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Collaborative Sensing in a Distributed PTZ
Camera Network

Chong Ding, Bi Song, Akshay Morye, Jay A. Farrell, and Amit K. Roy-Chowdhury

Abstract—The performance of dynamic scene algorithms often
suffers because of the inability to effectively acquire features on the
targets, particularly when they are distributed over a wide field of
view. In this paper, we propose an integrated analysis and control
framework for a pan, tilt, zoom (PTZ) camera network in order to
maximize various scene understanding performance criteria (e.g.,
tracking accuracy, best shot, and image resolution) through dy-
namic camera-to-target assignment and efficient feature acquisi-
tion. Moreover, we consider the situation where processing is dis-
tributed across the network since it is often unrealistic to have all
the image data at a central location. In such situations, the cam-
eras, although autonomous, must collaborate among themselves
because each camera’s PTZ parameter entails constraints on the
others. Motivated by recent work in cooperative control of sensor
networks, we propose a distributed optimization strategy, which
can be modeled as a game involving the cameras and targets. The
cameras gain by reducing the error covariance of the tracked tar-
gets or through higher resolution feature acquisition, which, how-
ever, comes at the risk of losing the dynamic target. Through the
optimization of this reward-versus-risk tradeoff, we are able to
control the PTZ parameters of the cameras and assign them to tar-
gets dynamically. The tracks, upon which the control algorithm is
dependent, are obtained through a consensus estimation algorithm
whereby cameras can arrive at a consensus on the state of each
target through a negotiation strategy. We analyze the performance
of this collaborative sensing strategy in active camera networks in
a simulation environment, as well as a real-life camera network.

Index Terms—Camera networks, cooperative camera control,
distributed estimation, game theory, video analysis.

I. INTRODUCTION

ETWORKS of video cameras are being installed for a va-

riety of applications, e.g., surveillance and security, envi-
ronmental monitoring, and disaster response. Existing camera
networks often consist of fixed cameras covering a large area.
This results in situations where targets are often not covered
at the desired resolutions or viewpoints, thus making the anal-
ysis of the video difficult, particularly when there are specified
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requirements associated with the targets, such as tracking pre-
cision, face shots for identification, and so on. Since the total
number of cameras is usually dictated by various factors (e.g.,
cost and ease of deployment) beyond video acquisition fidelity,
a possible solution is to integrate the analysis and sensing tasks
more closely. This can be achieved by dynamically control-
ling the parameters of a pan, tilt, zoom (PTZ) camera network
to fulfill the analysis requirements. Dynamic target assignment
will allow for maximal utilization of the network, allowing the
cameras to differentially focus on multiple regions of interest
leading to efficient feature acquisition. Such a setup will provide
greater flexibility while requiring less hardware and being less
costly. For this to successfully happen, the cameras must work
in a collaborative manner to achieve the same overall goal.

In this paper, we focus on the problem of controlling the PTZ
parameters of the cameras in a wide-area distributed camera net-
work in order to optimize the performance of various solutions
to dynamic scene analysis problems, for example, minimizing
the tracking error, getting a shot at the desired resolution and
pose, getting a shot of the face for identification, or the combi-
nation of the above. In order to achieve this, it is necessary that
the camera parameters, which yield the camera-to-target assign-
ments, be selected in an intelligent and collaborative manner.
Since the targets are moving, the cameras need to be dynami-
cally controlled so that the imaging requirements can be met.

It is desirable that the control mechanism be distributed for
a number of reasons. For example, there may be constraints of
bandwidth, secure transmission facilities, and difficulty in in-
stalling a camera network with central processing facilities. In
such situations, the cameras would have to act as autonomous
agents and decisions would have to be taken in a decentralized
manner. Because the settings of the cameras jointly determine
the value of the resulting imagery, the decentralized camera
agents must collaboratively work toward achieving the same op-
timal result as could be achieved by a centralized approach. Al-
though there are a number of methods in video analysis that deal
with multiple cameras, and even camera networks, distributed
processing in camera networks has received very little attention.
On the other hand, distributed processing has been extensively
studied in the multiagent systems and cooperative control lit-
erature [25]. In some recent work [3], [16], the distributed op-
timization problem in cooperative control is viewed using the
language of learning in games. Game theory is concerned with
the interactions between multiple decision-makers, and hence,
it is clearly relevant to cooperative control. The effectiveness of
utilizing game-theoretic approaches for controlling multiagent
systems was demonstrated in [ 16]. However, there is a very little
study on the applicability of these methods in camera networks.
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In this paper, we leverage the research on distributed opti-
mization built upon game theoretic concepts in the coopera-
tive control literature [14]. However, there are some major dif-
ferences based on the nature of cameras that will require us
to focus specifically on this domain. For example, in the ve-
hicle-to-target (V-T) assignment literature [3], each vehicle is
assigned to one target (one-to-one mapping), whereas in the
camera network, each camera can observe multiple targets and
a target can be observed by multiple cameras (many-to-many
mapping). Traditional V-T assignment is a one-time process.
Camera tracking for image acquisition is an ongoing tracking
and feedback process where the PTZ parameters affect the ac-
quired imagery and that imagery affects the tracking accuracy,
which in turn affects the PTZ selection. Moreover, cameras are
directional sensors, and thus, geographically neighboring cam-
eras may be viewing very different portions of the scene or have
distinct aspect angles on targets. On the other hand, cameras that
are geographically far away may be observing the same target.
In addition, camera control schemes must take into account the
uncertainty in the target tracks arising from inherent challenges
in video analysis and the unknown trajectories.

