor systems.
Answer: No answer.

7.3 Prove that, in the bakery algorithm (Section 7.2), the following property holds: If Pi is in its
critical section and Pk (k 6= i) has already chosen its number[k] 6= 0, then (number[i],
i) < (number[k], k).

Answer: No answer.

7.4 The first known correct software solution to the critical-section problem
for two threads was developed by Dekker; it is shown in Figure 7.27. The
two threads, T0 and T1, coordinate activity sharing an object of class Dekker.
Show that the algorithm satisfies all three requirements for the critical-
section problem.

Answer: No answer.

25

26 Chapter 7 Process Synchronization

7.5 The first known correct software solution to the critical-section problem
for n processes with a lower bound on waiting of n � 1 turns was presented
by Eisenberg and McGuire. The processes share the following variables:

enum pstate fidle, want in, in csg;
pstate flag[n];
int turn;

All the elements of flag are initially idle; the initial value of turn is
immaterial (between 0 and n-1). The structure of process Pi is shown in Fig-
ure 7.28.

Prove that the algorithm satisfies all three requirements for the critical-
section problem.

Answer: No answer.

7.6 In Section 7.3, we mentioned that disabling interrupts frequently can af-
fect the system's clock. Explain why it can, and how such effects can be
minimized.

Answer: No answer.

7.7 Show that, if the wait and signal operations are not executed atomically,
then mutual exclusion may be violated.

Answer: No answer.

7.8 The Sleeping-Barber Problem. A barbershop consists of a waiting room with n
chairs and the barber room containing the barber chair. If there are no
customers to be served, the barber goes to sleep. If a customer enters the
barbershop and all chairs are occupied, then the customer leaves the shop.
If the barber is busy but chairs are available, then the customer sits in
one of the free chairs. If the barber is asleep, the customer wakes up the
barber. Write a program to coordinate the barber and the customers.

Answer: Please refer to the supporting Web site for source code solution.

7.9 The Cigarette-Smokers Problem. Consider a system with three smoker processes
and one agent process. Each smoker continuously rolls a cigarette and then
smokes it. But to roll and smoke a cigarette, the smoker needs three in-
gredients: tobacco, paper, and matches. One of the smoker processes has
paper, another has tobacco, and the third has matches. The agent has an
infinite supply of all three materials. The agent places two of the in-
gredients on the table. The smoker who has the remaining ingredient then
makes and smokes a cigarette, signaling the agent on completion. The agent
then puts out another two of the three ingredients, and the cycle repeats.
Write a program to synchronize the agent and the smokers.

Answer: Please refer to the supporting Web site for source code solution.

7.10 Demonstrate that monitors, conditional critical regions, and semaphores are
all equivalent, insofar as the same types of synchronization problems can
be implemented with them.

Answer: No answer.

7.11 Write a bounded-buffer monitor in which the buffers (portions) are embed-
ded within the monitor itself.

Answer: No answer.

Answers to Exercises 27

7.12 The strict mutual exclusion within a monitor makes the bounded-buffer mon-
itor of Exercise 7.11 mainly suitable for small portions.

a. Explain why this assertion is true.

b. Design a new scheme that is suitable for larger portions.

Answer: No answer.

7.13 Suppose that the signal statement can appear as only the last statement in
a monitor procedure. Suggest how the implementation described in Section
7.7 can be simplified.

Answer: No answer.

7.14 Consider a system consisting of processes P1, P2, ..., Pn, each of which has
a unique priority number. Write a monitor that allocates three identical
line printers to these processes, using the priority numbers for deciding
the order of allocation.

Answer: No answer.

7.15 A file is to be shared among different processes, each of which has a unique
number. The file can be accessed simultaneously by several processes, sub-
ject to the following constraint: The sum of all unique numbers associ-
ated with all the processes currently accessing the file must be less than
n. Write a monitor to coordinate access to the file.

Answer: No answer.

7.16 Suppose that we replace the wait and signal operations of monitors with a
single construct await(B), where B is a general Boolean expression that causes
the process executing it to wait until B becomes true.

a. Write a monitor using this scheme to implement the readers--writers prob-
lem.

b. Explain why, in general, this construct cannot be implemented efficiently.

c. What restrictions need to be put on the await statement so that it can
be implemented efficiently? (Hint: Restrict the generality of B; see
kessels [1977].)

Answer: No answer.

7.17 Write a monitor that implements an alarm clock that enables a calling program
to delay itself for a specified number of time units (ticks). You may as-
sume the existence of a real hardware clock that invokes a procedure tick in
your monitor at regular intervals.

Answer: No answer.

7.18 Why does Solaris 2 implement multiple locking mechanisms? Under what cir-
cumstances does it use spinlocks, semaphores, adaptive mutexes, conditional
variables, and readers--writers locks? Why does it use each mechanism? What
is the purpose of turnstiles?

Answer: Solaris 2 provides different locking mechanisms depending on the
application developer's needs. Spinlocks are useful for multiprocessor sys-
tems where a thread can run in a busy-loop (for a short period of time) rather

28 Chapter 7 Process Synchronization

than incurring the overhead of being put in a sleep queue. Mutexes are use-
ful for locking resources. Solaris 2 uses adaptive mutexes, meaning that
the mutex is implemented with a spin lock on multiprocessor machines. Semaphores
and condition variables are more appropriate tools for synchronization when
a resource must be held for a long period of time for spinning is ineffi-
cient for a long duration. Readers/writers locks are useful when readers
and writers both need access to a resource, but the readers are more ac-
tive and performance can be gained not using exclusive access locks. So-
laris 2 uses turnstiles to order the list of threads waiting to acquire ei-
ther an adaptive mutex or a reader--writer lock.

7.19 Why do Solaris 2 and Windows 2000 use spinlocks as a synchronization mech-
anism on only multiprocessor systems and not on uniprocessor systems?

Answer: No answer.

7.20 Explain the differences, in terms of cost, among the three storage types:
volatile, nonvolatile, and stable.

Answer: No answer.

7.21 Explain the purpose of the checkpoint mechanism. How often should check-
points be performed? How does the frequency of checkpoints affect:

� System performance when no failure occurs?

� The time it takes to recover from a system crash?

� The time it takes to recover from a disk crash?

Answer: No answer.

7.22 Explain the concept of transaction atomicity.

Answer: No answer.

7.23 Show that the two-phase locking protocol ensures conflict serializability.

Answer: No answer.

7.24 Show that some schedules are possible under the two-phase locking proto-
col but not possible under the timestamp protocol, and vice versa.

Answer: No answer.

Chapter 8

DEADLOCKS

Deadlock is a problem that can only arise in a system with multiple active asynchronous pro-
cesses. It is important that the students learn the three basic approaches to deadlock: prevention,
avoidance, and detection (although the terms prevention and avoidance are easy to confuse).

It can be useful to pose a deadlock problem in human terms and ask why human systems
never deadlock. Can the students transfer this understanding of human systems to computer
systems?

Projects can involve simulation: create a list of jobs consisting of requests and releases of
resources (single type or multiple types). Ask the students to allocate the resources to prevent
deadlock. This basically involves programming the Banker’s Algorithm.

The survey paper by Coffman, Elphick, and Shoshani [1971] is good supplemental reading,
but you might also consider having the students go back to the papers by Havender [1968],
Habermann [1969], and Holt [1971a]. The last two were published in CACM and so should be
readily available.

Answers to Exercises

8.1 List three examples of deadlocks that are not related to a computer-system environment.
Answer:

� Two cars crossing a single-lane bridge from opposite directions.

� A person going down a ladder while another person is climbing up the ladder.

� Two trains traveling toward each other on the same track.

8.2 Is it possible to have a deadlock involving only one single process? Explain your answer.
Answer: No. This follows directly from the hold-and-wait condition.

8.3 People have said that proper spooling would eliminate deadlocks. Certainly, it eliminates
from contention card readers, plotters, printers, and so on. It is even possible to spool
tapes (called staging them), which would leave the resources of CPU time, memory, and
disk space. Is it possible to have a deadlock involving these resources? If it is, how could

29

30 Chapter 8 Deadlocks

such a deadlock occur? If it is not, why not? What deadlock scheme would seem best to
eliminate these deadlocks (if any are possible), or what condition is violated (if they are
not possible)?
Answer: No answer.

8.4 Consider the traffic deadlock depicted in Figure 8.11.

a. Show that the four necessary conditions for deadlock indeed hold in this example.

b. State a simple rule that will avoid deadlocks in this system.

Answer: No answer.

8.5 Suppose that a system is in an unsafe state. Show that it is possible for the processes to
complete their execution without entering a deadlock state.
Answer: No answer.
In a real computer system, neither the resources available nor the demands of processes for
resources are consistent over long periods (months). Resources break or are replaced, new
processes come and go, new resources are bought and added to the system. If deadlock is
controlled by the banker’s algorithm, which of the following changes can be made safely
(without introducing the possibility of deadlock), and under what circumstances?

a. Increase Available (new resources added)

b. Decrease Available (resource permanently removed from system)

c. Increase Max for one process (the process needs more resources than allowed, it may
want more)

d. Decrease Max for one process (the process decides it does not need that many re-
sources)

e. Increase the number of processes

f. Decrease the number of processes

Answer: No answer.

8.6 Prove that the safety algorithm presented in Section 8.5.3 requires an order of m � n2 op-
erations.
Answer: No answer.

8.7 Consider a system consisting of four resources of the same type that are shared by three
processes, each of which needs at most two resources. Show that the system is deadlock-
free.
Answer: Suppose the system is deadlocked. This implies that each process is holding one
resource and is waiting for one more. Since there are three processes and four resources,
one process must be able to obtain two resources. This process requires no more resources
and, therefore it will return its resources when done.

8.8 Consider a system consisting of m resources of the same type, being shared by n processes.
Resources can be requested and released by processes only one at a time. Show that the
system is deadlock-free if the following two conditions hold:

a. The maximum need of each process is between 1 and m resources

b. The sum of all maximum needs is less than m + n

Answer: Using the terminology of Section 7.6.2, we have:

Answers to Exercises 31

a.
Pn

i = 1 Maxi < m + n

b. Maxi � 1 for all i
Proof: Needi = Maxi � Allocationi

If there exists a deadlock state then:

c.
Pn

i = 1 Allocationi = m

Use a. to get:
P

Needi +
P

Allocationi =
P

Maxi < m + n
Use c. to get:

P
Needi + m < m + n

Rewrite to get:
Pn

i = 1 Needi < n
This implies that there exists a process Pi such that Needi = 0. Since Maxi � 1 it fol-
lows that Pi has at least one resource that it can release. Hence the system cannot be in a
deadlock state.

8.9 Consider a computer system that runs 5,000 jobs per month with no deadlock-prevention
or deadlock-avoidance scheme. Deadlocks occur about twice per month, and the operator
must terminate and rerun about 10 jobs per deadlock. Each job is worth about $2 (in CPU
time), and the jobs terminated tend to be about half-done when they are aborted.

A systems programmer has estimated that a deadlock-avoidance algorithm (like the
banker’s algorithm) could be installed in the system with an increase in the average execu-
tion time per job of about 10 percent. Since the machine currently has 30-percent idle time,
all 5,000 jobs per month could still be run, although turnaround time would increase by
about 20 percent on average.

a. What are the arguments for installing the deadlock-avoidance algorithm?

b. What are the arguments against installing the deadlock-avoidance algorithm?

Answer: No answer.

8.10 We can obtain the banker’s algorithm for a single resource type from the general banker’s
algorithm simply by reducing the dimensionality of the various arrays by 1. Show through
an example that the multiple-resource-type banker’s scheme cannot be implemented by
individual application of the single-resource-type scheme to each resource type.
Answer: No answer.

8.11 Can a system detect that some of its processes are starving? If you answer “yes,” explain
how it can. If you answer “no,” explain how the system can deal with the starvation prob-
lem.
Answer: No answer.

8.12 Consider the following snapshot of a system:

Allocation Max Available
A B C D A B C D A B C D

P0 0 0 1 2 0 0 1 2 1 5 2 0
P1 1 0 0 0 1 7 5 0
P2 1 3 5 4 2 3 5 6
P3 0 6 3 2 0 6 5 2
P4 0 0 1 4 0 6 5 6

Answer the following questions using the banker’s algorithm:

a. What is the content of the matrix Need?

32 Chapter 8 Deadlocks

b. Is the system in a safe state?

c. If a request from process P1 arrives for (0,4,2,0), can the request be granted immedi-
ately?

Answer: No answer.

8.13 Consider the following resource-allocation policy. Requests and releases for resources are
allowed at any time. If a request for resources cannot be satisfied because the resources are
not available, then we check any processes that are blocked, waiting for resources. If they
have the desired resources, then these resources are taken away from them and are given
to the requesting process. The vector of resources for which the waiting process is waiting
is increased to include the resources that were taken away.

For example, consider a system with three resource types and the vector Available
initialized to (4,2,2). If process P0 asks for (2,2,1), it gets them. If P1 asks for (1,0,1), it gets
them. Then, if P0 asks for (0,0,1), it is blocked (resource not available). If P2 now asks for
(2,0,0), it gets the available one (1,0,0) and one that was allocated to P0 (since P0 is blocked).
P0’s Allocation vector goes down to (1,2,1), and its Need vector goes up to (1,0,1).

a. Can deadlock occur? If so, give an example. If not, which necessary condition cannot
occur?

b. Can indefinite blocking occur?

Answer:

a. Deadlock cannot occur because preemption exists.

b. Yes. A process may never acquire all the resources it needs if they are continuously
preempted by a series of requests such as those of process C.

8.14 Suppose that you have coded the deadlock-avoidance safety algorithm and now have been
asked to implement the deadlock-detection algorithm. Can you do so by simply using
the safety algorithm code and redefining Maxi = Waitingi + Allocationi, where Waitingi is
a vector specifying the resources process i is waiting for, and Allocationi is as defined in
Section 8.5 Explain your answer.
Answer: No answer.

Chapter 9

MEMORY
MANAGEMENT

Although many systems are demand paged (discussed in Chapter 10), there are still many that
are not, and in many cases the simpler memory management strategies may be better, especially
for small dedicated systems. We want the student to learn about all of them: resident monitor,
swapping, partitions, paging, and segmentation.

Answers to Exercises

9.1 Name two differences between logical and physical addresses.
Answer: No answer.

9.2 Explain the difference between internal and external fragmentation.
Answer: Internal Fragmentation is the area in a region or a page that is not used by the
job occupying that region or page. This space is unavailable for use by the system until
that job is finished and the page or region is released.

9.3 Describe the following allocation algorithms:

a. First fit

b. Best fit

c. Worst fit

Answer:

a. First-fit: search the list of available memory and allocate the first block that is big
enough.

b. Best-fit: search the entire list of available memory and allocate the smallest block that
is big enough.

c. Worst-fit: search the entire list of available memory and allocate the largest block.
(The justification for this scheme is that the leftover block produced would be larger
and potentially more useful than that produced by the best-fit approach.)

33

34 Chapter 9 Memory Management

9.4 When a process is rolled out of memory, it loses its ability to use the CPU (at least for a
while). Describe another situation where a process loses its ability to use the CPU, but
where the process does not get rolled out.
Answer: When an interrupt occurs.

9.5 Given memory partitions of 100K, 500K, 200K, 300K, and 600K (in order), how would each
of the First-fit, Best-fit, and Worst-fit algorithms place processes of 212K, 417K, 112K, and
426K (in order)? Which algorithm makes the most efficient use of memory?
Answer:

a. First-fit:

b. 212K is put in 500K partition

c. 417K is put in 600K partition

d. 112K is put in 288K partition (new partition 288K = 500K - 212K)

e. 426K must wait

f. Best-fit:

g. 212K is put in 300K partition

h. 417K is put in 500K partition

i. 112K is put in 200K partition

j. 426K is put in 600K partition

k. Worst-fit:

l. 212K is put in 600K partition

m. 417K is put in 500K partition

n. 112K is put in 388K partition

o. 426K must wait

In this example, Best-fit turns out to be the best.

9.6 Consider a system where a program can be separated into two parts: code and data. The
CPU knows whether it wants an instruction (instruction fetch) or data (data fetch or store).
Therefore, two base–limit register pairs are provided: one for instructions and one for data.
The instruction base–limit register pair is automatically read-only, so programs can be
shared among different users. Discuss the advantages and disadvantages of this scheme.
Answer: The major advantage of this scheme is that it is an effective mechanism for code
and data sharing. For example, only one copy of an editor or a compiler needs to be kept in
memory, and this code can be shared by all processes needing access to the editor or com-
piler code. Another advantage is protection of code against erroneous modification. The
only disadvantage is that the code and data must be separated, which is usually adhered
to in a compiler-generated code.

9.7 Why are page sizes always powers of 2?
Answer: Recall that paging is implemented by breaking up an address into a page and
offset number. It is most efficient to break the address into X page bits and Y offset bits,
rather than perform arithmetic on the address to calculate the page number and offset.
Because each bit position represents a power of 2, splitting an address between bits results
in a page size that is a power of 2.

Answers to Exercises 35

9.8 Consider a logical address space of eight pages of 1024 words each, mapped onto a physi-
cal memory of 32 frames.

a. How many bits are there in the logical address?

b. How many bits are there in the physical address?

Answer:

a. Logical address: 13 bits

b. Physical address: 15 bits

9.9 On a system with paging, a process cannot access memory that it does not own; why? How
could the operating system allow access to other memory? Why should it or should it not?
Answer: An address on a paging system is a logical page number and an offset. The
physical page is found by searching a table based on the logical page number to produce
a physical page number. Because the operating system controls the contents of this table,
it can limit a process to accessing only those physical pages allocated to the process. There
is no way for a process to refer to a page it does not own because the page will not be in
the page table. To allow such access, an operating system simply needs to allow entries
for non-process memory to be added to the process’s page table. This is useful when two
or more processes need to exchange data—they just read and write to the same physi-
cal addresses (which may be at varying logical addresses). This makes for very efficient
interprocess communication.

9.10 Consider a paging system with the page table stored in memory.

a. If a memory reference takes 200 nanoseconds, how long does a paged memory refer-
ence take?

b. If we add associative registers, and 75 percent of all page-table references are found
in the associative registers, what is the effective memory reference time? (Assume
that finding a page-table entry in the associative registers takes zero time, if the entry
is there.)

Answer:

a. 400 nanoseconds; 200 nanoseconds to access the page table and 200 nanoseconds to
access the word in memory.

b. Effective access time = 0.75 � (200 nanoseconds) + 0.25 � (400 nanoseconds) = 250
nanoseconds.

9.11 What is the effect of allowing two entries in a page table to point to the same page frame
in memory? Explain how this effect could be used to decrease the amount of time needed
to copy a large amount of memory from one place to another. What effect would updating
some byte on the one page have on the other page?
Answer: By allowing two entries in a page table to point to the same page frame in
memory, users can share code and data. If the code is reentrant, much memory space can
be saved through the shared use of large programs such as text editors, compilers,and
database systems. “Copying” large amounts of memory could be effected by having dif-
ferent page tables point to the same memory location.
However, sharing of nonreentrant code or data means that any user having access to the
code can modify it and these modifications would be reflected in the other user’s “copy.”

36 Chapter 9 Memory Management

9.12 Why are segmentation and paging sometimes combined into one scheme?
Answer: Segmentation and paging are often combined in order to improve upon each
other. Segmented paging is helpful when the page table becomes very large. A large
contiguous section of the page table that is unused can be collapsed into a single segment
table entry with a page-table address of zero. Paged segmentation handles the case of
having very long segments that require a lot of time for allocation. By paging the segments,
we reduce wasted memory due to external fragmentation as well as simplify the allocation.

9.13 Describe a mechanism by which one segment could belong to the address space of two
different processes.
Answer: Since segment tables are a collection of base–limit registers, segments can be
shared when entries in the segment table of two different jobs point to the same physi-
cal location. The two segment tables must have identical base pointers, and the shared
segment number must be the same in the two processes.

9.14 Explain why it is easier to share a reentrant module using segmentation than it is to do so
when pure paging is used.
Answer: Since segmentation is based on a logical division of memory rather than a phys-
ical one, segments of any size can be shared with only one entry in the segment tables of
each user. With paging there must be a common entry in the page tables for each page that
is shared.

9.15 Sharing segments among processes without requiring the same segment number is possi-
ble in a dynamically linked segmentation system.

a. Define a system that allows static linking and sharing of segments without requiring
that the segment numbers be the same.

b. Describe a paging scheme that allows pages to be shared without requiring that the
page numbers be the same.

Answer: Both of these problems reduce to a program being able to reference both its
own code and its data without knowing the segment or page number associated with the
address. MULTICS solved this problem by associating four registers with each process. One
register had the address of the current program segment, another had a base address for
the stack, another had a base address for the global data, and so on. The idea is that all
references have to be indirect through a register that maps to the current segment or page
number. By changing these registers, the same code can execute for different processes
without the same page or segment numbers.

9.16 Consider the following segment table:

Segment Base Length

0 219 600
1 2300 14
2 90 100
3 1327 580
4 1952 96

What are the physical addresses for the following logical addresses?

a. 0,430

b. 1,10

Answers to Exercises 37

c. 2,500

d. 3,400

e. 4,112

Answer:

a. 219 + 430 = 649

b. 2300 + 10 = 2310

c. illegal reference, trap to operating system

d. 1327 + 400 = 1727

e. illegal reference, trap to operating system

9.17 Consider the Intel address translation scheme shown in Figure 9.20.

a. Describe all the steps that the Intel 80386 takes in translating a logical address into a
physical address.

b. What are the advantages to the operating system of hardware that provides such
complicated memory translation hardware?

c. Are there any disadvantages to this address translation system?

Answer:

a. The selector is an index into the segment descriptor table. The segment descriptor
result plus the original offset is used to produce a linear address with a dir, page, and
offset. The dir is an index into a page directory. The entry from the page directory
selects the page table, and the page field is an index into the page table. The entry
from the page table, plus the offset, is the physical address.

b. Such a page translation mechanism offers the flexibility to allow most operating sys-
tems to implement their memory scheme in hardware, instead of having to imple-
ment some parts in hardware and some in software. Because it can be done in hard-
ware, it is more efficient (and the kernel is simpler).

c. Address translation can take longer due to the multiple table lookups it can invoke.
Caches help, but there will still be cache misses.

9.18 In the IBM/370, memory protection is provided through the use of keys. A key is a 4-bit
quantity. Each 2K block of memory has a key (the storage key) associated with it. The CPU
also has a key (the protection key) associated with it. A store operation is allowed only
if both keys are equal, or if either is zero. Which of the following memory-management
schemes could be used successfully with this hardware?

a. Bare machine

b. Single-user system

c. Multiprogramming with a fixed number of processes

d. Multiprogramming with a variable number of processes

e. Paging

f. Segmentation

38 Chapter 9 Memory Management

Answer:

a. Protection not necessary, set system key to 0.

b. Set system key to 0 when in supervisor mode.

c. Region sizes must be fixed in increments of 2k bytes, allocate key with memory
blocks.

d. Same as above.

e. Frame sizes must be in increments of 2k bytes, allocate key with pages.

f. Segment sizes must be in increments of 2k bytes, allocate key with segments.

Chapter 10

VIRTUAL
MEMORY

Virtual memory can be a very interesting subject since it has so many different aspects: page
faults, managing the backing store, page replacement, frame allocation, thrashing, page size.
The objectives of this chapter are to explain these concepts and show how paging works.

A simulation is probably the easiest way to allow the students to program several of the
page-replacement algorithms and see how they really work. If an interactive graphics display
can be used to display the simulation as it works, the students may be better able to understand
how paging works. We also present an exercise that asks the student to develop a Java program
that implements the FIFO and LRU page replacement algorithms.

Answers to Exercises

10.1 Under what circumstances do page faults occur? Describe the actions taken by the oper-
ating system when a page fault occurs.
Answer: A page fault occurs when an access to a page that has not been brought into
main memory takes place. The operating system verifies the memory access, aborting the
program if it is invalid. If it is valid, a free frame is located and I/Ois requested to read
the needed page into the free frame. Upon completion of I/O, the process table and page
table are updated and the instruction is restarted.

10.2 Assume a page reference string for a process with m frames (initially all empty). The
page reference string has length p with n distinct page numbers occurring in it. For any
page-replacement algorithms,

a. What is a lower bound on the number of page faults?

b. What is an upper bound on the number of page faults?

Answer:

a. n

b. p

39

40 Chapter 10 Virtual Memory

10.3 A certain computer provides its users with a virtual-memory space of 232 bytes. The com-
puter has 218 bytes of physical memory. The virtual memory is implemented by paging,
and the page size is 4096 bytes. A user process generates the virtual address 11123456.
Explain how the system establishes the corresponding physical location. Distinguish be-
tween software and hardware operations.
Answer: The virtual address in binary form is

0001 0001 0001 0010 0011 0100 0101 0110

Since the page size is 212, the page table size is 220. Therefore the low-order 12 bits “0100
0101 0110” are used as the displacement into the page, while the remaining 20 bits “0001
0001 0001 0010 0011” are used as the displacement in the page table.

10.4 Which of the following programming techniques and structures are “good” for a demand-
paged environment ? Which are “not good”? Explain your answers.

a. Stack

b. Hashed symbol table

c. Sequential search

d. Binary search

e. Pure code

f. Vector operations

g. Indirection

Answer:

a. Stack—good.

b. Hashed symbol table—not good.

c. Sequential search—good.

d. Binary search—not good.

e. Pure code—good.

f. Vector operations—good.

g. Indirection—not good.

10.5 Assume we have a demand-paged memory. The page table is held in registers. It takes 8
milliseconds to service a page fault if an empty page is available or the replaced page is
not modified, and 20 milliseconds if the replaced page is modified. Memory access time
is 100 nanoseconds.
Assume that the page to be replaced is modified 70 percent of the time. What is the maxi-
mum acceptable page-fault rate for an effective access time of no more than 200 nanosec-
onds?
Answer:

0.2 �sec = (1 � P) � 0.1 �sec + (0.3P)� 8 millisec + (0.7P)� 20 millisec
0.1 = �0.1P + 2400 P + 14000 P
0.1 ' 16,400 P

P ' 0.000006

Answers to Exercises 41

10.6 Consider the following page-replacement algorithms. Rank these algorithms on a five-
point scale from “bad” to “perfect” according to their page-fault rate. Separate those al-
gorithms that suffer from Belady’s anomaly from those that do not.

a. LRU replacement

b. FIFO replacement

c. Optimal replacement

d. Second-chance replacement

Answer:

Rank Algorithm Suffer from Belady’s anomaly
1 Optimal no
2 LRU no
3 Second-chance yes
4 FIFO yes

10.7 When virtual memory is implemented in a computing system, there are certain costs asso-
ciated with the technique and certain benefits. List the costs and the benefits. Is it possible
for the costs to exceed the benefits? If it is, what measures can be taken to ensure that this
does not happen?
Answer: The costs are additional hardware and slower access time. The benefits are
good utilization of memory and larger logical address space than physical address space.

10.8 An operating system supports a paged virtual memory, using a central processor with a
cycle time of 1 microsecond. It costs an additional 1 microsecond to access a page other
than the current one. Pages have 1000 words, and the paging device is a drum that rotates
at 3000 revolutions per minute and transfers 1 million words per second. The following
statistical measurements were obtained from the system:

� 1 percent of all instructions executed accessed a page other than the current page.

� Of the instructions that accessed another page, 80 percent accessed a page already in
memory.

� When a new page was required, the replaced page was modified 50 percent of the
time.

Calculate the effective instruction time on this system, assuming that the system is run-
ning one process only, and that the processor is idle during drum transfers.
Answer:

effective access time = 0.99 � (1 �sec + 0.008� (2 �sec)
+ 0.002� (10,000 �sec + 1,000 �sec)
+ 0.001� (10,000 �sec + 1,000 �sec)

= (0.99 + 0.016 + 22.0 + 11.0) �sec
= 34.0 �sec

10.9 Consider a demand-paging system with the following time-measured utilizations:

CPU utilization 20%
Paging disk 97.7%
Other I/O devices 5%

42 Chapter 10 Virtual Memory

Which (if any) of the following will (probably) improve CPU utilization? Explain your
answer.

a. Install a faster CPU.

b. Install a bigger paging disk.

c. Increase the degree of multiprogramming.

d. Decrease the degree of multiprogramming.

e. Install more main memory.

f. Install a faster hard disk or multiple controllers with multiple hard disks.

g. Add prepaging to the page fetch algorithms.

h. Increase the page size.

Answer: The system obviously is spending most of its time paging, indicating over-
allocation of memory. If the level of multiprogramming is reduced resident processes
would page fault less frequently and the CPU utilization would improve. Another way to
improve performance would be to get more physical memory or a faster paging drum.

a. Get a faster CPU—No.

b. Get a bigger paging drum—No.

c. Increase the degree of multiprogramming—No.

d. Decrease the degree of multiprogramming—Yes.

e. Install more main memory—Likely to improve CPU utilization as more pages can
remain resident and not require paging to or from the disks.

f. Install a faster hard disk, or multiple controllers with multiple hard disks—Also an
improvement, for as the disk bottleneck is removed by faster response and more
throughput to the disks, the CPU will get more data more quickly.

g. Add prepaging to the page fetch algorithms—Again, the CPU will get more data
faster, so it will be more in use. This is only the case if the paging action is amenable
to prefetching (i.e., some of the access is sequential).

h. Increase the page size—Increasing the page size will result in fewer page faults if
data is being accessed sequentially. If data access is more or less random, more
paging action could ensue because fewer pages can be kept in memory and more
data is transferred per page fault. So this change is as likely to decrease utilization
as it is to increase it.

10.10 Consider the two-dimensional array A:

int A[][] = new int[100][100];

where A[0][0] is at location 200, in a paged system with pages of size 200. A small pro-
cess is in page 0 (locations 0 to 199) for manipulating the matrix; thus, every instruction
fetch will be from page 0.

For three page frames, how many page faults are generated by the following array-
initialization loops, using LRU replacement, and assuming page frame 1 has the process
in it, and the other two are initially empty:

Answers to Exercises 43

a. for (int j = 0; j < 100; j++)
for (int i = 0; i < 100; i++)
A[i][j] = 0;

b. for (int i = 0; i < 100; i++)
for (int j = 0; j < 100; j++)
A[i][j] = 0;

Answer: o answer.

10.11 Consider the following page reference string:

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement algorithms, assuming
one, two, three, four, five, six, or seven frames? Remember all frames are initially empty,
so your first unique pages will all cost one fault each.

� LRU replacement

� FIFO replacement

� Optimal replacement

Answer:

Number of frames LRU FIFO Optimal
1 20 20 20
2 18 18 15
3 15 16 11
4 10 14 8
5 8 10 7
6 7 10 7
7 7 7 7

10.12 Suppose that you want to use a paging algorithm that requires a reference bit (such as
second-chance replacement or working-set model), but the hardware does not provide
one. Sketch how you could simulate a reference bit even if one were not provided by the
hardware, or explain why it is not possible to do so. If it is possible, calculate what the
cost would be.
Answer: You can use the valid/invalid bit supported in hardware to simulate the refer-
ence bit. Initially set the bit to invalid. On first reference a trap to the operating system
is generated. The operating system will set a software bit to 1 and reset the valid/invalid
bit to valid.

10.13 You have devised a new page-replacement algorithm that you think may be optimal.
In some contorted test cases, Belady’s anomaly occurs. Is the new algorithm optimal?
Explain your answer.
Answer: No answer.

10.14 Suppose that your replacement policy (in a paged system) is to examine each page regu-
larly and to discarding that page if it has not been used since the last examination. What
would you gain and what would you lose by using this policy rather than LRU or second-
chance replacement?
Answer: No answer

44 Chapter 10 Virtual Memory

10.15 Segmentation is similar to paging but uses variable-sized “pages.” Define two segment-
replacement algorithms based on FIFO and LRU page-replacement schemes. Remember
that since segments are not the same size, the segment that is chosen to be replaced may
not be big enough to leave enough consecutive locations for the needed segment. Con-
sider strategies for systems where segments cannot be relocated, and those for systems
where they can.
Answer:

� FIFO. Find the first segment large enough to accommodate the incoming segment. If
relocation is not possible and no one segment is large enough, select a combination of
segments whose memories are contiguous, which are “closest to the first of the list”
and which can accommodate the new segment. If relocation is possible, rearrange
the memory so that the first N segments large enough for the incoming segment are
contiguous in memory. Add any leftover space to the free-space list in both cases.

� LRU. Select the segment that has not been used for the longest period of time and that
is large enough, adding any leftover space to the free space list. If no one segment
is large enough, select a combination of the “oldest” segments that are contiguous
in memory (if relocation is not available) and that are large enough. If relocation is
available, rearrange the oldest N segments to be contiguous in memory and replace
those with the new segment.

10.16 A page-replacement algorithm should minimize the number of page faults. We can do
this minimization by distributing heavily used pages evenly over all of memory, rather
than having them compete for a small number of page frames. We can associate with each
page frame a counter of the number of pages that are associated with that frame. Then,
to replace a page, we search for the page frame with the smallest counter.

a. Define a page-replacement algorithm using this basic idea. Specifically address the
problems of (1) what the initial value of the counters is, (2) when counters are in-
creased, (3) when counters are decreased, and (4) how the page to be replaced is
selected.

b. How many page faults occur for your algorithm for the following reference string,
for four page frames?

1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.

c. What is the minimum number of page faults for an optimal page-replacement strat-
egy for the reference string in part b with four page frames?

Answer:

a. Define a page-replacement algorithm addressing the problems of:

i. Initial value of the counters—0.
ii. Counters are increased—whenever a new page is associated with that frame.

iii. Counters are decreased—whenever one of the pages associated with that frame
is no longer required.

iv. How the page to be replaced is selected—find a frame with the smallest counter.
Use FIFO for breaking ties.

b. 14 page faults

c. 11 page faults

Answers to Exercises 45

10.17 Consider a demand-paging system with a paging disk that has an average access and
transfer time of 20 milliseconds. Addresses are translated through a page table in main
memory, with an access time of 1 microsecond per memory access. Thus, each memory
reference through the page table takes two accesses. To improve this time, we have added
an associative memory that reduces access time to one memory reference, if the page-table
entry is in the associative memory.
Assume that 80 percent of the accesses are in the associative memory and that, of the
remaining, 10 percent (or 2 percent of the total) cause page faults. What is the effective
memory access time?
Answer:

effective access time = (0.8)� (1 �sec)
+ (0.1)� (2 �sec) + (0.1)� (5002 �sec)

= 501.2 �sec
= 0.5 millisec

10.18 Consider a demand-paged computer system where the degree of multiprogramming is
currently fixed at four. The system was recently measured to determine utilization of CPU
and the paging disk. The results are one of the following alternatives. For each case, what
is happening? Can the degree of multiprogramming be increased to increase the CPU
utilization? Is the paging helping?

a. CPU utilization 13 percent; disk utilization 97 percent

b. CPU utilization 87 percent; disk utilization 3 percent

c. CPU utilization 13 percent; disk utilization 3 percent

Answer:

a. Thrashing is occurring.

b. CPU utilization is sufficiently high to leave things alone, an increase degree of mul-
tiprogramming.

c. Increase the degree of multiprogramming.

10.19 We have an operating system for a machine that uses base and limit registers, but we have
modified the machine to provide a page table. Can the page tables be set up to simulate
base and limit registers? How can they be, or why can they not be?
Answer: The page table can be set up to simulate base and limit registers provided
that the memory is allocated in fixed-size segments. In this way, the base of a segment
can be entered into the page table and the valid/invalid bit used to indicate that portion
of the segment as resident in the memory. There will be some problem with internal
fragmentation.

10.20 What is the cause of thrashing? How does the system detect thrashing? Once it detects
thrashing, what can the system do to eliminate this problem?
Answer: Thrashing is caused by underallocation of the minimum number of pages re-
quired by a process, forcing it to continuously page fault. The system can detect thrashing
by evaluating the level of CPU utilization as compared to the level of multiprogramming.
It can be eliminated by reducing the level of multiprogramming.

10.21 Write a program that implements the FIFO and LRU page-replacement algorithms pre-
sented in this chapter. First, generate a random page-reference string where page num-
bers range from 0..9. Apply the random page-reference string to each algorithm and

46 Chapter 10 Virtual Memory

record the number of page faults incurred by each algorithm. Implement the replacement
algorithms such that the number of page frames can vary from 1..7. Assume that demand
paging is used.
Answer: Please refer to the supporting Web site for source code solution.

Chapter 11

FILE-SYSTEM
INTERFACE

Files are the most obvious object that operating systems manipulate. Everything is typically
stored in files: programs, data, output, etc. The student should learn what a file is to the operat-
ing system and what the problems are (providing naming conventions to allow files to be found
by user programs, protection).

Two problems can crop up with this chapter. First, terminology may be different between
your system and the book. This can be used to drive home the point that concepts are important
and terms must be clearly defined when you get to a new system. Second, it may be difficult to
motivate students to learn about directory structures that are not the ones on the system they
are using. This can best be overcome if the students have two very different systems to consider,
such as a single-user system for a microcomputer and a large, university time-shared system.

Projects might include a report about the details of the file system for the local system. It is
also possible to write programs to implement a simple file system either in memory (allocate a
large block of memory that is used to simulate a disk) or on top of an existing file system. In
many cases, the design of a file system is an interesting project of its own.

Answers to Exercises

11.1 Consider a file system where a file can be deleted and its disk space reclaimed while links
to that file still exist. What problems may occur if a new file is created in the same storage
area or with the same absolute path name? How can these problems be avoided?
Answer: Let F1 be the old file and F2 be the new file. A user wishing to access F1 through
an existing link will actually access F2. Note that the access protection for file F1 is used
rather than the one associated with F2.
This problem can be avoided by insuring that all links to a deleted file are deleted also.
This can be accomplished in several ways:

a. maintain a list of all links to a file, removing each of them when the file is deleted

b. retain the links, removing them when an attempt is made to access a deleted file

c. maintain a file reference list (or counter), deleting the file only after all links or refer-
ences to that file have been deleted.

47

48 Chapter 11 File-System Interface

11.2 Some systems automatically delete all user files when a user logs off or a job terminates,
unless the user explicitly requests that they be kept; other systems keep all files unless the
user explicitly deletes them. Discuss the relative merits of each approach.
Answer: Deleting all files not specifically saved by the user has the advantage of mini-
mizing the file space needed for each user by not saving unwanted or unnecessary files.
Saving all files unless specifically deleted is more secure for the user in that it is not pos-
sible to inadvertently lose files by forgetting to save them.

11.3 Why do some systems keep track of the type of a file, while others leave it to the user or
simply do not implement multiple file types? Which system is “better?”
Answer: Some systems allow different file operations based on the type of the file (for
instance, an ascii file can be read as a stream while a database file can be read via an
index to a block). Other systems leave such interpretation of a file’s data to the process
and provide no help in accessing the data. The method which is “better” depends on the
needs of the processes on the system, and the demands the users place on the operating
system. If a system runs mostly database applications, it may be more efficient for the
operating system to implement a database-type file and provide operations, rather than
making each program implement the same thing (possibly in different ways). For general
purpose systems it may be better to only implement basic file types to keep the operating
system size smaller and allow maximum freedom to the processes on the system.