We formulate the multicamera control problem in the setting
of a multiplayer game. Specifically, we employ a framework in
which the optimization of local sensor utility functions leads
to an optimal value for a global utility. We will show how to
design the general utility functions, and we provide examples
for several representative applications under this general frame-
work. The optimal camera parameters in the sensor network
are dynamically determined according to these utility functions
and negotiation mechanisms between cameras. To employ suit-
able negotiation mechanisms between the different sensors is of
great importance since the cameras have to take strategic de-
cisions according to the perceived or anticipated actions of the
other cameras. All this requires tracks that are obtained through
a distributed tracking algorithm using the Kalman-Consensus
filter [21], [27].

The remainder of this paper is organized as follows. Section IT
presents a rationale for the need of a decentralized collabora-
tive camera network. Section III states the problem with its so-
lution in game theoretic terms and we study several represen-
tative application scenarios. Extensive experimental results are
presented in Section IV. Finally, we summarize this paper in
Section V.

II. TECHNICAL RATIONALE

A. Necessity of Collaboration in a PTZ Camera Network

We start by motivating the necessity of a cooperative strategy
in an intelligent camera network. The two questions we ad-
dress are the following: 1) why do we need active cameras (as
opposed to having a network of cameras with a fixed set of
parameters) and 2) why does the control strategy need to be
cooperative?

The main reason for having a dynamically self-configurable
network is that it would be prohibitively expensive to have a
static setup that would cater to all possible situations. For ex-
ample, suppose we need: 1) to track one person (possibly non-
cooperative) as he walks around an airport terminal; 2) to ob-
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tain a high-resolution image of him or his specific feature (e.g.,
face); and 3) to observe other activities going on in the terminal.
To achieve this, we will either need to dynamically change the
parameters of the cameras where this person is visible or have
a setup whereby it would be possible to capture high-resolution
imagery irrespective of where the person is in the terminal. The
second option would be very expensive and a huge waste of re-
sources, both technical and economic. Therefore, we need a way
to control the cameras based on the sensed data.

The control strategy must be necessarily cooperative because
each camera’s parameter setting entails certain constraints on
other cameras. For example, if a camera zooms in to focus on
the face of one particular person, thus narrowing its field of
view (FOV), it risks losing much of that person and the sur-
roundings, therefore being less useful for target tracking. An-
other camera can compensate for this by adjusting its param-
eters. This requires analysis of the video data in a collabora-
tive network-centric manner, leading to a cost-effective method
to obtain high-resolution images for features at dynamically
changing locations.

B. Necessity of a Decentralized Strategy

As the problem complexity increases, it may be difficult to
analyze all the data in a centralized manner and come up with an
effective strategy for persistently observing the dynamic scene.
There may not be enough bandwidth and transmission power
available to send all the data to a central station. Furthermore,
security of the transmission and interception by a hostile oppo-
nent may be a factor in some applications. A centralized scheme
may be challenging in many field operations as it is often dif-
ficult to setup the required infrastructure in the environments
where they are deployed (e.g., monitoring of remote regions and
hostile areas). In the proposed framework, each camera must
take its own decisions based on the analysis of its own sensed
data and negotiation mechanisms with other sensors.

C. Related Work

Our review of scene analysis algorithms will be limited to
those directly related to the application domain of camera net-
works.

There have been a few papers in the recent past that deal with
networks of video sensors. In [32], the authors presented pre-
liminary work in camera networks using independent cameras
(i.e., no coordination between the cameras). Particular interest
has been focused on learning a network topology [17], [34], i.e.,
configuring connections between cameras and entry/exit points
in their view. Some of the existing methods on tracking over
the network include [12], [23], and [28]. Other interesting prob-
lems in camera networks, such as object/behavior detection and
matching across cameras, camera handoff, and camera network
configuration, have been addressed in [1], [9], [11], [15], [31],
and [40]. In [8], a solution to the problem of optimal camera
placement given some coverage constraints was presented and
can be used to come up with an initial camera configuration.
There has been recent work also on tracking people in a multi-
camera setup [7], [13]. However, these methods did not address
the issue of distributed processing.
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Fig. 1. Overall system diagram depicting our proposed framework for collaborative sensing in an active distributive camera network. The user criteria can de-
fine what performance metrics the network will optimize. The user criteria could include covering the entire area at a desired resolution, obtaining facial shots,
maximizing image resolution, and so on. If the user does not specify any additional criteria, the tracking error will be minimized.

Recently, some problems in video analysis have been ad-
dressed in a distributed manner. A distributed algorithm for the
calibration of a camera network was presented in [6]. Object
detection, tracking, recognition, and pose estimation in a dis-
tributed camera network were considered in [24] and [38]. Dis-
tributed estimation for various computer vision problems was
studied in [33], [35], and [36]. These methods were designed
for a network composed of static cameras; the dynamics of ac-
tive camera networks are not taken into account.