11.4 Similarly, some systems support many types of structures for a file’s data, while others
simply support a stream of bytes. What are the advantages and disadvantages?
Answer: (See 10.3)

11.5 What are the advantages and disadvantages of recording the name of the creating pro-
gram with the file’s attributes (as is done in the Macintosh Operating System)?
Answer: By recording the name of the creating program, the operating system is able
to implement features (such as automatic program invocation when the file is accessed)
based on this information. It does add overhead in the operating system and require
space in the file descriptor, however.

11.6 Could you simulate a multilevel directory structure with a single-level directory structure
in which arbitrarily long names can be used? If your answer is yes, explain how you can
do so, and contrast this scheme with the multilevel directory scheme. If your answer is
no, explain what prevents your simulation’s success. How would your answer change if
file names were limited to seven characters?
Answer: If arbitrarily long names can be used then it is possible to simulate a multilevel
directory structure. This can be done, for example, by using the character “.” to indicate
the end of a subdirectory. Thus, for example, the name jim.pascal.F1 specifies that F1 is a
file in subdirectory pascal which in turn is in the root directory jim.
If file names were limited to seven characters, then the above scheme could not be utilized
and thus, in general, the answer is no. The next best approach in this situation would be
to use a specific file as a symbol table (directory) to map arbitrarily long names (such
as jim.pascal.F1) into shorter arbitrary names (such as XX00743), which are then used for
actual file access.

11.7 Explain the purpose of the open and close operations.
Answer:

� The open operation informs the system that the named file is about to become active.

� The close operation informs the system that the named file is no longer in active use
by the user who issued the close operation.

Answers to Exercises 49

11.8 Some systems automatically open a file when it is referenced for the first time, and close
the file when the job terminates. Discuss the advantages and disadvantages of this scheme
as compared to the more traditional one, where the user has to open and close the file
explicitly.
Answer: Automatic opening and closing of files relieves the user from the invocation of
these functions, and thus makes it more convenient to the user; however, it requires more
overhead than the case where explicit opening and closing is required.

11.9 Give an example of an application in which data in a file should be accessed in the fol-
lowing order:

a. Sequentially

b. Randomly

Answer:

a. Print the content of the file.

b. Print the content of record i. This record can be found using hashing or index tech-
niques.

11.10 Some systems provide file sharing by maintaining a single copy of a file; other systems
maintain several copies, one for each of the users sharing the file. Discuss the relative
merits of each approach.
Answer: With a single copy, several concurrent updates to a file may result in user
obtaining incorrect information, and the file being left in an incorrect state. With multiple
copies, there is storage waste and the various copies may not be consistent with respect
to each other.

11.11 In some systems, a subdirectory can be read and written by an authorized user, just as
ordinary files can be.

a. Describe the protection problems that could arise.

b. Suggest a scheme for dealing with each of the protection problems you named in
part a.

Answer:

a. One piece of information kept in a directory entry is file location. If a user could
modify this location, then he could access other files defeating the access-protection
scheme.

b. Do not allow the user to directly write onto the subdirectory. Rather, provide system
operations to do so.

11.12 Consider a system that supports 5000 users. Suppose that you want to allow 4990 of these
users to be able to access one file.

a. How would you specify this protection scheme in UNIX?

b. Could you suggest another protection scheme that can be used more effectively for
this purpose than the scheme provided by UNIX?

Answer:

a. There are two methods for achieving this:

50 Chapter 11 File-System Interface

i. Create an access control list with the names of all 4990 users.
ii. Put these 4990 users in one group and set the group access accordingly. This

scheme cannot always be implemented since user groups are restricted by the
system.

b. The universe access information applies to all users unless their name appears in
the access-control list with different access permission. With this scheme you simply
put the names of the remaining ten users in the access control list but with no access
privileges allowed.

11.13 Researchers have suggested that, instead of having an access list associated with each file
(specifying which users can access the file, and how), we should have a user control list
associated with each user (specifying which files a user can access, and how). Discuss the
relative merits of these two schemes.
Answer:

� File control list. Since the access control information is concentrated in one single place,
it is easier to change access control information and this requires less space.

� User control list. This requires less overhead when opening a file.

Review Questions 51

Review Questions

11.1 What is a file?
Answer: A named collection of related data defined by the creator, recorded on sec-
ondary storage.

11.2 List sample file types, based on use, on the VAX under VMS.
Answer:

� source programs (.BAS, .FOR, .COB, .PLI, .PAS, .MAR)

� data files (.DAT)

� text files (.TXT)

� command procedures (.COM)

� mail files (.MAI)

� compiler-listing files (.LIS, .LST)

� object files (.OBJ)

� executable image files (.EXE)

� journal files (.JOU)

11.3 List some file types on the VAX under VMS.
Answer:

� source-language for programs (.BAS, .COB, .FOR, .MAR, .PAS, .PLI, ...)

� binary language (.OBJ, .EXE)

� ASCII code (.TXT)

� mail format (.MAI)

11.4 What does OPEN do?
Answer: Creates memory buffers, creates data control blocks, and creates other data
structures needed for the I/O. If file is new, it also allocates space, and enters name in
directory.

11.5 What does CLOSE do?
Answer: Outputs last buffer of information. Deletes buffers, data control blocks, and
other data structures.

11.6 List advantages of operating system “knowing” and supporting many file types.
Answer: Can prevent user from making ridiculous mistakes. Can make system conve-
nient to use by automatically doing various jobs after one command.

11.7 List the disadvantages of operating system “knowing” and supporting many file types.
Answer: Size of operating system becomes large. Every file type allowed must be de-
fined, thus hinders in creating new file types.

11.8 What is a sequential file?
Answer: A file that is read one record or block or parameter at a time in order, based on
a tape model of a file.

52 Chapter 11 File-System Interface

11.9 What is direct access?
Answer: A file in which any record or block can be read next. Usually the blocks are
fixed length.

11.10 How does user specify block to be fetched in direct access?
Answer: By specifying the relative block number, relative to first block in file, which is
block 0.

11.11 Can a direct access file be read sequentially? Explain.
Answer: Yes. Keep a counter, cp, initially set to 0. After reading record cp, increment cp.

11.12 How can an index file be used to speed up the access in direct-access files?
Answer: Have an index in memory; the index gives the key and the disk location of
its corresponding record. Scan the index to find the record you want, and then access it
directly.

11.13 Explain what ISAM is.
Answer: Indexed sequential access method. The file is stored in sorted order. ISAM has
a master index file, indicating in what part of another index file the key you want is; the
secondary index points to the file records. In both cases, a binary search is used to locate
a record.

11.14 List two types of system directories
Answer:

a. Device directory, describing physical properties of files.

b. File directory, giving logical properties of the files.

11.15 List operations to be performed on directories.
Answer: Search for a file, create a file, delete a file, list a directory, rename a file, traverse
the file system.

11.16 List disadvantages of using a single directory.
Answer: Users have no privacy. Users must be careful in choosing file names, to avoid
names used by others. Users may destroy each others’ work.

11.17 What is the MFD? UFD? How are they related?
Answer: MFD is master-file directory, which points to the UFDs. UFD is user-file directory,
which points to each of user’s files.

11.18 What advantages are there to this two-level directory?
Answer: Users are isolated from each other. Users have more freedom in choosing file
names.

11.19 What disadvantages are there to this two-level directory?
Answer: Without other provisions, two users who want to cooperate with each other are
hampered in reaching each other’s files, and system files are inaccessible.

11.20 How do we overcome the disadvantages of the two-level directory?
Answer: Provide links from one user directory to another, creating path names; system
files become available by letting the command interpreter search your directory first, and
then the system directory if file needed is not in first directory.

Review Questions 53

11.21 What is a file path name?
Answer: A list of the directories, subdirectories, and files we must traverse to reach a
file from the root directory.

11.22 If we use the two-level directory, how do we access common files and programs, like
FORTRAN compiler? Show two or more ways.
Answer:

a. Keep copy of each common file in each user account.

b. Keep common files in a special account of system files, and translate the commands
to path names to those files.

c. Permit path names from one directory to another.

11.23 Why would we want a subdirectory in our account?
Answer: To group files into collections of similar nature, and to protect certain groups
of files from other users.

11.24 List steps you need to follow to delete a subdirectory in your account.
Answer: Delete all files in subdirectory. Change protection code to allow deletion, and
then delete the subdirectory. This procedure must be followed, starting with the deepest
subdirectory.

11.25 What is an acyclic graph?
Answer: A tree that has been corrupted by links to other branches, but does not have
any cyclic paths in it.

11.26 List ways to share files between directories in operating systems.
Answer:

a. Copy file from one account into another.

b. Link directory entry of “copied” file to directory entry of original file.

c. Copy directory entry of file into account file is “copied” into.

11.27 What problems might arise on deletion if a file is shared?
Answer: Copier of file might delete the original shared file, depriving rest of users. They
have a pointer to a deleted directory entry pointing to the original file or one overwritten
by other users of the system, or a new entry pointing to a new file created by the original
user.

11.28 How can we solve this problem?
Answer: Keep a count of the number of links to a file in original directory. As each
person deletes a file, the count decreases by 1.

11.29 What is a general graph?
Answer: A tree structure where links can go from one branch to a node earlier in the
same branch or other branch, allowing cycles.

11.30 What problems arise if the directory structure is a general graph?
Answer: Searching for a particular file may result in searching the same directory many
times. Deletion of the file may result in the reference count to be nonzero even when no
directories point to that file.

54 Chapter 11 File-System Interface

11.31 What is garbage collection?
Answer: Determining what file space is available, and making it available for users.
(Note: garbage collection is also done in BASIC, to reclaim space used by deleted strings.)

11.32 How can we protect files on a single-user system?
Answer:

a. Hide the disks.

b. Use file names that can’t be read.

c. Backup disks.

d. On floppies, place a write-disable-tab on.

11.33 What might damage files?
Answer: Hardware errors, power surges, power failures, disk-head crashes (read/write
head scraping magnetic material off disk), dirt, temperature, humidity, software bugs,
fingerprints on magnetic material, bent disk or cover, vandalism by other users, storing
diskettes near strong magnets which are found in CRTs, radio speakers, and so on.

11.34 List kinds of access we might want to limit on a multiuser system.
Answer: Reading files in given account; creating, writing, or modifying files in given
account; executing files in given account; deleting files in given account.

11.35 List four ways systems might provide for users to protect their files against other users.
Answer:

a. Allowing user to use unprintable characters in naming files so other users can’t de-
termine the complete name.

b. Assigning password(s) to each file that must be given before access is allowed.

c. Assigning an access list, listing everyone who is allowed to use each file.

d. Assigning protection codes to each file, classifying users as system, owner, group,
and world (everyone else).

Chapter 12

FILE-SYSTEM
IMPLEMENTATION

In this chapter we discuss various methods for storing information on secondary storage. The
basic issues are device directory, free space management, and space allocation on a disk.

Answers to Exercises

12.1 Consider a file currently consisting of 100 blocks. Assume that the file control block (and
the index block, in the case of indexed allocation) is already in memory. Calculate how
many disk I/O operations are required for contiguous, linked, and indexed (single-level)
allocation strategies, if, for one block, the following conditions hold. In the contiguous-
allocation case, assume that there is no room to grow in the beginning, but there is room
to grow in the end. Assume that the block information to be added is stored in memory.

a. The block is added at the beginning.

b. The block is added in the middle.

c. The block is added at the end.

d. The block is removed from the beginning.

e. The block is removed from the middle.

f. The block is removed from the end.

Answer:

Contiguous Linked Indexed
a. 201 1 1
b. 101 52 1
c. 1 3 1
d. 198 1 0
e. 98 52 0
f. 0 100 0

55

56 Chapter 12 File-System Implementation

12.2 Consider a system where free space is kept in a free-space list.

a. Suppose that the pointer to the free-space list is lost. Can the system reconstruct the
free-space list? Explain your answer.

b. Suggest a scheme to ensure that the pointer is never lost as a result of memory fail-
ure.

Answer:

a. In order to reconstruct the free list, it would be necessary to perform “garbage collec-
tion.” This would entail searching the entire directory structure to determine which
pages are already allocated to jobs. Those remaining unallocated pages could be
relinked as the free-space list.

b. The free-space list pointer could be stored on the disk, perhaps in several places.

12.3 What problems could occur if a system allowed a file system to be mounted simultane-
ously at more than one location?
Answer: There would be multiple paths to the same file, which could confuse users or
encourage mistakes (deleting a file with one path deletes the file in all the other paths).

12.4 Why must the bit map for file allocation be kept on mass storage, rather than in main
memory?
Answer: In case of system crash (memory failure) the free-space list would not be lost
as it would be if the bit map had been stored in main memory.

12.5 Consider a system that supports the strategies of contiguous, linked, and indexed allo-
cation. What criteria should be used in deciding which strategy is best utilized for a
particular file?
Answer:

� Contiguous – if file is usually accessed sequentially, if file is relatively small.

� Linked – if file is large and usually accessed sequentially.

� Indexed – if file is large and usually accessed randomly.

12.6 Consider a file system on a disk that has both logical and physical block sizes of 512 bytes.
Assume that the information about each file is already in memory. For each of the three
allocation strategies (contiguous, linked, and indexed), answer these questions:

a. How is the logical-to-physical address mapping accomplished in this system? (For
the indexed allocation, assume that a file is always less than 512 blocks long.)

b. If we are currently at logical block 10 (the last block accessed was block 10) and want
to access logical block 4, how many physical blocks must be read from the disk?

Answer: Let Z be the starting file address (block number).

a. Contiguous. Divide the logical address by 512 with X and Y the resulting quotient
and remainder respectively.
i. Add X to Z to obtain the physical block number. Y is the displacement into that

block.
ii. 1

b. Linked. Divide the logical physical address by 511 with X and Y the resulting quo-
tient and remainder respectively.

Answers to Exercises 57

i. Chase down the linked list (getting X + 1 blocks). Y + 1 is the displacement into
the last physical block.

ii. 4

c. Indexed. Divide the logical address by 512 with X and Y the resulting quotient and
remainder respectively.
i. Get the index block into memory. Physical block address is contained in the

index block at location X. Y is the displacement into the desired physical block.
ii. 2

12.7 One problem with contiguous allocation is that the user must preallocate enough space
for each file. If the file grows to be larger than the space allocated for it, special actions
must be taken. One solution to this problem is to define a file structure consisting of
an initial contiguous area (of a specified size). If this area is filled, the operating system
automatically defines an overflow area that is linked to the initial contiguous area. If the
overflow area is filled, another overflow area is allocated. Compare this implementation
of a file with the standard contiguous and linked implementations.
Answer: This method requires more overhead then the standard contiguous allocation.
It requires less overhead than the standard linked allocation.

12.8 Fragmentation on a storage device could be eliminated by recompaction of the informa-
tion. Typical disk devices do not have relocation or base registers (such as are used when
memory is to be compacted), so how can we relocate files? Give three reasons why re-
compacting and relocation of files often are avoided.
Answer: Relocation of files on secondary storage involves considerable overhead —
data blocks would have to be read into main memory and written back out to their new
locations. Furthermore, relocation registers apply only to sequential files, and many disk
files are not sequential. For this same reason, many new files will not require contiguous
disk space; even sequential files can be allocated noncontiguous blocks if links between
logically sequential blocks are maintained by the disk system.

12.9 How do caches help improve performance? Why do systems not use more or larger
caches if they are so useful?
Answer: Caches allow components of differing speeds to communicate more efficiently
by storing data from the slower device, temporarily, in a faster device (the cache). Caches
are, almost by definition, more expensive than the device they are caching for, so increas-
ing the number or size of caches would increase system cost.

12.10 In what situations would using memory as a RAM disk be more useful than using it as a
disk cache?
Answer: In cases where the user (or system) knows exactly what data is going to be
needed. Caches are algorithm-based, while a RAM disk is user-directed.

12.11 Why is it advantageous for the user for an operating system to dynamically allocate its
internal tables? What are the penalties to the operating system for doing so?
Answer: Dynamic tables allow more flexibility in system use growth — tables are never
exceeded, avoiding artificial use limits. Unfortunately, kernel structures and code are
more complicated, so there is more potential for bugs. The use of one resource can take
away more system resources (by growing to accommodate the requests) than with static
tables.

12.12 Explain why logging metadata updates ensures recovery of a file system after a file system
crash.

58 Chapter 12 File-System Implementation

Answer: No answer.

12.13 Explain how the VFS layer allows an operating system easily to support multiple types of
file systems.
Answer: No answer.

12.14 Consider the following backup scheme:

� Day 1. Copy to a backup medium all files from the disk.

� Day 2. Copy to another medium all files changed since day 1.

� Day 3. Copy to another medium all files changed since day 1.

This contrasts to the schedule given in Section 11.6.2 by having all subsequent backups
copy all files modified since the first full backup. What are the benefits of this system over
the one in Section 11.6.2? What are the drawbacks? Are restore operations made easier or
more difficult? Explain your answer.
Answer: Restores are easier because you can go to the last backup tape, rather than the
full tape. No intermediate tapes need be read. More tape is used as more files change.

Review Questions 59

Review Questions

12.1 List three ways of allocating storage, and give advantages of each.
Answer:

a. Contiguous allocation. Fastest, if no changes are to be made. Also easiest for random-
access files.

b. Linked allocation. No external fragmentation. File can grow without complications.

c. Indexed allocation. Supports direct access without external fragmentation.

12.2 What is contiguous allocation?
Answer: Allocation of a group of consecutive sectors for a single file.

12.3 What main difficulty occurs with contiguous allocation?
Answer: Finding space for a new file.

12.4 What is a “hole” in contiguous allocation method?
Answer: An unallocated segment of blocks.

12.5 Explain first-fit, best-fit, and worst-fit methods of allocating space for contiguous files.
Answer:

� First-fit: Scan available blocks of disk for successive free sectors; use the first area
found that has sufficient space; do not scan beyond that point.

� Best-fit: Search for smallest area large enough to place the file.

� Worst-fit: Search for largest area in which to place the file.

12.6 What is external fragmentation in a system with contiguous files?
Answer: The disk has files scattered all over; fragmentation occurs when there is enough
empty space collectively for the next file, but there is no single gap large enough for the
entire file to fit in.

12.7 How can we overcome fragmentation?
Answer: We can use an allocation technique that does not result in fragmentation; or we
can move the files around on disk, putting them closer together, to leave us larger blocks
of available sectors.

12.8 What is preallocation? Why do it?
Answer: Allocating space for a file before creating the file to allow for expansion. This
reserves space for a particular file so that other files can’t grab it. The new file may initially
use only a small portion of this space.

12.9 What is linked allocation, as detailed in text?
Answer: Directory contains pointers to first and last blocks of file. Each block of file
(except last) has pointer to the next block.

12.10 Can linked allocation have external fragmentation? Internal fragmentation?
Answer: External — no. Internal — Yes.

12.11 Can linked allocation be used for direct-access files?
Answer: Not in the form suggested in the book. RSTS on the PDP-11 stores the sector
numbers in the directory, with each group of seven addresses linked to the next group of
seven. Direct access using this modified linked allocation is possible. (This approach is
really a hybrid of linked and indexed allocations.)

60 Chapter 12 File-System Implementation

12.12 What is indexed allocation?
Answer: Each file has its own block of pointers to the sectors of the file.

12.13 Rank the allocation methods on speed.
Answer: Contiguous is fastest. Linked is slower, because the disk head may have to
move between accesses of file. Indexed is slowest, unless the entire index can be kept
in memory at all times. If not, then extra time must be used to access next block of file
indexes.

12.14 List four ways a system could use to determine which sectors are free. Give advantages
of each way.
Answer:

a. Free-space list. Each section indicates a sector that is available. Not encumbered by
a used-sector list.

b. Bit vector is a compact version. Has no links that can be broken.

c. Link all free sectors together in an available list. Takes no usable space. But links
could break.

d. List giving start of each block of free sectors, and a count of number of sectors in this
block. This is fast for use in contiguous storage search.

12.15 List kinds of information we’d likely want to keep in a directory, and estimate number of
bytes needed to store each compactly.
Answer: File name (5 - 15), file type (3), location (4), size (2), protection (2), usage count
(2), time (2), date (2), process ID (3), time-date-process ID for creation, last modification,
last use (3-4 bytes for each time/date), owner (2).

12.16 What data structures can be used for directory information?
Answer:

a. Linear list

b. Linked list

c. Sorted list

d. Linked binary tree

e. Hash table

12.17 What problems might arise with above data structures?
Answer:

a. Linear list is slow to access particular file. Also must decide how to take care of
deletions (mark, copy last entry to it, ...).

b. Linked list requires storage overhead for pointers; also, if link goes bad, rest of files
are lost.

c. Sorted list requires list always to be sorted, which means extra work on creating and
deleting files.

d. Binary tree suffers like linked list.

e. Hash tables are set up for a maximum number of files; also there is a problem with
collisions.

Review Questions 61

12.18 Give advantages of each directory structure above.
Answer:

Linear list Simple to program search.
Linked list Easier to process deletes.
Sorted list Fast access.
Linked binary tree Faster access.
Hash table Fastest access.

Chapter 13

I/O SYSTEMS

The role of the operating system in computer I/O is to manage and control I/O operations and
I/O devices. Although related topics appear in other chapters, here we bring together the pieces
to paint a complete picture. In this chapter we describe I/O Structure, Devices, Device Drivers,
Caching, and Terminal I/O.

Answers to Exercises

13.1 State three advantages of placing functionality in a device controller, rather than in the
kernel. State three disadvantages.
Answer: Three advantages: Bugs are less likely to cause an operating system crash
Performance can be improved by utilizing dedicated hardware and hard-coded algo-
rithms
The kernel is simplified by moving algorithms out of it
Three disadvantages: Bugs are harder to fix - a new firmware version or new hardware is
needed
Improving algorithms likewise require a hardware update rather than just kernel or de-
vice driver update
Embedded algorithms could conflict with application’s use of the device, causing de-
creased performance.

13.2 Consider the following I/O scenarios on a single-user PC.

a. A mouse used with a graphical user interface

b. A tape drive on a multitasking operating system (assume no device preallocation is
available)

c. A disk drive containing user files

d. A graphics card with direct bus connection, accessible through memory-mapped
I/O

63

64 Chapter 13 I/O Systems

For each of these I/O scenarios, would you design the operating system to use buffering,
spooling, caching, or a combination? Would you use polled I/O, or interrupt-driven I/O?
Give reasons for your choices.
Answer:

a. A mouse used with a graphical user interface
Buffering may be needed to record mouse movement during times when higher-
priority operations are taking place. Spooling and caching are inappropriate. Inter-
rupt driven I/O is most appropriate.

b. A tape drive on a multitasking operating system (assume no device preallocation is
available)
Buffering may be needed to manage throughput difference between the tape drive
and the source or destination of the I/O, Caching can be used to hold copies of data
that resides on the tape, for faster access. Spooling could be used to stage data to the
device when multiple users desire to read from or write to it. Interrupt driven I/O
is likely to allow the best performance.

c. A disk drive containing user files
Buffering can be used to hold data while in transit from user space to the disk, and
visa versa. Caching can be used to hold disk-resident data for improved perfor-
mance. Spooling is not necessary because disks are shared-access devices. Interrupt-
driven I/O is best for devices such as disks that transfer data at slow rates.

d. A graphics card with direct bus connection, accessible through memory-mapped
I/O
Buffering may be needed to control multiple access and for performance (double-
buffering can be used to hold the next screen image while displaying the current
one). Caching and spooling are not necessary due to the fast and shared-access
natures of the device. Polling and interrupts are only useful for input and for I/O
completion detection, neither of which is needed for a memory-mapped device.

13.3 The example of handshaking in Section 13.2 used 2 bits: a busy bit and a command-ready
bit. Is it possible to implement this handshaking with only 1 bit? If it is, describe the
protocol. If it is not, explain why 1 bit is insufficient.
Answer: No answer.

13.4 Describe three circumstances under which blocking I/O should be used. Describe three
circumstances under which nonblocking I/O should be used. Why not just implement
nonblocking I/O and have processes busy-wait until their device is ready?
Answer:
Generally, blocking I/O is appropriate when the process will only be waiting for one spe-
cific event. Examples include a disk, tape, or keyboard read by an application program.
Non-blocking I/O is useful when I/O may come from more than one source and the order
of the I/O arrival is not predetermined. Examples include network daemons listening to
more than one network socket, window managers that accept mouse movement as well
as keyboard input, and I/O-management programs, such as a copy command that copies
data between I/O devices. In the last case, the program could optimize its performance
by buffering the input and output and using non-blocking I/O to keep both devices fully
occupied.
Non-blocking I/O is more complicated for programmers, because of the asynchonous
rendezvous that is needed when an I/O occurs. Also, busy waiting is less efficient than
interrupt-driven I/O so the overall system performance would decrease.

Answers to Exercises 65

13.5 Why might a system use interrupt-driven I/O to manage a single serial port, but polling
I/O to manage a front-end processor, such as a terminal concentrator?
Answer: Polling can be more efficient than interrupt-driven I/O. This is the case when
the I/O is frequent and of short duration. Even though a single serial port will perform
I/O relatively infrequently and should thus use interrupts, a collection of serial ports
such as those in a terminal concentrator can produce a lot of short I/O operations, and
interrupting for each one could create a heavy load on the system. A well-timed polling
loop could alleviate that load without wasting many resources through looping with no
I/O needed.

13.6 Polling for an I/O completion can waste a large number of CPU cycles if the processor
iterates a busy-waiting loop many times before the I/O completes. But if the I/O device
is ready for service, polling can be much more efficient than is catching and dispatching
an interrupt. Describe a hybrid strategy that combines polling, sleeping, and interrupts
for I/O device service. For each of these three strategies (pure polling, pure interrupts,
hybrid), describe a computing environment in which that strategy is more efficient than
is either of the others.
Answer: No answer.

13.7 UNIX coordinates the activities of the kernel I/O components by manipulating shared
in-kernel data structures, whereas Windows NT uses object-oriented message passing be-
tween kernel I/O components. Discuss three pros and three cons of each approach.
Answer:
Three pros of the UNIX method: Very efficient, low overhead and low amount of data
movement
Fast implementation — no coordination needed with other kernel components
Simple, so less chance of data loss
Three cons: No data protection, and more possible side-effects from changes so more
difficult to debug
Difficult to implement new I/O methods: new data structures needed rather than just
new objects
Complicated kernel I/O subsystem, full of data structures, access routines, and locking
mechanisms

13.8 How does DMA increase system concurrency? How does it complicate hardware design?
Answer:
DMA increases system concurrency by allowing the CPU to perform tasks while the DMA
system transfers data via the system and memory busses. Hardware design is compli-
cated because the DMA controller must be integrated into the system, and the system
must allow the DMA controller to be a bus master. Cycle stealing may also be necessary
to allow the CPU and DMA controller to share use of the memory bus.

13.9 Write (in pseudocode) an implementation of virtual clocks, including the queuing and
management of timer requests for the kernel and applications. Assume that the hardware
provides three timer channels.
Answer: No answer.

13.10 Why is it important to scale up system bus and device speeds as the CPU speed increases?
Answer:
Consider a system which performs 50% I/O and 50% computes. Doubling the CPU per-
formance on this system would increase total system performance by only 50%. Doubling
both system aspects would increase performance by 100%. Generally, it is important to

66 Chapter 13 I/O Systems

remove the current system bottleneck, and to increase overall system performance, rather
than blindly increasing the performance of individual system components.

13.11 Distinguish between a STREAMS driver and a STREAMS module.
Answer:) No answer.

Chapter 14

MASS
STORAGE
STRUCTURE

In this chapter we describe the internal data structures and algorithms used by the operating
system to implement this interface. We also discuss the lowest level of the file system the sec-
ondary storage structure. We first describe disk-head-scheduling algorithms. Next we discuss
disk formatting and management of boot blocks, damaged blocks, and swap space. We end
with coverage of disk reliability and stable-storage.

The basic implementation of disk scheduling should be fairly clear: requests, queues, servic-
ing, so the main new consideration is the actual algorithms: FCFS, SSTF, SCAN, C-SCAN, LOOK,
C-LOOK. Simulation may be the best way to involve the student with the algorithms exercise
14.7 provides a question amenable to a small but open-ended simulation study.

The paper by Worthington et al. [1994] gives a good presentation of the disk-scheduling
algorithms and their evaluation. Be suspicious of the results of the disk scheduling papers from
the 1970s, such as Teory and Pinkerton [1972], because they generally assume that the seek time
function is linear, rather than a square root. The paper by Lynch [1972b] shows the importance
of keeping the overall system context in mind when choosing scheduling algorithms. Unfortu-
nately, it is fairly difficult to find.

Chapter 2 introduced the concept of primary, secondary, and tertiary storage. In this chapter,
we discuss tertiary storage in more detail. First we describe the types of storage devices used for
tertiary storage. Next, we discuss the issues that arise when an operating system uses tertiary
storage. Finally, we consider some performance aspects of tertiary storage systems.

Answers to Exercises

14.1 None of the disk-scheduling disciplines, except FCFS, is truly fair (starvation may occur).

a. Explain why this assertion is true.

b. Describe a way to modify algorithms such as SCAN to ensure fairness.

c. Explain why fairness is an important goal in a time-sharing system.

d. Give three or more examples of circumstances in which it is important that the op-
erating system be unfair in serving I/O requests.

67

68 Chapter 14 Mass-Storage Structure

Answer:

a. New requests for the track over which the head currently resides can theoretically
arrive as quickly as these requests are being serviced.

b. All requests older than some predetermined age could be “forced” to the top of the
queue, and an associated bit for each could be set to indicate that no new request
could be moved ahead of these requests. For SSTF, the rest of the queue would have
to be reorganized with respect to the last of these “old” requests.

c. To prevent unusually long response times.

d. Paging and swapping should take priority over user requests. It may be desirable
for other kernel-initiated I/O, such as the writing of file system metadata, to take
precedence over user I/O. If the kernel supports real-time process priorities, the I/O
requests of those processes should be favored.

14.2 Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently
serving a request at cylinder 143, and the previous request was at cylinder 125. The queue
of pending requests, in FIFO order, is

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130

Starting from the current head position, what is the total distance (in cylinders) that
the disk arm moves to satisfy all the pending requests, for each of the following disk-
scheduling algorithms?

a. FCFS

b. SSTF

c. SCAN

d. LOOK

e. C-SCAN

Answer:

a. The FCFS schedule is 143, 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. The total
seek distance is 7081.

b. The SSTF schedule is 143, 130, 86, 913, 948, 1022, 1470, 1509, 1750, 1774. The total
seek distance is 1745.

c. The SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 4999, 130, 86. The
total seek distance is 9769.

d. The LOOK schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 130, 86. The total
seek distance is 3319.

e. The C-SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 4999, 86, 130. The
total seek distance is 9813.

f. (Bonus.) The C-LOOK schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 86, 130.
The total seek distance is 3363.

14.3 From elementary physics, we know that when an object is subjected to a constant acceler-
ation a, the relationship between distance d and time t is given by d = 1

2 at2. Suppose that,

Answers to Exercises 69

during a seek, the disk in Exercise 14.2 accelerates the disk arm at a constant rate for the
first half of the seek, then decelerates the disk arm at the same rate for the second half of
the seek. Assume that the disk can perform a seek to an adjacent cylinder in 1 millisecond
and a full-stroke seek over all 5000 cylinders in 18 milliseconds.

a. The distance of a seek is the number of cylinders that the head moves. Explain why
the seek time is proportional to the square root of the seek distance.

b. Write an equation for the seek time as a function of the seek distance. This equation
should be of the form t = x + y

p
L, where t is the time in milliseconds and L is the

seek distance in cylinders.

c. Calculate the total seek time for each of the schedules in Exercise 14.2. Determine
which schedule is the fastest (has the smallest total seek time).

d. The percentage speedup is the time saved divided by the original time. What is the
percentage speedup of the fastest schedule over FCFS?

Answer:

a. Solving d = 1
2 at2 for t gives t =

p
(2d/a).

b. Solve the simultaneous equations t = x + y
p

L that result from (t = 1, L = 1) and
(t = 18, L = 4999) to obtain t = 0.7561 + 0.2439

p
L.

c. The total seek times are: FCFS 65.20; SSTF 31.52; SCAN 62.02; LOOK 40.29; C-SCAN
62.10; (and C-LOOK 40.42). Thus, SSTF is fastest here.

d. (65.20� 31.52)/65.20 = 0.52 The percentage speedup of SSTF over FCFS is 52%, with
respect to the seek time. If we include the overhead of rotational latency and data
transfer, the percentage speedup will be less.

14.4 Suppose that the disk in Exercise 14.3 rotates at 7200 RPM.

a. What is the average rotational latency of this disk drive?

b. What seek distance can be covered in the time that you found for part a?

Answer:

a. 7200 rpm gives 120 rotations per second. Thus, a full rotation takes 8.33 ms, and the
average rotational latency (a half rotation) takes 4.167 ms.

b. Solving t = 0.7561 + 0.2439
p

L for t = 4.167 gives L = 195.58, so we can seek over 195
tracks (about 4% of the disk) during an average rotational latency.

14.5 The accelerating seek described in Exercise 14.3 is typical of hard-disk drives. By contrast,
floppy disks (and many hard disks manufactured before the mid-1980s) typically seek at
a fixed rate. Suppose that the disk in Exercise 14.3 has a constant-rate seek rather than a
constant-acceleration seek, so the seek time is of the form t = x + yL, where t is the time
in milliseconds and L is the seek distance. Suppose that the time to seek to an adjacent
cylinder is 1 millisecond, as before, and is 0.5 milliseconds for each additional cylinder.

a. Write an equation for this seek time as a function of the seek distance.

b. Using the seek-time function from part a, calculate the total seek time for each of the
schedules in Exercise 14.2. Is your answer the same as it was for Exercise 14.3(c)?

c. What is the percentage speedup of the fastest schedule over FCFS in this case?

70 Chapter 14 Mass-Storage Structure

Answer:

a. t = 0.95 + 0.05L

b. FCFS 362.60; SSTF 95.80; SCAN 497.95; LOOK 174.50; C-SCAN 500.15; (and C-LOOK
176.70). SSTF is still the winner, and LOOK is the runner-up.

c. (362.60�95.80)/362.60 = 0.74 The percentage speedup of SSTF over FCFS is 74%, with
respect to the seek time. If we include the overhead of rotational latency and data
transfer, the percentage speedup will be less.

14.6 Write a Java program for disk scheduling using the SCAN and C-SCAN disk-scheduling
algorithms.
Answer: Please refer to the supporting Web site for source code solution.

14.7 Compare the performance of C-SCAN and SCAN scheduling, assuming a uniform distri-
bution of requests. Consider the average response time (the time between the arrival of a
request and the completion of that request’s service), the variation in response time, and
the effective bandwidth. How does performance depend on the relative sizes of seek time
and rotational latency?
Answer:
There is no simple analytical argument to answer the first part of this question. It would
make a good small simulation experiment for the students. The answer can be found in
Figure 2 of Worthington et al. [1994]. (Worthington et al. studied the LOOK algorithm,
but similar results obtain for SCAN. Figure 2 in Worthington et al. shows that C-LOOK
has an average response time just a few percent higher than LOOK but that C-LOOK has
a significantly lower variance in response time for medium and heavy workloads. The
intuitive reason for the difference in variance is that LOOK (and SCAN) tend to favor re-
quests near the middle cylinders, whereas the C-versions do not have this imbalance. The
intuitive reason for the slower response time of C-LOOK is the “circular” seek from one
end of the disk to the farthest request at the other end. This seek satisfies no requests.
It only causes a small performance degradation because the square-root dependency of
seek time on distance implies that a long seek isn’t terribly expensive by comparison with
moderate length seeks.
For the second part of the question, we observe that these algorithms do not schedule to
improve rotational latency; therefore, as seek times decrease relative to rotational latency,
the performance differences between the algorithms will decrease.

14.8 Is disk scheduling, other than FCFS scheduling, useful in a single-user environment? Ex-
plain your answer.
Answer: In a single-user environment, the I/O queue usually is empty. Requests gener-
ally arrive from a single process for one block or for a sequence of consecutive blocks. In
these cases, FCFS is an economical method of disk scheduling. But LOOK is nearly as easy
to program and will give much better performance when multiple processes are perform-
ing concurrent I/O, such as when a Web browser retrieves data in the background while
the operating system is paging and another application is active in the foreground.

14.9 Explain why SSTF scheduling tends to favor middle cylinders over the innermost and
outermost cylinders.
Answer: The center of the disk is the location having the smallest average distance to
all other tracks. Thus the disk head tends to move away from the edges of the disk. Here
is another way to think of it. The current location of the head divides the cylinders into
two groups. If the head is not in the center of the disk and a new request arrives, the new

Answers to Exercises 71

request is more likely to be in the group that includes the center of the disk;, thus, the
head is more likely to move in that direction.

14.10 Requests are not usually uniformly distributed. For example, a cylinder containing the
file system FAT or inodes can be expected to be accessed more frequently than a cylinder
that only contains files. Suppose you know that 50 percent of the requests are for a small,
fixed number of cylinders.

a. Would any of the scheduling algorithms discussed in this chapter be particularly
good for this case? Explain your answer.

b. Propose a disk-scheduling algorithm that gives even better performance by taking
advantage of this “hot spot” on the disk.

c. File systems typically find data blocks via an indirection table, such as a FAT in DOS
or inodes in UNIX. Describe one or more ways to take advantage of this indirection
to improve the disk performance.

Answer:

a. SSTF would take greatest advantage of the situation. FCFS could cause unnecessary
head movement if references to the “high-demand” cylinders were interspersed with
references to cylinders far away.

b. Here are some ideas. Place the hot data near the middle of the disk. Modify SSTF to
prevent starvation. Add the policy that if the disk becomes idle for more than, say,
50 ms, the operating system generates an anticipatory seek to the hot region, since the
next request is more likely to be there.

c. Cache the metadata in primary memory, and locate a file’s data and metadata in
close physical proximity on the disk. (UNIX accomplishes the latter goal by allocat-
ing data and metadata in regions called cylinder groups.)

14.11 Why is rotational latency usually not considered in disk scheduling? How would you
modify SSTF, SCAN, and C-SCAN to include latency optimization?
Answer: Most disks do not export their rotational position information to the host.
Even if they did, the time for this information to reach the scheduler would be subject to
imprecision and the time consumed by the scheduler is variable, so the rotational position
information would become incorrect. Further, the disk requests are usually given in terms
of logical block numbers, and the mapping between logical blocks and physical locations
is very complex.

14.12 How would use of a RAM disk affect your selection of a disk-scheduling algorithm? What
factors would you need to consider? Do the same considerations apply to hard-disk
scheduling, given that the file system stores recently used blocks in a buffer cache in
main memory?
Answer: Disk scheduling attempts to reduce the overhead time of disk head position-
ing. Since a RAM disk has uniform access times, scheduling is largely unnecessary. The
comparison between RAM disk and the main memory disk-cache has no implications for
hard-disk scheduling because we only schedule the buffer cache misses, not the requests
that find their data in main memory.