An overview of some main video processing techniques and
current trends for video analysis in PTZ camera networks can
be found in [19] and [26]. Cooperation in a network consisting
of static and PT cameras was considered in [18]. The param-
eters of PT cameras were determined by centering the desired
targets in the FOV, and cooperation is only between the static
camera set and the PT camera set, i.e., the static cameras check
ifa PT camera is tracking a correct target (unlike our case where
all PTZ cameras in the network cooperate). A related work that
deals with control of a camera network with PTZ cameras is
[22]. Here, a virtual camera network environment was used
to demonstrate a camera control scheme that is a mixture be-
tween a distributed and a centralized scheme using both pas-
sive and active PTZ cameras. Their work focused on how to
group cameras that are relevant to the same task in a central-
ized manner while maintaining the individual groups decentral-
ized. In our method, we consider a completely distributed so-
lution using a game-theoretic framework for camera parameter
control and implicit target assignment. A game-theoretic frame-
work for V-T assignment was proposed in [3] in the context of
distributed sensor networks. However, in that work, the targets
were stationary and each vehicle was assigned to one target.
That work did not consider the constraints imposed by video
cameras. A camera handoff approach using game theory was
presented in [15]. That method, however, considers only a set
of static cameras and does not deal with the problem of persis-
tently observing targets with varying resolutions over a large
geographic area using a dynamic camera network with overlap-
ping and nonoverlapping FOVs.

A game-theoretic approach to camera control was presented
in [29] but limited only to the area coverage problem. This
was expanded on in [30] to a distributed tracking and control
approach. It required the camera control and tracking to inde-
pendently run and in parallel. The camera control used game
theory to assign camera settings that provided coverage over

regions of interest while maintaining a high-resolution shot
of a target. Concurrently, a Kalman-Consensus filter provided
tracks of each target on the ground plane. In this paper, we pro-
pose a distributed strategy for controlling the parameters of the
cameras that is integrated with a distributed tracking algorithm.
The camera control algorithm is designed to maximize different
performance criteria for scene analysis (e.g., minimize tracking
error, obtain a facial shot, and maximize image resolution),
which was not considered in [30]. The method presented in
[30] can be shown as a special case of the framework proposed
herein.

The research presented in this paper is also related to active
vision [2], [4], [S]. However, active vision in a camera network
is a relatively unexplored area that would involve cooperation
and coordination between many cameras.

D. Overview of Solution Strategy

Each of the cameras in our network has its own embedded
target detection module, a distributed tracker that provides an
estimate on the state of each target in the scene [21], [27] and fi-
nally a distributed camera control mechanism. Given the target
detection module, this paper provides a distributed solution for
the tracking and control problems. Targets are tracked using
measurements from multiple cameras that may not have direct
communication between each other. Neighboring cameras com-
municate with each other to come to a consensus about the
estimated position of each target. Similarly, camera parame-
ters are assigned based on information exchanged with neigh-
boring cameras within a game-theoretic framework. Our pro-
posed system structure is shown in Fig. 1.

The target detection module takes the image plane measure-
ments and returns the image plane positions associated with
specific targets. Through calibration, we know the transforma-
tion between image and ground plane coordinates, which can
be used for data association. These features, along with their
measurement error, are then passed on to the distributed tracker
associated with each target, which then combines the informa-
tion from neighboring cameras at each imagery time instant to
come to a consensus regarding the estimated state and estimated
error covariance [21] of each target. This results in each camera
having a consensus estimate of the state and error covariance of
each target in the region of interest. In our implementation, an
Extended Kalman-Consensus filter is developed for distributed
tracking. Since the Kalman-Consensus filter has been presented
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in [27], we only provide an outline of a particular implementa-
tion of its extension, i.e., the Extended Kalman-Consensus filter
in Appendix A.

The camera control module attempts to optimize the scene
analysis performance at the next imaging time instant by se-
lecting the camera parameters expected to result in measure-
ment optimizing criteria that are specified by the user, such as
minimizing the estimated error covariance of the tracker, max-
imizing the resolution of the targets, and minimizing the risk of
failing to obtain an image of the target. These are represented
in a reward-versus-risk tradeoff function. We propose a dis-
tributed optimization solution strategy to this problem, which
is described in Section III. Following recent trends in cooper-
ative control work, this can be represented in a game-theoretic
framework.

III. DISTRIBUTED CAMERA NETWORK CONTROL FRAMEWORK

Our goal is to develop a distributed strategy for coordinated
control that relies on local decision-making at the camera
nodes while being aligned with the suitable global criteria for
scene analysis that are specified by the user. For this purpose,
we propose a distributed optimization framework, which can
be represented in terms of a cooperative game that relies on
multiplayer learning and negotiation mechanisms [10], [14].
The result is a decision-making process that aims to optimize a
certain global criterion based on individual decisions by each
component (sensor) and the decisions of other interconnected
components. Our contribution in this paper is to show how the
distributed optimization framework can be developed for the
camera network control problem, including design of specific
utility functions, optimization strategies, and performance
analysis.

A. Problem Statement and Notation

Consider a region R over which there are
7 = {I,...,Tn.} targets independently moving while
being observed by a network of cameras C = {C4,...,Cn, }.

The behavior of these camera networks will be determined
by a set of criteria specified by the user. Each target Tj,
for j € {1,...,Nt}, may have different criteria that must
be satisfied by the camera network, e.g., we may want to
identify 77 using facial recognition and determine what 75
is doing using action recognition. In another scenario, we
may be interested in observing the scene of a disaster zone
to discover and monitor the state of people. Here, we would
likely place priority on those who are wounded or in need of
aid. This scenario would require targets in /£ to have varying
values of importance and varying requirements over time. The
question is whether we can create a generalized framework for
distributed camera networks in which many of the scenarios
may be modeled and solved.

In our formulation, the state of the jth target at time step
k is defined as x7 (k) = (27 (k), v’ (k), 27 (k), %’ (k))T, where
(27(k), 4’ (k)) and (i (k), 9’ (k)) are the position and velocity
of target T'; on the ground plane, respectively. By considering a
linear discrete-time dynamical model

X (k4 1) = A2 (k)x? (k) + B? (k)w? (k) )
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and a nonlinear observation model for each camera C;

z] (k) = hi (< (k)) + v (k) 6))

the consensus state estimate x; and the error covariance ma-
trices P? computed by the Extended Kalman-Consensus Filter
(see Appendix A and [27]) are the inputs to the control module.
Since the Kalman-Consensus tracking approach has been pre-
sented in detail in [21] and [27], we only include a summary of
it in the Appendix for the sake of completeness, with focus on
its extension to deal with a nonlinear observation equation.

For camera control, we will design a strategy such that each
camera is a rational decision-maker, optimizing its own utility
function that indirectly translates to the optimization of a global
utility function. Camera C; € C will select its own set of pa-
rameters a; € A;, where A; is the parameter profile that C'; can
select from, to optimize its own utility function Ue, (a;,a_;).
Our problem is to design these utility functions and appropriate
negotiation procedures that lead to mutually agreeable param-
eter settings of the cameras meeting the global criterion.

The game-theoretic interpretation of the distributed optimiza-
tion in the cooperative control work of [3] and [16] allows for
performance analysis in terms of game theoretic results. A well-
known concept in game theory is the notion of Nash equilib-
rium. In the context of our image network problem, it will be
defined as a choice of sets of parameters a* = (aj,...,a%,,)
such that no sensor could improve its utility further by deviating
from a*. Obviously, a* is a function of time since the targets are
dynamic and the cameras could be also mobile and capable of
panning, tilting, and zooming. For our problem, a Nash equilib-
rium will be reached, at each instant of time, when there is no
advantage for a particular camera to choose some other param-
eter set.

Mathematically, if a_; denotes the collection of parameter
settings for all cameras except camera C;, then a* is a pure Nash
equilibrium if

Ucl (aj,aii) = _inea,jﬁ UCi (ai,a’ii) . VC; eC.

(€))

B. Choice of Utility Functions

In our framework, the set of criteria that the camera network
must satisfy is modeled using global utility function Ug(a). In
almost every task, the specified criterion is directly associated
with the targets, e.g., getting shots at a desired resolution and
pose. We can assign a target utility Ur, (a) that quantifies the
satisfaction of the criterion, given parameter settings a, for a
target. Maximization of the utility functions across all targets,
constrained by the parameter sets of the camera network, results
in the set of parameters that best satisfies the criteria at each
point in time.

1) Target Utility: Assuming there are L criteria that the
camera network needs to meet, the satisfaction of those
criteria on a target 7; is measured by a set of metrics
{Mi(a,T}),...,Mr(a,T;)}, which are functions of pa-
rameter settings for all cameras. The target utility describes
the set of criteria for target T);, which can be represented as a
function of the set of metrics on 7}, i.e.,

Ur,(a) = F(Mi(a.Tj), ..., Mr(a,T})) . “)
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There could be many choices of F(-), one possible form of F
being weighted summation, i.e.,

UTj(a) = wq -]\41(a,Tj)+--~+1UL -IWL(a,Tj). (5)

The weights preceding each metric define the relevance/impor-
tance of each criterion and can be dynamically modified to allow
for fine grain control of the behavior of the camera network to-
ward each target 7';. The higher the weight, the greater the em-
phasis of the corresponding criterion. A sample set of possible
metrics for different criteria is listed below.

Tracking Criterion: The purpose of the tracking utility is to
quantify how well the tracking module of camera C; is tracking
target T); given the settings a;. Assuming an Extended Kalman-
Consensus tracker, we can define this utility using the error co-
variance matrices P} computed by the Extended Kalman-Con-
sensus Filter (see Appendix A and [27]) and the measurement
Jacobian matrix HY, i.e.,

M, (a) = cxp {—Trace (PL’JF)} (6)
where Pf * is defined as

N N -1 . T . :
(p7) =(®) + > (@) RE@ HE
te(ciuey)

(7
where R is the measurement error covariance using a and C* is
the neighborhood of C;, i.e., the cameras that can directly com-
municate with C;. Note that Pg+ is the information we expect
to get from the next image set given Hj(a) and R;/(a), which
are computed based on a and x7 ; hence, the right-hand side of
(6) is a function of a.

Using this estimated error covariance update equation, we
can predict covariance Pf+ given some settings profile a. By
choosing a settings profile that maximizes the tracking utility,
we are selecting the set of measurements that will minimize the
estimated error covariance within the Extended Kalman-Con-
sensus tracker.

View Criterion: The view utility My, (a) quantifies the ex-
tent to which the resolution and/or pose requirement of target
T} is satisfied by the camera network using settings profile a.
Let p;; be the probability that target T is viewed at the desired
resolution by camera C;. Then, My, (a) is defined here for the
resolution requirement as

My,(a) = 1 =[]t - piy) ®)
where
pij = { 1- ef’\ﬁ, if ryin < 7{ < Pmax 9
0, if otherwise.

Tmin and 7,5 are the minimum and maximum height require-
ments, respectively, of target T} in the camera image plane and
77 is the resolution at which T} is being viewed at by C;;. Term A
can be changed according to how well the single-view tracking
algorithm performs as the height of the target on the image plane
increases or decreases.
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Fig. 2. TIllustration of the view angle factor defined in (10).