14.13 Why is it important to balance file system I/O among the disks and controllers on a system
in a multitasking environment?
Answer: A system can only perform at the speed of its slowest bottleneck. Disks or
disk controllers are frequently the bottleneck in modern systems as their individual per-

72 Chapter 14 Mass-Storage Structure

formance cannot keep up with that of the CPU and system bus. By balancing I/O among
disks and controllers, neither an individual disk nor a controller is overwhelmed, so that
bottleneck is avoided.

14.14 What are the tradeoffs involved in rereading code pages from the file system versus using
swap space to store them?
Answer: If code pages are stored in swap space, they can be transferred more quickly
to main memory (because swap space allocation is tuned for faster performance than
general file system allocation). Using swap space can require startup time if the pages
are copied there at process invocation rather than just being paged out to swap space on
demand. Also, more swap space must be allocated if it is used for both code and data
pages.

14.15 Is there any way to implement truly stable storage? Explain your answer.
Answer: Truly stable storage would never lose data. The fundamental technique for
stable storage is to maintain multiple copies of the data, so that if one copy is destroyed,
some other copy is still available for use. But for any scheme, we can imagine a large
enough disaster that all copies are destroyed.

14.16 The reliability of a hard-disk drive is typically described in terms of a quantity called mean
time between failures (MTBF). Although this quantity is called a “time,” the MTBF actually
is measured in drive-hours per failure.

a. If a disk farm contains 1000 drives, each of which has a 750,000 hour MTBF, which
of the following best describes how often a drive failure will occur in that disk farm:
once per thousand years, once per century, once per decade, once per year, once per
month, once per week, once per day, once per hour, once per minute, or once per
second?

b. Mortality statistics indicate that, on the average, a U.S. resident has about 1 chance
in 1000 of dying between ages 20 and 21 years. Deduce the MTBF hours for 20 year
olds. Convert this figure from hours to years. What does this MTBF tell you about
the expected lifetime of a 20 year old?

c. The manufacturer claims a 1-million hour MTBF for a certain model of disk drive.
What can you say about the number of years that one of those drives can be expected
to last?

Answer:

a. 750,000 drive-hours per failure divided by 1000 drives gives 750 hours per failure—
about 31 days or once per month.

b. The human-hours per failure is 8760 (hours in a year) divided by 0.001 failure, giving
a value of 8,760,000 “hours” for the MTBF. 8760,000 hours equals 1000 years. This
tells us nothing about the expected lifetime of a person of age 20.

c. The MTBF tells nothing about the expected lifetime. Hard disk drives are generally
designed to have a lifetime of 5 years. If such a drive truly has a million-hour MTBF,
it is very unlikely that the drive will fail during its expected lifetime.

14.17 The term “fast wide SCSI-II” denotes a SCSI bus that operates at a data rate of 20 megabytes
per second when it moves a packet of bytes between the host and a device. Suppose that
a fast wide SCSI-II disk drive spins at 7200 RPM, has a sector size of 512 bytes, and holds
160 sectors per track.

Answers to Exercises 73

a. Estimate the sustained transfer rate of this drive in megabytes per second.

b. Suppose that the drive has 7000 cylinders, 20 tracks per cylinder, a head switch time
(from one platter to another) of 0.5 millisecond, and an adjacent cylinder seek time
of 2 milliseconds. Use this additional information to give an accurate estimate of the
sustained transfer rate for a huge transfer.

c. Suppose that the average seek time for the drive is 8 milliseconds. Estimate the I/Os
per second and the effective transfer rate for a random-access workload that reads
individual sectors that are scattered across the disk.

d. Calculate the random-access I/Os per second and transfer rate for I/O sizes of 4
kilobytes, 8 kilobytes, and 64 kilobytes.

e. If multiple requests are in the queue, a scheduling algorithm such as SCAN should
be able to reduce the average seek distance. Suppose that a random-access work-
load is reading 8-kilobyte pages, the average queue length is 10, and the scheduling
algorithm reduces the average seek time to 3 milliseconds. Now calculate the I/Os
per second and the effective transfer rate of the drive.

Answer:

a. The disk spins 120 times per second, and each spin transfers a track of 80 KB. Thus,
the sustained transfer rate can be approximated as 9600 KB/s.

b. Suppose that 100 cylinders is a huge transfer. The transfer rate is total bytes divided
by total time. Bytes: 100 cyl * 20 trk/cyl * 80 KB/trk, i.e., 160,000 KB. Time: rotation
time + track switch time + cylinder switch time. Rotation time is 2000 trks / 120
trks per sec, i.e., 16.667 s. Track switch time is 19 switch per cyl * 100 cyl * 0.5 ms,
i.e., 950 ms. Cylinder switch time is 99 * 2 ms, i.e., 198 ms. Thus, the total time is
16.667 + 0.950 + 0.198, i.e., 17.815 s. (We are ignoring any initial seek and rotational
latency, which might add about 12 ms to the schedule, i.e. 0.1%.) Thus the transfer
rate is 8981.2 KB/s. The overhead of track and cylinder switching is about 6.5%.

c. The time per transfer is 8 ms to seek + 4.167 ms average rotational latency + 0.052
ms (calculated from 1 / (120 trk per second * 160 sector per trk)) to rotate one sec-
tor past the disk head during reading. We calculate the transfers per second as
1/(0.012219), i.e., 81.8. Since each transfer is 0.5 KB, the transfer rate is 40.9 KB/s.

d. We ignore track and cylinder crossings for simplicity. For reads of size 4 KB, 8 KB,
and 64 KB, the corresponding I/Os per second are calculated from the seek, rota-
tional latency, and rotational transfer time as in the previous item, giving (respec-
tively) 1/(0.0126), 1/(0.013), and 1/(0.019). Thus we get 79.4, 76.9, and 52.6 transfers
per second, respectively. Transfer rates are obtained from 4, 8, and 64 times these
I/O rates, giving 318 KB/s, 615 KB/s, and 3366 KB/s, respectively.

e. From 1/(3+4.167+0.83) we obtain 125 I/Os per second. From 8 KB per I/O we obtain
1000 KB/s.

14.18 More than one disk drive can be attached to a SCSI bus. In particular, a fast wide SCSI-II
bus (see Exercise 14.17) can be connected to at most 15 disk drives. Recall that this bus has
a bandwidth of 20 megabytes per second. At any time, only one packet can be transferred
on the bus between some disk’s internal cache and the host. However, a disk can be
moving its disk arm while some other disk is transferring a packet on the bus. Also, a
disk can be transferring data between its magnetic platters and its internal cache while
some other disk is transferring a packet on the bus. Considering the transfer rates that

74 Chapter 14 Mass-Storage Structure

you calculated for the various workloads in Exercise 14.17, discuss how many disks can
be used effectively by one fast wide SCSI-II bus.
Answer:
For 8 KB random I/Os on a lightly loaded disk, where the random access time is calculated
to be about 13 ms (see Exercise 14.17), the effective transfer rate is about 615 MB/s. In this
case, 15 disks would have an aggregate transfer rate of less than 10 MB/s, which should
not saturate the bus. For 64 KB random reads to a lightly loaded disk, the transfer rate is
about 3.4 MB/s, so 5 or fewer disk drives would saturate the bus. For 8 KB reads with a
large enough queue to reduce the average seek to 3 ms, the transfer rate is about 1 MB/s,
so the bus bandwidth may be adequate to accommodate 15 disks.

14.19 Remapping of bad blocks by sector sparing or sector slipping could influence perfor-
mance. Suppose that the drive in Exercise 14.17 has a total of 100 bad sectors at random
locations and that each bad sector is mapped to a spare that is located on a different track,
but within the same cylinder. Estimate the number of I/Os per second and the effective
transfer rate for a random-access workload consisting of 8-kilobyte reads, with a queue
length of 1 (that is, the choice of scheduling algorithm is not a factor). What is the effect
of a bad sector on performance?
Answer:
Since the disk holds 22,400,000 sectors, the probability of requesting one of the 100 remapped
sectors is very small. An example of a worst-case event is that we attempt to read, say,
an 8 KB page, but one sector from the middle is defective and has been remapped to the
worst possible location on another track in that cylinder. In this case, the time for the
retrieval could be 8 ms to seek, plus two track switches and two full rotational latencies.
It is likely that a modern controller would read all the requested good sectors from the
original track before switching to the spare track to retrieve the remapped sector and thus
would incur only one track switch and rotational latency. So the time would be 8 ms seek
+ 4.17 ms average rotational latency + 0.05 ms track switch + 8.3 ms rotational latency +
0.83 ms read time (8 KB is 16 sectors, 1/10 of a track rotation). Thus, the time to service
this request would be 21.8 ms, giving an I/O rate of 45.9 requests per second and an ef-
fective bandwidth of 367 KB/s. For a severely time-constrained application this might
matter, but the overall impact in the weighted average of 100 remapped sectors and 22.4
million good sectors is nil.

14.20 Discuss the relative advantages and disadvantages of sector sparing and sector slipping.
Answer:
Sector sparing can cause an extra track switch and rotational latency, causing an unlucky
request to require an extra 8 ms of time. Sector slipping has less impact during future
reading, but at sector remapping time it can require the reading and writing of an entire
track’s worth of data to slip the sectors past the bad spot.

14.21 The operating system generally treats removable disks as shared file systems but assigns
a tape drive to only one application at a time. Give three reasons that could explain this
difference in treatment of disks and tapes. Describe additional features that would be
required of the operating system to support shared file-system access to a tape jukebox.
Would the applications sharing the tape jukebox need any special properties, or could
they use the files as though the files were disk-resident? Explain your answer.
Answer:

a. Disks have fast random-access times, so they give good performance for interleaved
access streams. By contrast, tapes have high positioning times. Consequently, if
two users attempt to share a tape drive for reading, the drive will spend most of its

Answers to Exercises 75

time switching tapes and positioning to the desired data, and relatively little time
performing data transfers. This performance problem is similar to the thrashing of
a virtual memory system that has insufficient physical memory.

b. Tape cartridges are removable. The owner of the data may wish to store the cartridge
off-site (far away from the computer) to keep a copy of the data safe from a fire at
the location of the computer.

c. Tape cartridges are often used to send large volumes of data from a producer of data
to the consumer. Such a tape cartridge is reserved for that particular data transfer
and cannot be used for general-purpose shared storage space.

To support shared file-system access to a tape jukebox, the operating system would need
to perform the usual file-system duties, including

� Manage a file-system name space over the collection of tapes

� Perform space allocation

� Schedule the I/O operations

The applications that access a tape-resident file system would need to be tolerant of
lengthy delays. For improved performance, it would be desirable for the applications
to be able to disclose a large number of I/O operations so that the tape-scheduling algo-
rithms could generate efficient schedules.

14.22 In a disk jukebox, what would be the effect of having more open files than the number of
drives in the jukebox?
Answer: Two bad outcomes could result. One possibility is starvation of the applications
that issue blocking I/Os to tapes that are not mounted in drives. Another possibility is
thrashing, as the jukebox is commanded to switch tapes after every I/O operation.

14.23 What would be the effect on cost and performance if tape storage were to achieve the
same areal density as disk storage?
Answer: To achieve the same areal density as a magnetic disk, the areal density of a
tape would need to improve by two orders of magnitude. This would cause tape storage
to be much cheaper than disk storage. The storage capacity of a tape would increase to
more than 1 terabyte, which could enable a single tape to replace a jukebox of tapes in
today’s technology, further reducing the cost. The areal density has no direct bearing on
the data transfer rate, but the higher capacity per tape might reduce the overhead of tape
switching.

14.24 If magnetic hard disks eventually have the same cost per gigabyte as do tapes, will tapes
become obsolete, or will they still be needed? Explain your answer.
Answer: Tapes are easily removable, so they are useful for off-site backups and for bulk
transfer of data (by sending cartridges). As a rule, a magnetic hard disk is not a removable
medium.

14.25 You can use simple estimates to compare the cost and performance of a terabyte storage
system made entirely from disks with one that incorporates tertiary storage. Suppose that
magnetic disks each hold 10 gigabytes, cost $1000, transfer 5 megabytes per second, and
have an average access latency of 15 milliseconds. Suppose that a tape library costs $10
per gigabyte, transfers 10 megabytes per second, and has an average access latency of 20
seconds. Compute the total cost, the maximum total data rate, and the average waiting
time for a pure disk system. If you make any assumptions about the workload, describe
and justify them. Now, suppose that 5 percent of the data are frequently used, so they

76 Chapter 14 Mass-Storage Structure

must reside on disk, but the other 95 percent are archived in the tape library. Further
suppose that 95 percent of the requests are handled by the disk system and the other 5
percent are handled by the library. What are the total cost, the maximum total data rate,
and the average waiting time for this hierarchical storage system?

Answer: First let’s consider the pure disk system. One terabyte is 1024 GB. To be correct,
we need 103 disks at 10 GB each. But since this question is about approximations, we
will simplify the arithmetic by rounding off the numbers. The pure disk system will have
100 drives. The cost of the disk drives would be $100,000, plus about 20% for cables,
power supplies, and enclosures, i.e., around $120,000. The aggregate data rate would
be 100 � 5 MB/s, or 500 MB/s. The average waiting time depends on the workload.
Suppose that the requests are for transfers of size 8 KB, and suppose that the requests
are randomly distributed over the disk drives. If the system is lightly loaded, a typical
request will arrive at an idle disk, so the response time will be 15 ms access time plus
about 2 ms transfer time. If the system is heavily loaded, the delay will increase, roughly
in proportion to the queue length.

Now let’s consider the hierarchical storage system. The total disk space required is 5%
of 1 TB, which is 50 GB. Consequently, we need 5 disks, so the cost of the disk storage is
$5,000 (plus 20%, i.e., $6,000). The cost of the 950 GB tape library is $9500. Thus the total
storage cost is $15,500. The maximum total data rate depends on the number of drives in
the tape library. We suppose there is only 1 drive. Then the aggregate data rate is 6 � 10
MB/s, i.e., 60 MB/s. For a lightly loaded system, 95% of the requests will be satisfied by
the disks with a delay of about 17 ms. The other 5% of the requests will be satisfied by the
tape library, with a delay of slightly more than 20 seconds. Thus the average delay will be
(95�0.017 + 5�20)/100, or about 1 second. Even with an empty request queue at the tape
library, the latency of the tape drive is responsible for almost all of the system’s response
latency, because 1/20th of the workload is sent to a device that has a 20 second latency. If
the system is more heavily loaded, the average delay will increase in proportion to the
length of the queue of requests waiting for service from the tape drive.

The hierarchical system is much cheaper. For the 95% of the requests that are served by
the disks, the performance is as good as a pure-disk system. But the maximum data rate
of the hierarchical system is much worse than for the pure-disk system, as is the average
response time.

14.26 It is sometimes said that tape is a sequential-access medium, whereas magnetic disk is
a random-access medium. In fact, the suitability of a storage device for random access
depends on the transfer size. The term streaming transfer rate denotes the data rate for a
transfer that is underway, excluding the effect of access latency. By contrast, the effective
transfer rate is the ratio of total bytes per total seconds, including overhead time such as
the access latency.

Suppose that, in a computer, the level 2 cache has an access latency of 8 nanoseconds
and a streaming transfer rate of 800 megabytes per second, the main memory has an ac-
cess latency of 60 nanoseconds and a streaming transfer rate of 80 megabytes per second,
the magnetic disk has an access latency of 15 millisecond and a streaming transfer rate
of 5 megabytes per second, and a tape drive has an access latency of 60 seconds and a
streaming transfer rate of 2 megabytes per seconds.

a. Random access causes the effective transfer rate of a device to decrease, because
no data are transferred during the access time. For the disk described, what is the
effective transfer rate if an average access is followed by a streaming transfer of 512
bytes, 8 kilobytes, 1 megabyte, and 16 megabytes?

Answers to Exercises 77

b. The utilization of a device is the the ratio of effective transfer rate to streaming trans-
fer rate. Calculate the utilization of the disk drive for random access that performs
transfers in each of the four sizes given in part a.

c. Suppose that a utilization of 25 percent (or higher) is considered acceptable. Using
the performance figures given, compute the smallest transfer size for disk that gives
acceptable utilization.

d. Complete the following sentence: A disk is a random-access device for transfers
larger than bytes, and is a sequential-access device for smaller transfers.

e. Compute the minimum transfer sizes that give acceptable utilization for cache, mem-
ory, and tape.

f. When is a tape a random-access device, and when is it a sequential-access device?

Answer: No answer.

14.27 Imagine that a holographic storage drive has been invented. Suppose that a holographic
drive costs $10,000 and has an average access time of 40 milliseconds. Suppose that it
uses a $100 cartridge the size of a CD. This cartridge holds 40,000 images, and each image
is a square black-and-white picture with resolution 6000 � 6000 pixels (each pixel stores
1 bit). Suppose that the drive can read or write 1 picture in 1 millisecond. Answer the
following questions.

a. What would be some good uses for this device?

b. How would this device affect the I/O performance of a computing system?

c. Which other kinds of storage devices, if any, would become obsolete as a result of
this device being invented?

Answer: No answer.

14.28 Suppose that a one-sided 5.25-inch optical-disk cartridge has an areal density of 1 gigabit
per square inch. Suppose that a magnetic tape has an areal density of 20 megabits per
square inch, and is 1/2 inch wide and 1800 feet long. Calculate an estimate of the storage
capacities of these two kinds of storage cartridges. Suppose that an optical tape exists that
has the same physical size as the tape, but the same storage density as the optical disk.
What volume of data could the optical tape hold? What would be a marketable price for
the optical tape if the magnetic tape cost $25?
Answer: The area of a 5.25 inch disk is about 19.625 square inches. If we suppose that the
diameter of the spindle hub is 1.5 inches, the hub occupies an area of about 1.77 square
inches, leaving 17.86 square inches for data storage. Therefore, we estimate the storage
capacity of the optical disk to be 2.2 gigabytes.
The surface area of the tape is 10,800 square inches, so its storage capacity is about 26
gigabytes.
If the 10,800 square inches of tape had a storage density of 1 gigabit per square inch,
the capacity of the tape would be about 1,350 gigabytes, or 1.3 terabytes. If we charge the
same price per gigabyte for the optical tape as for magnetic tape, the optical tape cartridge
would cost about 50 times more than the magnetic tape, i.e., $1,250.

14.29 Suppose that we agree that 1 kilobyte is 1,024 bytes, 1 megabyte is 1, 0242 bytes, and
1 gigabyte is 1, 0243 bytes. This progression continues through terabytes, petabytes, and
exabytes (1, 0246). There are currently several new proposed scientific projects that plan to
record and store a few exabytes of data during the next decade. To answer the following

78 Chapter 14 Mass-Storage Structure

questions, you will need to make a few reasonable assumptions; state the assumptions
that you make.

a. How many disk drives would be required to hold 4 exabytes of data?

b. How many magnetic tapes would be required to hold 4 exabytes of data?

c. How many optical tapes would be required to hold 4 exabytes of data (see Exercise
14.28)?

d. How many holographic storage cartridges would be required to hold 4 exabytes of
data (see Exercise 14.27)?

e. How many cubic feet of storage space would each option require?

Answer:

a. Assume that a disk drive holds 10 GB. Then 100 disks hold 1 TB, 100,000 disks hold
1 PB, and 100,000,000 disks hold 1 EB. To store 4 EB would require about 400 million
disks. If a magnetic tape holds 40 GB, only 100 million tapes would be required.
If an optical tape holds 50 times more data than a magnetic tape, 2 million optical
tapes would suffice. If a holographic cartridge can store 180 GB, about 22.2 million
cartridges would be required.

b. A 3.5” disk drive is about 1” high, 4” wide, and 6” deep. In feet, this is 1/12 by
1/3 by 1/2, or 1/72 cubic feet. Packed densely, the 400 million disks would occupy
5.6 million cubic feet. If we allow a factor of 2 for air space and space for power
supplies, the required capacity is about 11 million cubic feet.

c. A 1/2” tape cartridge is about 1” high and 4.5” square. The volume is about 1/85
cubic feet. For 100 million magnetic tapes packed densely, the volume is about 1.2
million cubic feet. For 2 million optical tapes, the volume is 23,400 cubic feet.

d. A CD-ROM is 4.75” in diameter and about 1/16” thick. If we assume that a holostore
disk is stored in a library slot that is 5” square and 1/8” wide, we calculate the
volume of 22.2 million disks to be about 40,000 cubic feet.