This utility could be also modified to prioritize certain poses
or facial shots by factoring in pose and facial view angle or reso-
lution. For example, if a facial shot is required for identification,
which is view dependent, a view angle factor can be defined as

Or, - Oc,
v(a, %;) = cos <9Tj — arccos ( S )) (10)

||(3Tj H (jCi
where HTj is the desired view angle of 7}, 5:@ is the orientation
of T}, and O¢;, is the orientation of camera C;. An illustration
of the view angle factor is shown in Fig. 2. Thus, the view utility
becomes

My, (a) = y(a,x;) (11)

1 — H(l — pz‘,j)‘| .

)

Risk of Losing Target: Risk My (a) determines the proba-
bility that the current settings profile a will not cover target 77 at
its probable locations. This is dependent on consensus position
estimate P}, a subvector of consensus state estimate x;, PTZ
settings a, and covariance P7. It is defined as

o
MRj(a)zl_// on|E![?
J ) 2]l

- oxp (_% (b _ p{)TE{ (b - p{)> db (12)

where E? is the submatrix of P/ containing the covariance of
the position and D is the area covered by cameras.

2) Global Utility: Global utility Ug describes the desirability
of the settings profile a, given the criteria that must be satis-
fied by the camera network. This is represented as a function of
the importance/priority of each target T; and its related target
utility Ur

UG(a) = UT1 (a) +-- oy (JTNT (a) (13)

where v; denotes the importance of target 7.

By maximizing the global utility, we are choosing the settings
profile that best satisfies the criteria specified for the camera
network.

3) Camera Utility: The global utilities must be converted
now into local utilities in order for them to be solved in a dis-
tributed fashion. Convergence proofs in game theory [20] re-
quire that the local utilities are aligned with the global utility,
i.e., a change in the local utility affects the global utility simi-
larly. We achieve this by making the utility of our camera equiv-
alent to its contribution to the global utility, i.e.,

Uc.(a) =Ug(a) — Ug(a—;) (14)
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where set a_; is the set of settings profiles excluding the pro-
file for camera ¢. It can be shown that this leads to a potential
game using the global utility as the potential function [20], [37]
(the definition of potential game and its convergence are stated
in Appendix B). This allows us to maximize the global utility
through the maximization of the utility of each camera.

C. Negotiation Mechanisms

The dynamic nature of the targets in the region being ob-
served requires that our cameras communicate with each other
in order to decide the set of parameters that will result in the
optimal global utility. Each camera negotiates with its neigh-
boring cameras to accurately predict the actions of the other
cameras before deciding its own action. The overall idea of the
proposed negotiation strategy is to use learning algorithms for
multiplayer games [20]. A particularly appealing strategy for
this problem is spatial adaptive play (SAP) [39]. This is because
it can be implemented with a low computational burden on each
camera and leads to an optimal assignment of targets with arbi-
trarily high probabilities for the camera utility described above.
Iteration stops if a Nash equilibrium is attained or if the avail-
able operation time expires.

Application of SAP Negotiation Mechanism: At any step
of SAP negotiations, a camera C; is randomly chosen from the
pool of cameras in the network according to a uniform distribu-
tion over the cameras, and only this camera is given the chance
to update its proposed parameter settings. At negotiation step
k, C; proposes a parameter setting according to the following
probability distribution based on other cameras’ parameters at
the previous step:

Ue, (AL, a_i(k — 1))

1
pik)=o | - (15)

Uc, (Ar;,Aiv:az‘(k - 1))

for some 7 > 0, where a{k — 1) denotes the profile of the pro-
posed parameter settings at step & — 1, A; = {AL, ..., ALA"’l}
is the enumeration of all possible parameter settings of camera
C;, and |.4;] is the number of elements in .4;. o (.) is the logistic
or soft-max function, and its 77:th element is defined as

(o()),, =

etm
€TL 4+ oo oTn

Constant 7 determines how likely C; is to select a parameter
setting. If T — o0, C; will select any setting a; € A; with
equal probability. As 7 — 0, C; will select a setting from its
best response set

{a.,; €A :Ug, (a;,a_;(t—1)) = max Ug, (a;,ai(t—l))}

alcA;

with arbitrarily high probability. After C; updates its settings,
it broadcasts its parameters (i.e., PTZ) to all neighboring cam-
eras. The other cameras can then use that information to up-
date their parameters after being chosen at any negotiation step
until a consensus is reached. This occurs when the cameras have
reached a Nash equilibrium, i.e., when no camera can increase
the global utility by changing its parameters.
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The utility functions combined with the negotiation strategy
guarantees that, at each time step, the set of parameters chosen
for the network of cameras is an optimal solution for the
system’s goals as defined by the global utility. In practice, we
will not need to do this at every time step. Optimization can be
done whenever the utility falls below a certain threshold.

D. Example Scenarios

Consider a network of N PTZ smart cameras, each of which
contains a person detector, a Kalman-Consensus tracker, and
some high-level processing tasks (as needed by the application).
In this section, we will study several specific cases of achieving
different system goals for scene analysis. We will discuss in
detail the design of the utility functions.

1) Example 1—Cover Entire Area With at Least Some Min-
imum Resolution While Focusing on Some Targets at Higher
Resolution: To cover the entire area, the area can be divided into
grids in a way similar to [8] to make the problem more tractable.
Then, each grid of the area is treated as a virtual target.

Since the goal is covering the entire area at a required reso-
lution, there is no risk of losing a target if the goal is achieved.
Thus, only the view utility needs to be considered in this case.
For each virtual target T}, the utility is

forj=1,...,N,
(16)
where N is the total number of grid cells, My, is defined in (8),
Tmin 18 the minimum resolution requirement as defined in (9),
and r,, is the minimum requirement for covering the entire area.
For some user-specified real targets that need to be viewed
with higher resolution, although a tracking module is run on
them to provide the estimates of their positions, we do not factor
the tracking performance into the optimization function in the
control module because the entire area is required to be covered.
We refer to this case as the Area Coverage problem. The utilities
for those specified real targets are

UT;) (a) = Afy] (a) with rpmin = 7,

Ure. (a) = My, (a) with 7, = 7s,
for j= Ny +1,.... N, + Ny (17)

where 1}, is the resolution requirement for those specified tar-
gets.
Now we can define the global utility as
Ng+ Ny N,
Us(a)=0" Y Upi(a)+v" ) Urs(a)

J=N,+1

(18)

i=1

where N is the number of user-specified targets and the im-
portance of those high-resolution targets v" should be set to be
higher than that of virtual targets v".

2) Example 2—Cover Entrances of the Area While Opti-
mizing Tracking of Targets Within the Area: The purpose of
the system here is to minimize the tracking error of all targets
within the region under surveillance and obtain the best pos-
sible shots (in terms of resolution) for each target. The choice
of camera parameters determines the expected assignment of
targets to cameras, as well as the expected tracking accuracy
and risk. Given that the targets are moving, when the entire area
is not covered, there is a tradeoff between resolution gain and
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tracking risk. Each camera may view only a portion of the area
under surveillance. Here, we also consider the issue that the im-
portance of every location within the observed space may not
be equal. Monitoring entrances and exits to the area under con-
sideration will allow us to identify and subsequently track all
targets, whereas monitoring empty space is of little use.

To achieve the system goal, the camera control is aware of
the state of the Kalman-Consensus filter and actively seeks to
provide it with the most informative measurements for state es-
timation, which makes the architecture of the system in this case
different from the Area Coverage one in Example 1. Further-
more, the estimated error covariance is considered in addition to
the estimated state of each target. This allows the optimization
to gauge the risk of failing to capture a feature when attempting
high-resolution shots. We refer to this case as the Target Cov-
erage problem.

From the tracking, view, and risk metrics defined in (6), (8),
and (12), we can define the target utility as the metrics generated
by viewing target T}, i.e., the metric generated by tracking 7},
minus the risk, or

Ur,(a) = w] My, (a) + wjMy, (a) (19)

where wy, w3, and w} are the weights corresponding to the
tracking, view, and risk metrics for target 7, respectively. We
can then determine those settings profiles that maximize the
global utility based on the analysis of Ug/(a). A

Setting a high value for w] and w3 and a low value for w}
causes the system to prioritize tracking gain with high resolution
at the risk of losing the target. With such a setting and a poor
estimate of the target state, it is possible that the chosen settings
profile fails to capture a high-resolution image of some target
and may not image the target. Recovery from such an event is
discussed below. By setting a higher value for w?, (compared
with w{ and w}), the camera network will attempt to acquire a
high-resolution shot of the target j. This has the added effect of
reducing overlap within the FOVs of the network. Conversely,
if w} for all targets 77 is set high, the system would choose the
view containing all targets since this system setting minimizes
the risk that targets are uncovered at any time instant.

Fault tolerance is handled through the interaction of the
tracking utility and risk. The estimated error covariance of a
target grows the longer a target is not observed. The larger the
estimated error covariance, the larger the area that needs to
be covered to decrease the risk. Thus, the system will prefer
a setting whereby a larger area will be covered so that the
lost target can be imaged, although this camera will be at low
resolution. We show this through a specific example in Fig. 9.

3) Example 3—Cover Entire Area With at Least Some Min-
imum Resolution While Optimizing Tracking of Targets Within
the Area: This case is a combination of the Area Coverage and
Target Coverage problems. From Example 1 and Example 2, we
can easily define the global utility as

Ny+Nrp

Z vl (wi My, (a) + wh My, (a))
J=Ng+1
N,

+ 0" Z M‘j (a)

=1

— wiMp, (a)

Ug(a) =

(20)
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The risk is not included in this because the entire area is covered,
and hence, there is no risk of losing a target.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed camera control algorithm, we have
performed extensive experiments and analysis. First, we test our
approach on a simulated network of cameras. Next, we show re-
sults on a real-life camera network by considering two example
performance criteria for scene analysis, i.e., Area Coverage and
Target Coverage (see Section III-D). Finally, we quantitatively
analyze the performance of the proposed method with changing
numbers of targets.

A. Simulation Data

The goal of the simulation was to test the algorithm under a
variety of conditions that are not possible with real data due to
the physical limitations of the experimental setup. In addition,
we can compare performance with ground truth. Our simulation
setup was very close to the real-life experimental framework.
For this simulation, we consider the special case of monitoring
the entire area while focusing on a few targets at high resolution.

The area under surveillance is set up as a rectangular region
of 20 m x 30 m. In our specific implementation presented here,
we divide the area into grids in a way similar to [8] to make the
problem more tractable. Thereafter, we treat each grid of the area
as a virtual target (since we are dealing with the problem of cov-
ering the entire area). In this simulation, the grids are of size 1 m
% 1 m. The sensor network consists of eight PTZ cameras with a
resolution of 320 x 240 pixels spread around the perimeter of
the area, as shown in Fig. 3(a). Initially, the camera parameters
(i.e., PTZ) are arbitrarily assigned so that the area under surveil-
lance is not entirely covered by the cameras’ FOVs.