14.30 Discuss how an operating system could maintain a free-space list for a tape-resident file
system. Assume that the tape technology is append-only, and that it uses the EOT mark
and locate, space, and read position commands as described in Section 14.8.2.1.
Answer: Since this tape technology is append-only, all the free space is at the end of
the tape. The location of this free space does not need to be stored at all, because the
space command can be used to position to the EOT mark. The amount of available free
space after the EOT mark can be represented by a single number. It may be desirable to
maintain a second number to represent the amount of space occupied by files that have
been logically deleted (but their space has not been reclaimed since the tape is append-
only) so that we can decide when it would pay to copy the nondeleted files to a new tape
in order to reclaim the old tape for reuse. We can store the free and deleted space numbers
on disk for easy access. Another copy of these numbers can be stored at the end of the
tape as the last data block. We can overwrite this last data block when we allocate new
storage on the tape.

Chapter 15

DISTRIBUTED-
SYSTEM
STRUCTURES

A distributed system is a collection of processors that do not share memory or a clock. In-
stead, each processor has its own local memory. The processors communicate with one another
through various communication networks, such as high-speed buses or telephone lines. In this
chapter, we discuss the general structure of distributed systems and the networks that intercon-
nect them. We contrast the main differences in operating-system design between these types
of systems and the centralized systems with which we were concerned previously. Detailed
discussions are given in Chapters 16 and 17.

Answers to Exercises

15.1 Contrast the various network topologies in terms of reliability.
Answer:) No answer.

15.2 Why do most WANs employ only a partially connected topology?
Answer:) No answer.

15.3 What are two main differences between a WAN and a LAN?
Answer: (1) Distance covered. A WAN can cover hundreds or even thousands of miles,
a LAN typically covers an area less than a kilometer (although it is often much less.) (2)
Speed. WANs typically run at about 56 Kbps, and modern LANs can run up to 1 gigabit.

15.4 What network configuration would best suit the following environments?

a. A dormitory floor

b. A university campus

c. A state

d. A nation

Answer:) No answer.

79

80 Chapter 15 Distributed-System Structures

15.5 Even though the ISO model of networking specifies seven layers of functionality, most
computer systems use fewer layers to implement a network. Why do they use fewer
layers? What problems could the use of fewer layers cause?
Answer: No Answer

15.6 Explain why a doubling of the speed of the systems on an Ethernet segment may result
in decreased network performance. What changes could be made to ameliorate the prob-
lem?
Answer: Faster systems may be able to send more packets in a shorter amount of time.
The network would then have more packets traveling on it, resulting in more collisions,
and therefore less throughput relative to the number of packets being sent. More net-
works can be used, with fewer systems per network, to reduce the number of collisions.

15.7 Under what circumstances is a token-ring network more effective than an Ethernet net-
work?
Answer: A token ring is very effective under high sustained load, as no collisions can
occur and each slot may be used to carry a message, providing high throughput. A token
ring is less effective when the load is light (token processing takes longer than bus access,
so any one packet can take longer to reach its destination), or sporadic.

15.8 Why would it be a bad idea for gateways to pass broadcast packets between networks?
What would be the advantages of doing so?
Answer: All broadcasts would be propagated to all networks, causing a lot of network
traffic. If broadcast traffic were limited to important data (and very little of it), then broad-
cast propagation would save gateways from having to run special software to watch for
this data (such as network routing information) and rebroadcast it.

15.9 What are the advantages of using dedicated hardware devices for routers and gateways?
What are the disadvantages over using general-purpose computers?
Answer: No answer.

15.10 In what ways is using a name server better than using static host tables? What are the
problems and complications associated with name servers? What methods could be used
to decrease the amount of traffic name servers generate to satisfy translation requests?
Answer: Name servers require their own protocol, so they add complication to the sys-
tem. Also, if a name server is down, host information may become unavailable. Backup
name servers are required to avoid this problem. Caches can be used to store frequently
requested host information to cut down on network traffic.

15.11 The original HTTP protocol used TCP/IP as the underlying network protocol. For each
page, graphic, or applet, a separate TCP session was contructed, used, and torn down.
Because of the overhead of building and destroying TCP/IP connections, there were per-
formance problems with this implementation method. Would using UDP rather than TCP
have been a good alternative? What other changes could be made to improve HTTP per-
formance?
Answer: No answer.

15.12 Of what use is an address resolution protocol? Why is the use of such a protocol better
than making each host read each packet to determine to whom it is destined? Does a
token-ring network need such a protocol?
Answer: An ARP translates general-purpose addresses into hardware interface numbers
so the interface can know which packets are for it. Software need not get involved. It is
more efficient than passing each packet to the higher layers. Yes, for the same reason.

Answers to Exercises 81

15.13 What are the advantages and disadvantages of making the computer network transparent
to the user?
Answer: The advantage is that all files are accessed in the same manner. The disadvan-
tage is that the operating system becomes more complex.

15.14 What are two formidable problems that designers must solve to implement a network-
transparent system?
Answer: No answer.

15.15 Process migration within a heterogeneous network is usually impossible, given the dif-
ferences in architectures and operating systems. Describe a method for process migration
across different architectures running:

a. The same operating system

b. Different operating systems

Answer: No answer.

15.16 To build a robust distributed system, you must know what kinds of failures can occur.

a. List three possible types of failure in a distributed system.

b. Specify which of the entries in your list also are applicable to a centralized system.

Answer: No answer.

15.17 Is it always crucial to know that the message you have sent has arrived at its destination
safely? If your answer is “yes,” explain why. If your answer is “no,” give appropriate
examples.
Answer: No. Many status-gathering programs work from the assumption that packets
may not be received by the destination system. These programs generally broadcast a
packet and assume that at least some other systems on their network will receive the
information. For instance a daemon on each system might broadcast the systems load
average and number of users. This information might be used for process migration
target selection. Another example is a program that determines if a remote site is both
running and accessible over the network. If it sends a query and gets no reply it knows
the system cannot currently be reached.

15.18 Present an algorithm for reconstructing a logical ring after a process in the ring fails.
Answer: No answer.

15.19 Consider a distributed system with two sites, A and B. Consider whether site A can dis-
tinguish among the following:

a. B goes down.

b. The link between A and B goes down.

c. B is extremely overloaded and its response time is 100 times longer than normal.

What implications does your answer have for recovery in distributed systems?
Answer: No answer.

Chapter 16

DISTRIBUTED-FILE
SYSTEMS

Chapter 16 looks at the current major research and development in distributed-file systems
(DFS). The purpose of a DFS is to support the same kind of sharing when the files are physi-
cally dispersed among the various sites of a distributed system.

We discuss the various ways a distributed file system can be designed and implemented.
First, we discuss common concepts on which distributed file systems are based. Then, we illus-
trate our concepts by examining the UNIX United, NFS, Andrew, Sprite, and Locus distributed
file systems. By exploring these example systems, we hope to provide a sense of the considera-
tions involved in designing an operating system, and also to indicate current areas of operating-
system research: network and distributed operating systems.

Answers to Exercises

16.1 What are the benefits of a DFS when compared to a file system in a centralized system?
Answer: A DFS allows the same type of sharing available on a centralized system, but
the sharing may occur on physically and logically separate systems. Users across the
world are able to share data as if they were in the same building, allowing a much more
flexible computing environment than would otherwise be available.

16.2 Which of the example DFSs discussed in this chapter would handle a large, multiclient
database application most efficiently? Explain your answer.
Answer: No answer.

16.3 Under which circumstances would a client prefer a location-transparent DFS? Under which
circumstances would she prefer a location-independent DFS? Discuss the reasons for these
preferences.
Answer: Location-transparent DFS is good enough in systems in which files are not
replicated. Location-independent DFS is necessary when any replication is done.

16.4 What aspects of a distributed system would you select for a system running on a totally
reliable network?

83

84 Chapter 16 Distributed-File Systems

Answer: Since the system is totally reliable, a stateful approach would make the most
sense. Error recovery would seldom be needed, allowing the features of a stateful system
to be used. If the network is very fast as well as reliable, caching can be done on the server
side. On a slower network caching on both server and client will speed performance,
as would file location-independence and migration. In addition, RPC-based service is
not needed in the absence of failures, since a key part of its design is recovery during
networking errors. Virtual-circuit systems are simpler and more appropriate for systems
with no communications failures.

16.5 Compare and contrast the techniques of caching disk blocks locally, on a client system,
and remotely, on a server.
Answer: No answer.

16.6 What are the benefits of mapping objects into virtual memory, as Apollo Domain does?
What are the detriments?
Answer: Mapping objects into virtual memory greatly eases the sharing of data be-
tween processes. Rather than opening a file, locking access to it, and reading and writ-
ing sections via the I/O system calls, memory-mapped objects are accessible as “normal”
memory, with reads and writes to locations independent of disk pointers. Locking is
much easier also, since one shared memory location can be used as a locking variable for
semaphore access. Unfortunately, memory mapping adds complexity to the operating
system, especially in a distributed system.

16.7 Describe some of the fundamental differences between AFS and NFS
Answer:) No answer.

Chapter 17

DISTRIBUTED
COORDINATION

Chapter 17 examines various mechanisms for process synchronization and communication, as
well as methods for dealing with the deadlock problem, in a distributed environment. In addi-
tion, since a distributed system may suffer from a variety of failures that are not encountered in
a centralized system, we also discuss here the issue of failure in a distributed system.

Answers to Exercises

17.1 Discuss the advantages and disadvantages of the two methods we presented for generat-
ing globally unique timestamps.
Answer: No answer.

17.2 Your company is building a computer network, and you have been asked to write an al-
gorithm for achieving distributed mutual exclusion. Which scheme will you use? Explain
your choice.
Answer: No answer.

17.3 Why is deadlock detection much more expensive in a distributed environment than it is
in a centralized environment?
Answer: No answer.

17.4 Your company is building a computer network, and you are asked to develop a scheme
for dealing with the deadlock problem.

a. Would you use a deadlock-detection scheme, or a deadlock-prevention scheme?

b. If you were to use a deadlock-prevention scheme, which one would you use? Ex-
plain your choice.

c. If you were to use a deadlock-detection scheme which one would you use? Explain
your choice.

Answer: No answer.

85

86 Chapter 17 Distributed Coordination

17.5 Consider the following hierarchical deadlock-detection algorithm in which the global wait-
for graph is distributed over a number of different controllers, which are organized in a
tree. Each nonleaf controller maintains a wait-for graph that contains relevant informa-
tion from the graphs of the controllers in the subtree below it. In particular, let SA, SB,
and SC be controllers such that SC is the lowest common ancestor of SA and SB (SC must
be unique, since we are dealing with a tree.) Suppose that node Ti appears in the local
wait-for graph of controllers SA and SB. Then, Ti must also appear in the local wait-for
graph of

� Controller SC

� Every controller in the path from SC to SA

� Every controller in the path from SC to SB

In addition, if Ti and Tj appear in the wait-for graph of controller SD and there exists a
path from Ti to Tj in the wait-for graph of one of the children of SD, then an edge Ti ! Tj

must be in the wait-for graph of SD.
Show that if a cycle exists in any of the wait-for graphs, then the system is deadlocked.

Answer: No answer.

17.6 Derive an election algorithm for bidirectional rings that is more efficient than the one
presented in this chapter. How many messages are needed for n processes?
Answer: No answer.

17.7 Consider a failure that occurs during two-phase commit for a transaction. For each pos-
sible failure, explain how two-phase commit ensures transaction atomicity despite the
failure.
Answer: No answer.

Chapter 18

PROTECTION

The various processes in an operating system must be protected from one another’s activities.
For that purpose, various mechanisms exist that can be used to ensure that the files, memory
segments, CPU, and other resources can be operated on by only those processes that have gained
proper authorization from the operating system.

In this chapter, we examine the problem of protection in great detail and develop a unifying
model for implementing protection.

It is important that the student learn the concepts of the access matrix, access lists, and
capabilities. Capabilities have been used in several modern systems and can be tied in with
abstract data types. The paper by Lampson [1971] is the classic reference on protection.

Answers to Exercises

18.1 What are the main differences between capability lists and access lists?
Answer: An access list is a list for each object consisting of the domains with a nonempty
set of access rights for that object. A capability list is a list of objects and the operations
allowed on those objects for each domain.

18.2 A Burroughs B7000/B6000 MCP file can be tagged as sensitive data. When such a file is
deleted, its storage area is overwritten by some random bits. For what purpose would
such a scheme be useful?
Answer: This would be useful as an extra security measure so that the old content of
memory cannot be accessed, either intentionally or by accident, by another program. This
is especially useful for any highly classified information.

18.3 In a ring-protection system, level 0 has the greatest access to objects, and level n (greater
than zero) has fewer access rights. The access rights of a program at a particular level in
the ring structure are considered as a set of capabilities. What is the relationship between
the capabilities of a domain at level j and a domain at level i to an object (for j > i)?
Answer: Dj is a subset of Di.

87

88 Chapter 18 Protection

18.4 Consider a system in which “computer games” can be played by students only between
10 P.M. and 6 A.M., by faculty members between 5 P.M. and 8 A.M., and by the computer
center staff at all times. Suggest a scheme for implementing this policy efficiently.
Answer: Set up a dynamic protection structure that changes the set of resources available
with respect to the time allotted to the three categories of users. As time changes, so does
the domain of users eligible to play the computer games. When the time comes that a
user’s eligibility is over, a revocation process must occur. Revocation could be immediate,
selective (since the computer staff may access it at any hour), total, and temporary (since
rights to access will be given back later in the day).

18.5 The RC 4000 system (and other systems) have defined a tree of processes (called a process
tree) such that all the descendants of a process are given resources (objects) and access
rights by their ancestors only. Thus, a descendant can never have the ability to do any-
thing that its ancestors cannot do. The root of the tree is the operating system, which has
the ability to do anything. Assume the set of access rights was represented by an access
matrix, A. A(x,y) defines the access rights of process x to object y. If x is a descendant of z,
what is the relationship between A(x,y) and A(z,y) for an arbitrary object y?
Answer: A(x,y) is a subset of A(z,y).

18.6 What hardware features are needed for efficient capability manipulation? Can these be
used for memory protection?
Answer: No answer.

18.7 Consider a computing environment where a unique number is associated with each pro-
cess and each object in the system. Suppose that we allow a process with number n to
access an object with number m only if n > m. What type of protection structure do we
have?
Answer: Hierarchical structure.

18.8 What protection problems may arise if a shared stack is used for parameter passing?
Answer: No answer.

18.9 Consider a computing environment where a process is given the privilege of accessing an
object only n times. Suggest a scheme for implementing this policy.
Answer: Add an integer counter with the capability.

18.10 If all the access rights to an object are deleted, the object can no longer be accessed. At
this point, the object should also be deleted, and the space it occupies should be returned
to the system. Suggest an efficient implementation of this scheme.
Answer: Reference counts.

18.11 What is the need-to-know principle? Why is it important for a protection system to adhere
to this principle?
Answer: A process may access at any time those resources that it has been authorized to
access and are required currently to complete its task. It is important in that it limits the
amount of damage a faulty process can cause in a system.

18.12 Why is it difficult to protect a system in which users are allowed to do their own I/O?
Answer: No answer.

18.13 Capability lists are usually kept within the address space of the user. How does the sys-
tem ensure that the user cannot modify the contents of the list?
Answer: No answer.

Answers to Exercises 89

18.14 Describe how the Java protection model would be sacrificed if a Java program were al-
lowed to directly alter the annotations of its stack frame.
Answer: No answer.

Chapter 19

SECURITY

The information stored in the system (both data and code), as well as the physical resources of
the computer system, need to be protected from unauthorized access, malicious destruction or
alteration, and accidental introduction of inconsistency. In this chapter, we examine the ways in
which information may be misused or intentionally made inconsistent. We then present mech-
anisms to guard against this occurrence.

Answers to Exercises

19.1 A password may become known to other users in a variety of ways. Is there a simple
method for detecting that such an event has occurred? Explain your answer.
Answer: Whenever a user logs in, the system prints the last time that user was logged
on the system.

19.2 The list of all passwords is kept within the operating system. Thus, if a user manages
to read this list, password protection is no longer provided. Suggest a scheme that will
avoid this problem. (Hint: Use different internal and external representations.)
Answer: Encrypt the passwords internally so that they can only be accessed in coded
form. The only person with access or knowledge of decoding should be the system oper-
ator.

19.3 An experimental addition to UNIX allows a user to connect a watchdog program to a file,
such that the watchdog is invoked whenever a program requests access to the file. The
watchdog then either grants or denies access to the file. Discuss the pros and cons of
using watchdogs for security.
Answer: No answer.

19.4 The UNIX program, COPS, scans a given system for possible security holes and alerts the
user to possible problems. What are the potential hazards of using such a system for
security? How can these problems be limited or eliminated?
Answer: The COPS program itself could be modified by an intruder to disable some of
its features or even to take advantage of its features to create new security flaws. Even

91

92 Chapter 19 Security

if COPS is not cracked, it is possible for an intruder to gain a copy of COPS, study it, and
locate security breaches which COPS does not detect. Then that intruder could prey on
systems in which the management depends on COPS for security (thinking it is providing
security), when all COPS is providing is management complacency. COPS could be stored
on a read only media or file system to avoid its modification. It could only be provided to
bona fide systems managers to prevent it from falling into the wrong hands. Neither of
these is a foolproof solution, however.

19.5 Discuss ways by which managers of systems connected to the Internet could have limited
or eliminated the damage done by the worm. What are the drawbacks of making such
changes to the way in which the system operates?
Answer: “Firewalls” can be erected between systems and the Internet. These systems
filter the packets moving from one side of them to the other, assuring that only valid pack-
ets owned by authorized users are allowed to access the protect systems. Such firewalls
usually make use of the systems less convenient (and network connections less efficient).

19.6 Argue for or against the sentence handed down against Robert Morris, Jr., for his creation
and execution of the Internet worm.
Answer: No answer.

19.7 Make a list of security concerns for a computer system for a bank. For each item on your
list, state whether this concern relates to physical security, human security, or operating
system security.
Answer: In a protected location, well guarded: physical, human.
Network tamperproof: physical, human, operating system.
Modem access eliminated or limited: physical, human.
Unauthorized data transfers prevented or logged: human, operating system.
Backup media protected and guarded: physical, human.
Programmers, data entry personnel, trustworthy: human.

19.8 What are two advantages of encrypting data stored in the computer system?
Answer: Encrypted data are guarded by the operating system’s protection facilities, as
well as a password that is needed to decrypt them. Two keys are better than one when it
comes to security.

Chapter 20

THE LINUX
SYSTEM

Chapter A discussed the internals of the 4.3BSD operating system in detail. BSD is just one of
the UNIX-like systems. Linux is another UNIX-like system that has gained popularity in recent
years. In this chapter, we look at the history and development of Linux, and cover the user
and programmer interfaces that Linux presents interfaces that owe a great deal to the UNIX
tradition. We also discuss the internal methods by which Linux implements these interfaces.
However, since Linux has been designed to run as many standard UNIX applications as possible,
it has much in common with existing UNIX implementations. We do not duplicate the basic
description of UNIX given in the previous chapter.

Linux is a rapidly evolving operating system. This chapter describes specifically the Linux
2.0 kernel, released in June 1996.