Initialization: The first goal is to determine an initial set of
camera parameters to cover the entire area at an acceptable res-
olution. To achieve this, we use the game-theoretic approach
described above (see Section I1I-D-1). Each grid in the area is
treated as a virtual target. At each negotiation step, the cam-
eras can update their parameter settings, given the settings of the
other cameras at the previous time step, to affect which of these
virtual targets they are observing. At each negotiation step, after
a cameraupdates its PTZ parameters, these parameters are trans-
mitted to the other cameras in the network. The other cameras
can therefore calculate the new area that this camera is now cov-
ering. This process is repeated at each negotiation step in which
a camera is chosen in turn to update its parameters. In this simu-
lated setting, the negotiation converges to a completely covered
area at an acceptable resolution after typically 17 negotiation
steps. The result after initialization is shown in Fig. 3(a). Areas
in different shades of gray are covered. Any white area is not
covered. The shading gets darker for a block as more cameras
cover it. Successful convergence is shown, as there is no white
area in Fig. 3(a).

Zooming in one target: After the entire region is covered at
an acceptable resolution, it follows that every moving targets in
that area is also being viewed at an acceptable resolution given
the constraint of covering the whole area. However, a human op-
erator could chose to observe a feature (e.g., face) of a specific
moving target at a higher resolution for a specific application
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Fig. 3. Simulated area under surveillance with several targets visible. White indicates uncovered area. Shades of gray indicate coverage. (a) Result after initial
convergence shows the area of interest being completely covered by the cameras at an acceptable resolution r,; therefore, all the targets in the area are being
viewed at least r,, . (b) Initial condition when a target (T}"., 1, ) has been selected for observation at a high resolution . In (¢), C'x., the camera with the dark FOV,
decided that it could observe (TJ’Z, r+) and adjusted its FOV accordingly. Note now that there is a part of the area uncovered due to C', ’s change of parameters.
As shown in (d), some of the other cameras readjusted their parameters through the negotiation mechanisms to maximize their utilities covering again the entire
area under surveillance. At a later time, in (), when C', is not able to keep ( TJ’7 , 71 ) in its FOV anymore, based on the knowledge of T]h , the other cameras adjust
their parameters to maintain both area coverage and (T}, 73,). The entire process above is repeated until (Tj”’, 4, ) exits the area, as shown in (f).

(e.g., face recognition). The zoom factor to view the targets at the
desired resolution is determined by the number of pixels a target
(assumed here to have a height of 170 cm on the ground plane) oc-
cupies on the image plane. This chosen target is the marked target
inFig. 3(b). A human operator is simulated by tasking the camera
in the global configuration that yields the highest resolution of
the target with obtaining high-resolution images and removing
it from the area coverage optimization. The results of the change
can be seen in the dark FOV in Fig. 3(c).

Since the parameter change in camera ', may leave parts
of the area uncovered, the other cameras must change their pa-

rameters during the negotiation to again cover the whole area at
an acceptable resolution. This parameter change of the cameras
is evident in Fig. 3(d). As the target moves out of the range of
the camera, a different camera must be chosen to continue the
high-resolution image capture. In this simulation, Cj, predicts
the position of the target at time ¢. If C;, determines that it will
not be able to observe the high-resolution target after a time in-
stance £, it will handoff the task to the camera with the best
resolution and rejoin the pool of cameras optimizing area cov-
erage. This can be seen in Fig. 3(d), where the high-resolution
target is about to exit the camera’s FOV, and in Fig. 3(e), where
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Fig. 4. Typical plots of utilities for the simulation in Section IV-A. (a) Cov-
erage of the entire area. The solid line represents the summation of utilities for
the virtual targets, i.e., Z;Vz"l Upw , and the dashed line represents the number of
area blocks being covered by the camera network at an acceptable resolution.
The maximum number of block coverage is 600, i.e., the entire area is being
covered. The utility for the high-resolution target is shown in (b). The utility of
the high-resolution target is 0 for a very short time period around 90th second as
there is a handoff between cameras; hence, no camera views the target at high
resolution in this period, but the target is still viewed at an acceptable resolution
(can be inferred from (a) as entire area is being covered in that period). At all
other times, the high resolution is maintained on the real target. In (c), global
utility is plotted; here, the importance values of real and virtual targets are set
to be 50 and 1, respectively.

another camera that was participating in the negotiation decided
that it could view the target at the highest resolution at £, and
took over observation of the target. Since a new camera has
taken charge of observing the high-resolution target, the other
cameras adjust their parameters in order to cover the entire area
at an acceptable resolution. This process is repeated until the
target exits the area of interest, as shown in Fig. 3(f). Once the
target has left the area under surveillance completely, all the
cameras continue with the negotiation, maximizing their util-
ities to keep the entire area covered at an acceptable resolution.

Fig. 4 shows typical plots of utilities versus time for this
simulation. Utilities for real and virtual targets are shown in
Fig. 4(a) and (b). Fig. 4(c) shows the global utility. As shown,
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when a camera starts observing a target at a high resolution,
some area is left uncovered and the utility for virtual targets de-
creases. Note that the real targets are randomly simulated; actual
change of utilities depends on the real scenario and should not
be the same for different scenarios.