Answers to Exercises

20.1 Linux runs on a variety of hardware platforms. What steps must the Linux developers
take to ensure that the system is portable to different processors and memory-management
architectures, and to minimize the amount of architecture-specific kernel code?
Answer: The organization of architecture-dependent and architecture-independent code
in the Linux kernel is designed to satisfy two design goals: to keep as much code as
possible common between architectures and to provide a clean way of defining
architecture-specific properties and code. The solution must of course be consistent with
the overriding aims of code maintainability and performance.
There are different levels of architecture dependence in the kernel, and different tech-
niques are appropriate in each case to comply with the design requirements. These levels
include:

CPU word size and endianness These are issues that affect the portability of all software
written in C, but especially so for an operating system, where the size and alignment
of data must be carefully arranged.

CPU process architecture Linux relies on many forms of hardware support for its pro-
cess and memory management. Different processors have their own mechanisms for

93

94 Chapter 20 The Linux System

changing between protection domains (e.g., entering kernel mode from user mode),
rescheduling processes, managing virtual memory, and handling incoming inter-
rupts.

The Linux kernel source code is organized so as to allow as much of the kernel as pos-
sible to be independent of the details of these architecture-specific features. To this end,
the kernel keeps not one but two separate subdirectory hierarchies for each hardware ar-
chitecture. One contains the code that is appropriate only for that architecture, including
such functionality as the system call interface and low-level interrupt management code.
The second architecture-specific directory tree contains C header files that are descriptive
of the architecture. These header files contain type definitions and macros designed to
hide the differences between architectures. They provide standard types for obtaining
words of a given length, macro constants defining such things as the architecture word
size or page size, and function macros to perform common tasks such as converting a
word to a given byte-order or doing standard manipulations to a page table entry.
Given these two architecture-specific subdirectory trees, a large portion of the Linux ker-
nel can be made portable between architectures. An attention to detail is required: when a
32 bit integer is required, the programmer must use the explicit int32 type rather than as-
sume than an int is a given size, for example. However, as long as the architecture-specific
header files are used, then most process and page-table manipulation can be performed
using common code between the architectures. Code that definitely cannot be shared is
kept safely detached from the main common kernel code.

20.2 Dynamically loadable kernel modules give flexibility when drivers are added to a system,
but do they have disadvantages too? Under what circumstances would a kernel be com-
piled into a single binary file, and when would it be better to keep it split into modules?
Explain your answer.
Answer: There are two principal drawbacks with the use of modules. The first is size:
module management consumes unpageable kernel memory, and a basic kernel with a
number of modules loaded will consume more memory than an equivalent kernel with
the drivers compiled into the kernel image itself. This can be a very significant issue on
machines with limited physical memory.
The second drawback is that modules can increase the complexity of the kernel bootstrap
process. It is hard to load up a set of modules from disk if the driver needed to access that
disk as itself a module that needs to be loaded. As a result, managing the kernel boot-
strap with modules can require extra work on the part of the administrator: the modules
required to bootstrap need to be placed into a ramdisk image that is loaded alongside the
initial kernel image when the system is initialized.
In certain cases it is better to use a modular kernel, and in other cases it is better to use a
kernel with its device drivers prelinked. Where minimizing the size of the kernel is im-
portant, the choice will depend on how often the various device drivers are used. If they
are in constant use, then modules are unsuitable. This is especially true where drivers
are needed for the boot process itself. On the other hand, if some drivers are not always
needed, then the module mechanism allows those drivers to be loaded and unloaded on
demand, potentially offering a net saving in physical memory.
Where a kernel is to be built which must be usable on a large variety of very different
machines, then building it with modules is clearly preferable to using a single kernel
with dozens of unnecessary drivers consuming memory. This is particularly the case for
commercially distributed kernels, where supporting the widest variety of hardware in
the simplest manner possible is a priority.

Answers to Exercises 95

However, if a kernel is being built for a single machine whose configuration is known in
advance, then compiling and using modules may simply be an unnecessary complexity.
In cases like this, the use of modules may well be a matter of taste.

20.3 Multithreading is a commonly used programming technique. Describe three different
ways that threads could be implemented. Explain how these ways compare to the Linux
clone mechanism. When might each alternative mechanism be better or worse than using
clones?
Answer: Thread implementations can be broadly classified into two groups: kernel-
based threads and user-mode threads. User-mode thread packages rely on some kernel
support-they may require timer interrupt facilities, for example-but the scheduling be-
tween threads is not performed by the kernel but by some library of user-mode code.
Multiple threads in such an implementation appear to the operating system as a single
execution context. When the multithreaded process is running, it decides for itself which
of its threads to execute, using non-local jumps to switch between threads according to
its own preemptive or non-preemptive scheduling rules.
Alternatively, the operating system kernel may provide support for threads itself. In this
case, the threads may be implemented as separate processes that happen to share a com-
plete or partial common address space, or they may be implemented as separate execu-
tion contexts within a single process. Whichever way the threads are organized, they
appear as fully independent execution contexts to the application.
Hybrid implementations are also possible, where a large number of threads are made
available to the application using a smaller number of kernel threads. Runnable user
threads are run by the first available kernel thread.
In Linux, threads are implemented within the kernel by a clone mechanism that creates
a new process within the same virtual address space as the parent process. Unlike some
kernel-based thread packages, the Linux kernel does not make any distinction between
threads and processes: a thread is simply a process that did not create a new virtual
address space when it was initialized.
The main advantage of implementing threads in the kernel rather than in a user-mode
library are that:

� kernel threaded systems can take advantage of multiple processors if they are avail-
able; and

� if one thread blocks in a kernel service routine (for example, a system call or page
fault), other threads are still able to run.

A lesser advantage is the ability to assign different security attributes to each thread.
User-mode implementations do not have these advantages. Because such implementa-
tions run entirely within a single kernel execution context, only one thread can ever be
running at once, even if multiple CPUs are available. For the same reason, if one thread
enters a system call, no other threads can run until that system call completes. As a re-
sult, one thread doing a blocking disk read will hold up every thread in the application.
However, user-mode implementations do have their own advantages. The most obvious
is performance: invoking the kernel’s own scheduler to switch between threads involves
entering a new protection domain as the CPU switches to kernel mode, whereas switch-
ing between threads in user-mode can be achieved simply by saving and restoring the
main CPU registers. User-mode threads may also consume less system memory: most
UNIX systems will reserve at least a full page for a kernel stack for each kernel thread,
and this stack may not be pageable.

96 Chapter 20 The Linux System

The hybrid approach, implementing multiple user threads over a smaller number of ker-
nel threads, allows a balance between these tradeoffs to be achieved. The kernel threads
will allow multiple threads to be in blocking kernel calls at once and will permit run-
ning on multiple CPUs, and user-mode thread switching can occur within each kernel
thread to perform lightweight threading without the overheads of having too many ker-
nel threads. The downside of this approach is complexity: giving control over the tradeoff
complicates the thread library’s user interface.

20.4 What are the extra costs incurred by the creation and scheduling of a process, as compared
to the cost of a cloned thread?
Answer: In Linux, creation of a thread involves only the creation of some very simple
data structures to describe the new thread. Space must be reserved for the new thread’s
execution context its saved registers, its kernel stack page and dynamic information such
as its security profile and signal state but no new virtual address space is created.
Creating this new virtual address space is the most expensive part of the creation of a new
process. The entire page table of the parent process must be copied, with each page being
examined so that copy-on-write semantics can be achieved and so that reference counts
to physical pages can be updated. The parent process’s virtual memory is also affected by
the process creation: any private read/write pages owned by the parent must be marked
read-only so that copy-on-write can happen (copy-on-write relies on a page fault being
generated when a write to the page occurs).
Scheduling of threads and processes also differs in this respect. The decision algorithm
performed when deciding what process to run next is the same regardless of whether the
process is a fully independent process or just a thread, but the action of context-switching
to a separate process is much more costly than switching to a thread. A process requires
that the CPU’s virtual memory control registers be updated to point to the new virtual
address space’s page tables.
In both cases—creation of a process or context switching between processes the extra
virtual memory operations have a significant cost. On many CPUs, changing page tables
or swapping between page tables is not cheap: all or part of the virtual address translation
look-aside buffers in the CPU must be purged when the page tables are changed. These
costs are not incurred when creating or scheduling between threads.

20.5 The Linux scheduler implements soft real-time scheduling. What features are missing that
are necessary for some real-time programming tasks? How might they be added to the
kernel?
Answer: Linux’s “soft” real-time scheduling provides ordering guarantees concerning
the priorities of runnable processes: real-time processes will always be given a higher
priority by the scheduler than normal time-sharing processes, and a real-time process
will never be interrupted by another process with a lower real-time priority.
However, the Linux kernel does not support “hard” real-time functionality. That is, when
a process is executing a kernel service routine, that routine will always execute to comple-
tion unless it yields control back to the scheduler either explicitly or implicitly (by waiting
for some asynchronous event). There is no support for preemptive scheduling of kernel-
mode processes. As a result, any kernel system call that runs for a significant amount of
time without rescheduling will block execution of any real-time processes.
Many real-time applications require such hard real-time scheduling. In particular, they
often require guaranteed worst-case response times to external events. To achieve these
guarantees, and to give user-mode real time processes a true higher priority than kernel-
mode lower-priority processes, it is necessary to find a way to avoid having to wait for
low-priority kernel calls to complete before scheduling a real-time process. For example,

Answers to Exercises 97

if a device driver generates an interrupt that wakes up a high-priority real-time process,
then the kernel needs to be able to schedule that process as soon as possible, even if some
other process is already executing in kernel mode.
Such preemptive rescheduling of kernel-mode routines comes at a cost. If the kernel
cannot rely on non-preemption to ensure atomic updates of shared data structures, then
reads of or updates to those structures must be protected by some other, finer-granularity
locking mechanism. This fine-grained locking of kernel resources is the main requirement
for provision of tight scheduling guarantees.
Many other kernel features could be added to support real-time programming. Deadline-
based scheduling could be achieved by making modifications to the scheduler. Prioriti-
zation of IO operations could be implemented in the block-device IO request layer.

20.6 The Linux kernel does not allow paging out of kernel memory. What effect does this
restriction have on the kernel’s design? What are two advantages and two disadvantages
of this design decision?
Answer: The primary impact of disallowing paging of kernel memory in Linux is
that the non-preemptability of the kernel is preserved. Any process taking a page fault,
whether in kernel or in user mode, risks being rescheduled while the required data is
paged in from disk. Because the kernel can rely on not being rescheduled during access
to its primary data structures, locking requirements to protect the integrity of those data
structures are very greatly simplified. Although design simplicity is a benefit in itself, it
also provides an important performance advantage on uni-processor machines due to the
fact that it is not necessary to do additional locking on most internal data structures.
There are a number of disadvantages to the lack of pageable kernel memory, however.
First of all, it imposes constraints on the amount of memory that the kernel can use. It
is unreasonable to keep very large data structures in non-pageable memory, since that
represents physical memory that absolutely cannot be used for anything else. This has
two impacts: first of all, the kernel must prune back many of its internal data structures
manually, instead of being able to rely on a single virtual memory mechanism to keep
physical memory usage under control. Second, it makes it infeasible to implement certain
features that require large amounts of virtual memory in the kernel, such as the /tmp-
filesystem (a fast virtual memory based file-system found on some UNIX systems).
Note that the complexity of managing page faults while running kernel code is not an
issue here. The Linux kernel code is already able to deal with page faults: it needs to be
able to deal with system calls whose arguments reference user memory which may be
paged out to disk.

20.7 In Linux, shared libraries perform many operations central to the operating system. What
is the advantage of keeping this functionality out of the kernel? Are there any drawbacks?
Explain your answer.
Answer: There are a number of reasons for keeping functionality in shared libraries
rather than in the kernel itself. These include:

Reliability. Kernel-mode programming is inherently higher risk than user-mode pro-
gramming. If the kernel is coded correctly so that protection between processes is
enforced, then an occurrence of a bug in a user-mode library is likely to affect only
the currently executing process, whereas a similar bug in the kernel could conceiv-
ably bring down the entire operating system.

Performance. Keeping as much functionality as possible in user-mode shared libraries
helps performance in two ways. First of all, it reduces physical memory consump-
tion: kernel memory is non-pageable, so every kernel function is permanently res-

98 Chapter 20 The Linux System

ident in physical memory, but a library function can be paged in from disk on de-
mand and does not need to be physically present all of the time. Although the library
function may be resident in many processes at once, page sharing by the virtual
memory system means that at most once it is only loaded into physical memory.
Second, calling a function in a loaded library is a very fast operation, but calling a
kernel function through a kernel system service call is much more expensive. Enter-
ing the kernel involves changing the CPU protection domain, and once in the kernel,
all of the arguments supplied by the process must be very carefully checked for cor-
rectness: the kernel cannot afford to make any assumptions about the validity of
the arguments passed in, whereas a library function might reasonably do so. Both
of these factors make calling a kernel function much slower than calling the same
function in a library.

Manageability. Many different shared libraries can be loaded by an application. If new
functionality is required in a running system, shared libraries to provide that func-
tionality can be installed without interrupting any already-running processes. Sim-
ilarly, existing shared libraries can generally be upgraded without requiring any
system down time. Unprivileged users can create shared libraries to be run by their
own programs. All of these attributes make shared libraries generally easier to man-
age than kernel code.

There are, however, a few disadvantages to having code in a shared library. There are
obvious examples of code which is completely unsuitable for implementation in a li-
brary, including low-level functionality such as device drivers or file-systems. In gen-
eral, services shared around the entire system are better implemented in the kernel if they
are performance-critical, since the alternative—running the shared service in a separate
process and communicating with it through interprocess communication—requires two
context switches for every service requested by a process. In some cases, it may be ap-
propriate to prototype a service in user-mode but implement the final version as a kernel
routine.
Security is also an issue. A shared library runs with the privileges of the process calling
the library. It cannot directly access any resources inaccessible to the calling process, and
the calling process has full access to all of the data structures maintained by the shared
library. If the service being provided requires any privileges outside of a normal process’s,
or if the data managed by the library needs to be protected from normal user processes,
then libraries are inappropriate and a separate server process (if performance permits) or
a kernel implementation is required.

20.8 What are three advantages of dynamic (shared) linkage of libraries compared to static
linkage? What are two cases where static linkage is preferable.
Answer: The primary advantages of shared libraries are that they reduce the memory
and disk space used by a system, and they enhance maintainability.
When shared libraries are being used by all running programs, there is only one instance
of each system library routine on disk, and at most one instance in physical memory.
When the library in question is one used by many applications and programs, then the
disk and memory savings can be quite substantial. In addition, the startup time for run-
ning new programs can be reduced, since many of the common functions needed by that
program are likely to be already loaded into physical memory.
Maintainability is also a major advantage of dynamic linkage over static. If all running
programs use a shared library to access their system library routines, then upgrading
those routines, either to add new functionality or to fix bugs, can be done simply by
replacing that shared library. There is no need to recompile or relink any applications;

Answers to Exercises 99

any programs loaded after the upgrade is complete will automatically pick up the new
versions of the libraries.
There are other advantages too. A program that uses shared libraries can often be adapted
for specific purposes simply by replacing one or more of its libraries, or even (if the sys-
tem allows it, and most UNIXs including Linux do) adding a new one at run time. For
example, a debugging library can be substituted for a normal one to trace a problem in an
application. Shared libraries also allow program binaries to be linked against commercial,
proprietary library code without actually including any of that code in the program’s final
executable file. This is important because on most UNIX systems, many of the standard
shared libraries are proprietary, and licensing issues may prevent including that code in
executable files to be distributed to third parties.
In some places, however, static linkage is appropriate. One example is in rescue envi-
ronments for system administrators. If a system administrator makes a mistake while
installing any new libraries, or if hardware develops problems, it is quite possible for the
existing shared libraries to become corrupt. As a result, often a basic set of rescue utilities
are linked statically, so that there is an opportunity to correct the fault without having to
rely on the shared libraries functioning correctly.
There are also performance advantages that sometimes make static linkage preferable in
special cases. For a start, dynamic linkage does increase the startup time for a program,
as the linking must now be done at run-time rather than at compile-time. Dynamic link-
age can also sometimes increase the maximum working set size of a program (the total
number of physical pages of memory required to run the program). In a shared library,
the user has no control over where in the library binary file the various functions reside.
Since most functions do not precisely fill a full page or pages of the library, loading a
function will usually result in loading in parts of the surrounding functions, too. With
static linkage, absolutely no functions that are not referenced (directly or indirectly) by
the application need to be loaded into memory.
Other issues surrounding static linkage include ease of distribution: it is easier to dis-
tribute an executable file with static linkage than with dynamic linkage if the distributor
is not certain whether the recipient will have the correct libraries installed in advance.
There may also be commercial restrictions against redistributing some binaries as shared
libraries. For example, the license for the UNIX “Motif” graphical environment allows
binaries using Motif to be distributed freely as long as they are statically linked, but the
shared libraries may not be used without a license.

20.9 Compare the use of networking sockets with the use of shared memory as a mechanism
for communicating data between processes on a single computer. What are the advan-
tages of each method? When might each be preferred?
Answer: Using network sockets rather than shared memory for local communication has
a number of advantages. The main advantage is that the socket programming interface
features a rich set of synchronization features. A process can easily determine when new
data has arrived on a socket connection, how much data is present, and who sent it.
Processes can block until new data arrives on a socket, or they can request that a signal
be delivered when data arrives. A socket also manages separate connections. A process
with a socket open for receive can accept multiple connections to that socket and will be
told when new processes try to connect or when old processes drop their connections.
Shared memory offers none of these features. There is no way for a process to determine
whether another process has delivered or changed data in shared memory other than by
going to look at the contents of that memory. It is impossible for a process to block and
request a wakeup when shared memory is delivered, and there is no standard mechanism
for other processes to establish a shared memory link to an existing process.

100 Chapter 20 The Linux System

However, shared memory has the advantage that it is very much faster than socket com-
munications in many cases. When data is sent over a socket, it is typically copied from
memory to memory multiple times. Shared memory updates require no data copies: if
one process updates a data structure in shared memory, that update is immediately vis-
ible to all other processes sharing that memory. Sending or receiving data over a socket
requires that a kernel system service call be made to initiate the transfer, but shared mem-
ory communication can be performed entirely in user mode with no transfer of control
required.
Socket communication is typically preferred when connection management is important
or when there is a requirement to synchronize the sender and receiver. For example,
server processes will usually establish a listening socket to which clients can connect
when they want to use that service. Once the socket is established, individual requests
are also sent using the socket, so that the server can easily determine when a new request
arrives and who it arrived from.
In some cases, however, shared memory is preferred. Shared memory is often a better
solution when either large amounts of data are to be transferred or when two processes
need random access to a large common data set. In this case, however, the communicat-
ing process may still need an extra mechanism in addition to shared memory to achieve
synchronization between themselves. The X Window System, a graphical display envi-
ronment for UNIX, is a good example of this: most graphic requests are sent over sock-
ets, but shared memory is offered as an additional transport in special cases where large
bitmaps are to be displayed on the screen. In this case, a request to display the bitmap
will still be sent over the socket, but the bulk data of the bitmap itself will be sent via
shared memory.

20.10 UNIX systems used to use disk-layout optimizations based on the rotation position of disk
data, but modern implementations, including Linux, simply optimize for sequential data
access. Why do they do so? Of what hardware characteristics does sequential access take
advantage? Why is rotational optimization no longer so useful?
Answer: The performance characteristics of disk hardware has changed substantially
in recent years. In particular, many enhancements have been introduced to increase the
maximum bandwidth that can be achieved on a disk. In a modern system, there can be a
long pipeline between the operating system and the disk’s read-write head. A disk I/O
request has to pass through the computer’s local disk controller, over bus logic to the disk
drive itself, and then internally to the disk where there is likely to be a complex controller
that can cache data accesses and potentially optimize the order of I/O requests.
Because of this complexity, the time taken for one I/O request to be acknowledged and
for the next request to be generated and received by the disk can far exceed the amount
of time between one disk sector passing under the read-write head and the next sector
header arriving. In order to be able to efficiently read multiple sectors at once, disks will
employ a readahead cache. While one sector is being passed back to the host computer,
the disk will be busy reading the next sectors in anticipation of a request to read them. If
read requests start arriving in an order that breaks this readahead pipeline, performance
will drop. As a result, performance benefits substantially if the operating system tries to
keep I/O requests in strict sequential order.
A second feature of modern disks is that their geometry can be very complex. The number
of sectors per cylinder can vary according to the position of the cylinder: more data can
be squeezed into the longer tracks nearer the edge of the disk than at the center of the
disk. For an operating system to optimize the rotational position of data on such disks,
it would have to have complete understanding of this geometry, as well as the timing
characteristics of the disk and its controller. In general, only the disk’s internal logic can

Answers to Exercises 101

determine the optimal scheduling of I/Os, and the disk’s geometry is likely to defeat any
attempt by the operating system to perform rotational optimizations.

20.11 The Linux source code is freely and widely available over the Internet or from CD-Rom
vendors. What three implications does this availability have on the security of the Linux
system?
Answer: The open availability of an operating system’s source code has both positive
and negative impacts on security, and it is probably a mistake to say that it is definitely a
good thing or a bad thing.
Linux’s source code is open to scrutiny by both the good guys and the bad guys. In its
favor, this has resulted in the code being inspected by a large number of people who are
concerned about security and who have eliminated any vulnerabilities they have found.
On the other hand is the “security through obscurity” argument, which states that attack-
ers’ jobs are made easier if they have access to the source code of the system they are
trying to penetrate. By denying attackers information about a system, the hope is that it
will be harder for those attackers to find and exploit any security weaknesses that may be
present.
In other words, open source code implies both that security weaknesses can be found
and fixed faster by the Linux community, increasing the security of the system; and that
attackers can more easily find any weaknesses that do remain in Linux.
There are other implications for source code availability, however. One is that if a weak-
ness in Linux is found and exploited, then a fix for that problem can be created and dis-
tributed very quickly. (Typically, security problems in Linux tend to have fixes available
to the public within 24 hours of their discovery.) Another is that if security is a major
concern to particular users, then it is possible for those users to review the source code
to satisfy themselves of its level of security or to make any changes that they wish to add
new security measures.

Chapter 21

WINDOWS 2000

The Windows 2000 operating system is designed to take advantage of the many advances in
processor technology. Although primarily run on the Intel architecture, Windows 2000 was de-
signed to be portable in order to take advantage of whatever promising technologies happened
to come along. Key goals for the system included portability, security, POSIX compliance, mul-
tiprocessor support, extensibility, international support, and compatibility with MS-DOS and
MS-Windows applications. Windows 2000 is similar to Mach in that it is a micro-kernel based
operating system that results in a stable base operating system and allows enhancements to be
made to one part of the operating system without changing any of the other parts.

Answers to Exercises

21.1 What are some reasons why moving the graphics code in Windows NT from user mode
to kernel mode might decrease the reliability of the system? Which of the original design
goals for Windows NT does this degradation violate?
Answer: The code was moved to eliminate the overhead of interprocess communica-
tion. The advantage of the previous method of having the code in the Win32 subsystem
is that the kernel/executive as well as other subsystems are protected from an error in the
Win32 subsystem. The new method, while offering a performance increase to meet mar-
ketplace concerns, has the drawback that bad graphics code can bring down the entire
system. Indeed, examples of this were seen posted on the Internet. The design goal that
was violated was that of independent subsystems that would not be able to affect other
subsystems or the kernel. This was brought about by complaints from users of the older
16-bit windows versions who felt that applications ran slower on Windows 2000.

21.2 The Windows 2000 VM manager uses a two-stage process to allocate memory. Identify
several ways in which this approach is beneficial?
Answer: A process in Windows 2000 is limited to 2 gigabytes address space for data.
The two-stage process allows the access of much larger datasets, by reserving space in
the processes address space first and then committing the storage to a memory mapped
file. An application could thus window through a large database (by changing the com-

103

104 Chapter 21 Windows 2000

mitted section) without exceeding process quotas or utilizing a huge amount of physical
memory.

21.3 Discuss some advantages and some disadvantages of the particular page-table structure
used in Windows 2000.
Answer: Each process has its own page directory that requires about 4 megabytes of stor-
age. Since it is a three level design, this means that there could be up to three page faults
just accessing a virtual address. Shared memory adds one more level. The page faults can
occur because Windows 2000 does not commit the required memory (the 4 megabytes) un-
til necessary. Since each process has its own page directory, there is no way for processes
to share virtual addresses. The prototype page-table entry adds a level of indirection but
eliminates the update of multiple page-table entries for shared pages.

21.4 What is the maximum number of page faults that could occur in the access of (a) a virtual
address, and of (b) a shared virtual address? What hardware mechanism is provided by
most processors to decrease these numbers?
Answer: 4 for shared addresses. 3 for others. Translation Lookaside Buffers.

21.5 What is the purpose of a prototype page-table entry in Windows 2000?
Answer: The prototype page-table entry is used to point to shared pages instead of hav-
ing multiple page-table entries point to the same page. It adds another layer of indirection
but saves having to update N page-table entries.

21.6 What are the steps the cache manager must take to copy data into and out of the cache?
Answer: Please see Section 22.4.6 for details.

21.7 What are the main problems involved in running 16-bit Windows applications in a VDM?
Identify the solutions chosen by Windows 2000 for each of these problems. For each solu-
tion, name at least one drawback.
Answer: No answer.

21.8 What changes would be needed for Windows 2000 to run a process that uses a 64-bit
address space?
Answer: Primarily, the VM Manager would have to be extensively modified. This might
entail changing the page size, adding another level to the page-table structure, and so on.
It may be impractical to support the full 64-bit address range. Indeed, the “64-bit” version
of NT, Windows 2000 Server/E 5.0, will support a maximum of 32 megabytes of RAM. For
another approach, see the August 1997 Oracle White Paper entitled “Oracle Very Large
Memory (VLM) for Digital Alpha NT.”

21.9 Windows 2000 has a centralized cache manager. What are the advantages and disadvan-
tages of this cache manager?
Answer: One of the major advantages is that each file system doesn’t have to provide
its own caching. Also, the cache manager is tightly coupled to the VM manager. The
drawback is that some devices want to do DMA transfers. Also, different caching schemes
might be able to save the data copying that is present with the Windows 2000 scheme.

21.10 Windows 2000 uses a packet-driven I/O system. Discuss the pros and cons of the packet-
driven approach to I/O.
Answer: The standard form of the packet makes it easier to write drivers since they can
follow a standard interface and processing hierarchy. A major disadvantage is that all the
packet copying leads to inefficiencies, although that many TCP/IP stacks apparently have
the same problem.

Answers to Exercises 105

21.11 Consider a main-memory database of 1 terabytes. What mechanisms in Windows 2000
could you use to access this database?
Answer: See Question 21.2.

Appendix A

THE
FREEBSD
SYSTEM

Although operating-system concepts can be considered in purely theoretical terms, it is often
useful to see how they are implemented in practice. This appendix presents an in-depth exami-
nation of the 4.3BSD operating system, a version of UNIX, as an example of the various concepts
presented in this book. By examining a complete, real system, we can see how the various
concepts discussed in this book relate both to one another and to practice.

This UNIX operating system was chosen in part because at one time it was almost small
enough to understand and yet is not a “toy” operating system. Most of its internal algorithms
were selected for simplicity, not for speed or sophistication. UNIX is readily available to depart-
ments of computer science, so many students may have access to it.

It might be best to have the students read the papers by Ritchie and Thompson [1974] and
Thompson [1978] before reading this appendix.

Answers to Exercises

A.1 How were the design goals of UNIX different from those of other operating systems during
the early stages of UNIX development?
Answer: Rather than being a market-oriented operating system, like MULTICS, with
definite goals and features, UNIX grew as a tool to allow Thompson and Ritchie to get
their research done at Bell Labs. They found a spare PDP-11 system and wrote UNIX to
help them with text-processing requirements. It therefore exactly suited their personal
needs, not those of a company.

A.2 Why are many different versions of UNIX currently available? In what ways is this diver-
sity an advantage to UNIX? In what ways is it a disadvantage?
Answer: AT&T made the source code of UNIX available to universities and other sites,
where experimentation and expansion took place. This allowed many people to have an
influence on UNIX and to try out their own ideas. These ideas were circulated, and the
best ones were culled for inclusion in the standard varieties of UNIX. The disadvantage
this causes is there is no “standard” version of UNIX. Programs written for UNIX may only
run on one, or some, versions of UNIX but rarely all.

107

108 Appendix A The FreeBSD System

A.3 What are the advantages and disadvantages of writing an operating system in a high-level
language, such as C?
Answer: C makes UNIX highly portable, as evidenced by the many systems it runs on.
It is also (arguably) faster to write and debug code in a high-level language, allowing
UNIX to be modified more quickly than assembly-language-based operating systems. Of
course, it runs less efficiently than if it had been written in assembly language, like most
other operating systems. It is generally larger than assembly-language operating systems
too.

A.4 In what circumstances is the system-call sequence fork execve most appropriate? When
is vfork preferable?
Answer: Since vfork is a fairly dangerous system call, it should only be used when a
large process needs to be started. For small child processes, the fork execve call sequence
is almost as efficient and does not allow its address space to be affected.

A.5 Does FreeBSD give scheduling priority to I/O or CPU-bound processes? For what rea-
son does it differentiate between these categories, and why is one given priority over the
other? How does it know which of these categories fits a given process?
Answer: I/O-bound processes have priority. Since I/O-bound processes (like text editors)
are more closely associated with a user, a better performance for I/O-bound processes give
the users quicker response and makes the system seem “faster.” UNIX tracks the number
of input and output characters for each process, and the devices they are associated with.
The more characters UNIX sees coming from tty devices, the more I/O-bound a process is.

A.6 Early UNIX systems used swapping for memory management, whereas 4.3BSD used pag-
ing and swapping. Discuss the advantages and disadvantages of the two memory meth-
ods.
Answer: When a CPU is slow, compared to its backing store, swapping makes sense.
The CPU can issue one transfer command, and the I/O system can move an entire process
into or out of main memory. As CPUs get faster, paging makes more sense. The CPU has
more time to decide which pages are not being used and to issue transfer requests. Paging
generally requires “smarter” hardware, with access bits for each page of memory, or at
least invalid page bits. Swapping wastes memory due to external fragmentation. Even on
paging systems, swapping is useful when thrashing is occurring due to too many active
processes touching too many pages.

A.7 Describe the modifications to a file system that the FreeBSD makes when a process requests
the creation of a new file /tmp/foo and writes to that file sequentially until the file size
reaches 20 KB.
Answer: Let’s assume that the block size is 4K. The kernel receives a creat or open system
call (with the “create” flag set). It locates the directory in which the file is requested to be
created and verifies that the process has write permission in that directory, and that no file
exists with that same name without write permission. It locates the cylinder group that
contains the directory, and it finds a free inode in that cylinder group if there is room; if
not, it does a “long seek” to a nearby group that has room.
It allocates the inode by removing it from the free inode list. It then modifies the free inode
to show that it is used and updates all the appropriate fields (write date, size = 0, owner
and group, protection, etc.). The system then creates a new directory entry in the parent
directory’s data area that has the name of the new file and a pointer to its newly allocated
inode. The inode is then placed in the per-process table of open files, and its file pointer
is set to 0. The kernel’s file-structure table and the in-core inode list are updated too. The
directory entry is then written to disk to assure that directories are always consistent.

Answers to Exercises 109

The system then receives “write” system calls until 20K of data is received. If the caller
is efficient, the writes will occur in 4K chunks (the size of a complete block). If this is the
case, the system locates a free block in the cylinder group and changes the free block bit
map to show the block is in use. It changes the inode such that the next free direct block
is changed to have the value of the disk block. So the first write of 4K would allocate the
first direct block, the second write the second block, and so on. These writes are buffered
in the block buffer cache until the system deems it necessary to write them to disk.
If writes are done in other than 4K increments, the system must allocate fragments of
1K to handle any writes that do not end at a 4K increment. Each following write would
require the system to copy the data in any fragments left by last write into a new block
and would start appending the new data there. Obviously this is very efficient (2 reads
and a write per write). Fortunately, the disk buffer cache alleviates some of this overhead
by not writing data immediately to disk.

A.8 Directory blocks in FreeBSD are written synchronously when they are changed. Consider
what would happen if they were written asynchronously. Describe the state of the file
system if a crash occurred after all the files in a directory were deleted but before the
directory entry was updated on disk.
Answer: The contents of the file system and the description of that file system (the
directory structure) would not correspond. In such a case points to invalid blocks, or
blocks of another file, might result. The file system would be in a state of chaos and
unusable.

A.9 Describe the process that is needed to recreate the free list after a crash in 4.1BSD.
Answer: No answer.

A.10 What effects on system performance would the following changes to FreeBSD have? Ex-
plain your answers.

a. The merging of the block buffer cache and the process paging space

b. Clustering disk I/O into larger chunks

c. Implementing and using shared memory to pass data between processes rather than
using RPC or sockets

d. Using the ISO seven-layer networking model rather than the ARM network model

Answer:

a. Such a merge was done in SunOS 4.1. The result is a more general model of memory
use. If lots of file transfers are occurring, more memory is used to hold data blocks.
If more processes are executing, more storage is devoted to paging.

b. Another change to SunOS. This change resulted in more efficient use of the disks in
the system—larger chunks of data are transferred with fewer seeks.

c. More efficient data transfer between communicating processes.

d. Less efficient network use, as a packet spends more time traversing the network
protocol stack before and after being transmitted on the network.

A.11 What socket type should be used to implement an intercomputer file-transfer program?
What type should be used for a program that periodically tests to see whether another
computer is up on the network? Explain your answer.
Answer: Reliable delivered message would be best, because transfers are sure to oc-
cur but open connections are not needed between the systems. Datagrams are the next

110 Appendix A The FreeBSD System

best, because they are unreliable. Perhaps streams are another choice if open connections
are desired. Sun NFS uses datagrams because reliable delivered messages are not imple-
mented. A datagram is about the only choice for testing the availability of other systems,
since they may or may not be able to receive a packet (disallowing reliable delivered mes-
sages).

Appendix B

THE
MACH
SYSTEM

Appendix B is meant to introduce the Mach operating system that was designed to incorpo-
rate the many recent innovations in operating-system research to produce a fully functional,
technically advanced operating system. Unlike UNIX, which was developed without regard for
multiprocessing, Mach incorporates multiprocessing support throughout. Its multiprocessing
support is also very flexible, ranging from shared memory systems to systems with no memory
shared between processors. Mach is designed to run on computer systems ranging from one
to thousands of processors. In addition, Mach is easily ported to many varied computer archi-
tectures. A key goal of Mach is to be a distributed operating system capable of functioning on
heterogeneous hardware.

Since Mach is fully compatible with UNIX, it provides a unique opportunity for us to com-
pare two functionally similar, but internally dissimilar, operating systems.

Answers to Exercises

B.1 What three features of Mach make it appropriate for distributed processing?
Answer: Efficient message passing, network transparency (threads and servers may be
on any system on the network), heterogeneous system support.

B.2 Name two ways that port sets are useful in implementing parallel programs.
Answer: Many threads or tasks may operate on a given problem, possibly on multiple
CPUs, and communicate with the controlling thread or task via a port set. Each cooperating
thread would have its own destination port in the controlling task. Computations can be
dispatched to each thread and the controlling task can send new computations to each
thread as it returns values through its port. The controlling task can wait for messages
through its port set rather than polling each individual port to see if a computing thread
has finished its job.

B.3 Consider an application that maintains a database of information, and provides facilities
for other tasks to add, delete, and query the database. Give three configurations of ports,
threads, and message types that could be used to implement this system. Which is the
best? Explain your answer.

111

112 Appendix B The Mach System

Answer:

� 1 thread with 1 port, receiving messages of type “query,” “add,” and “delete.”

� 3 threads and 3 ports with 1 message type, “data.” A request type is differentiated by
the port to which it arrives. Each thread has responsibility for 1 port, and thus one
type of operation.

� 3 threads as above, but 1 port and 3 message types as in the first configuration. The
second solution is probably the most flexible, especially if the database is expected to
be very busy (many requests per second). The first is fine for a low-use database.

B.4 Give the outline of a task that would migrate subtasks (tasks it creates) to other systems.
Include information about how it would decide when to migrate tasks, which tasks to
migrate, and how the migration would take place.
Answer: Unfortunately, Mach does not provide all the features needed to directly sup-
port process migration. An outline of an indirect solution follows, and assumes that the
processes to be migrated are all identical.

a. Start the main process.

b. Use the 4.3BSD remote execution facility (the rsh command) to spawn daemons on
every computer to which tasks are to be migrated.

c. Each of these daemons registers itself with the NetMsgServer so the controlling pro-
cess is able to communicate with them.

d. The controlling process then computes the current number of runnable processes (the
load average) on each computer by querying each of the daemons for the load average
on their systems. If the load averages vary noticeably, a task should be migrated.

e. A task is selected based on the time it has had to execute. It is most efficient to migrate
the most-recently-created or least-run-time-accumulated process.

f. A task is migrated by killing it on its system and sending a message to the daemon
on the least-loaded system with enough information to start an identical process ex-
ecuting.

B.5 Name two types of applications for which you would use the MIG package.
Answer: Any program that needs to send or receive messages.

B.6 Why would someone use the low-level system calls, instead of the C Threads package?
Answer: To access facilities outside the range of the C Threads package or to use the facil-
ities in a different way. For instance, port sets are not directly supported by the C Threads
package. Low-level applications, like debuggers, need more direct access to system calls
also.

B.7 Why are external memory managers not able to replace the internal page-replacement
algorithms? What information would need to be made available to the external managers
for the latter to make page-replacement decisions? Why would providing this information
violate the principle behind the external managers?
Answer: If an external memory manager crashes, the system must be able to remove
pages from memory. Without the internal page-replacement algorithms, the system would
starve for memory. Also, the internal routines have access to data that external ones can’t
reach, so, for instance, LRU page replacement can only be implemented by the internal
routine. Data needed outside of the kernel includes page access counts or times and page

Answers to Exercises 113

valid bits. External managers must be system independent. For instance, it might provide
pages to tasks on incompatible CPUs. How would the page table information be provided
in a system-independent way?

B.8 Why is it difficult to implement mutual exclusion and condition variables in an environ-
ment where like CPUs do not share any memory? What approach and mechanism could
be used to make such features available on a NORMA system?
Answer: The best mutual-exclusion algorithms depend on access to shared variables.
These routines become much more difficult to implement and prove correct if, for instance,
all locking negotiation must be done via messages. To implement locking, messages might
be sent to a daemon on a lock server that would allocate locks, report values of locked
variables, and otherwise simulate the behavior of the usual mutex routines.

B.9 What are the advantages to rewriting the 4.3BSD code as an external, user-level library,
rather than leaving it as part of the Mach kernel? Are there any disadvantages? Explain
your answer.
Answer: The kernel is much smaller and efficient. This small kernel can be implemented
on less powerful systems. It should also be more robust since the simpler the kernel,
the fewer bugs it should have. Also, since the kernel is locked into physical memory, the
smaller it is the less memory is needed on the machines on which it runs. The disadvantage
is that the system as a whole becomes more complicated, with BSD code spread out among
libraries, a little kernel-level code, and code in each user process. It is also difficult to
implement correctly, to keep such facilities as BSD signals working.