B. Real-Life Data

1) Example 1—Cover Entire Area While Observing Some
Targets at Higher Resolution: The sensor network consists
of nine PTZ network IP cameras with a resolution of 320 x
240 pixels and 12x optical zoom. In this experiment, for each
camera, the pan and tilt parameters are roughly separated by
15° with 2 settings for zoom. We use this setting to show the
performance of our approach with an increasing number of
cameras removed from the area coverage optimization.

Fig. 5 demonstrates the ability of the game-theoretic approach
to self-organize to maintain coverage while allowing some cam-
eras to zoom in for high-resolution images. Fig. 5(a) shows the
initial convergence result that covers the entire area at an accept-
able resolution. The coverage is shown on the bottom-right (blue
areas are covered, white areas are not; the darker the color of a
block, the greater the number of cameras that is assigned there).
Fig. 5(b) shows that, when one camera zooms in (camera Cg,
bounded with red lines), the other cameras automatically adjust
their settings (camera C5 zooms out) to keep the area covered.
Fig. 5(c)—(e) shows the effect of increasing the number of cam-
eras zooming in from 2 to 4. It is shown that, as the number
of zoomed-in cameras increases, more areas are left uncovered.
Fig. 5(f) shows the reinitialization result when we reset the cam-
eras with none of them zooming in, i.e., the network of cameras
can again keep the entire area covered. By comparing Fig. 5(f)
with (a), it can be noticed that the parameter settings in (f) are
different with those in (a), although both of them could satisty
the coverage requirements. This illustrates that the Nash equi-
librium is not unique.

2) Example 2—Cover Entrances of the Area While Opti-
mizing Tracks of Targets Within the Area: First, we show re-
sults on a real-life camera network and then compare with the
design for Area Coverage of Example 1. For the following ex-
periments, the tracking and view utilities were weighted high
with risk weighted low.

Our camera network is composed of five PTZ IP cameras sur-
rounding a 600-m? courtyard. For this experiment, the number
of possible PTZ settings for each camera was increased and
quantized such that each camera had 4 zoom settings, with about
5° separation between pan and tilt settings at the highest zoom
factor and about 15° at the lowest. The total number of con-
figurations is determined by the PTZ binning procedure. The
PTZ binning procedure then determines the required processing
power and total region viewable at high resolution. This region
is further reduced by obstacles. Tracked targets were assumed to
have a height of 1.8 m. Each camera acquires images of resolu-
tion 640 x 480 pixels. Thus, 77 is the largest number of pixels
in the vertical direction occupied by 7} in the image plane of
some cameras in the network. The cameras were arranged such
that four of the cameras were located on the same side of the
courtyard, with one camera on the opposite side. In the region
of interest, there were five targets in addition to two entrances



DING et al.: COLLABORATIVE SENSING IN A DISTRIBUTED PTZ CAMERA NETWORK

3291

Fig. 5. Results of game-theoretic camera control with decreasing number of cameras available to the area coverage optimization. The coverage of the entire space
is shown on the bottom-right of each subfigure, where blue areas are covered white areas are not. The darker the color of a block, the greater the number of cameras
that is assigned there. The results with multiple cameras zooming in are shown in (b)—(e). The number of cameras that zooms in is increasing from 1 to 4. From (b)
to (), the view of new zooming in cameras is bounded by red lines. It is shown that, as the number of zoomed-in cameras increases, more areas are left uncovered.
(f) Reinitialization results when we reset the cameras with none of them zooming in.

and exits. Since the entrances and exits must be monitored al-
ways, we treated them as static virtual targets, leading to a total
of seven targets. Each camera in our setup is an independent en-
tity with full network connectivity through a wireless network,
with the entire system running in real time.

At initialization, all of the cameras apply the utility function
defined in Section III-D-1 for the Area Coverage to cover the
entire region under surveillance and to detect targets already in
the region. The target detection modules in each camera de-
termine the image plane position of each target in its FOV.
This information is then passed along to the Extended Kalman-
Consensus filter and is processed along with the information
from the filters running on neighboring cameras as described in
Appendix A. The resulting consensus state estimate is then used
by each camera to determine the best PTZ settings available
according to the negotiation mechanism in Section III-C.

We compare two scenarios, i.e., Area Coverage and Target
Coverage, as was explained in Section III-D. In the Area Cov-
erage problem, the camera networks have to cover the entire
area and take shots at lower resolutions, resulting in increased
tracking error. We show the results for both the Area Cov-
erage and Target Coverage approaches (where only targets
and entrances are covered), and we clearly show the advan-
tages of optimizing the tracking within the control module.
The targets followed the same path through the courtyard
during the collection of data for both cases. Fig. 6 shows
the images captured by the actively controlled camera net-
work at different time steps. Fig. 6(a) shows the result for
the Area Coverage as the initialization. Fig. 6(b)—(d) shows
the results for the Target Coverage. Since targets are free to
move about the region under surveillance, the cameras in the
network are required to adjust their parameters dynamically
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Fig. 6. Dynamic camera control images. Blue regions mark the FOV; darker
regions identify camera overlap. Targets are marked in green with a red label.
This figure is best viewed on a computer monitor. The video is available as a
supplementary material. (a) Time step & = 0. (b) Time step & = 2. (c¢) Time
step & = 19. (d) Time step k& = 36.

to maintain shots of each target that optimize the utility func-
tions presented in Section III-D2. To acquire these shots, the
camera network concedes a large unobserved area. We can
see in Fig. 7 that as time progresses, the average trace of the
covariance and the resolution of all targets settle at a signif-
icantly better value (compared to the Area Coverage) when
the tracking and control modules are integrated together (as
proposed in this paper). This is because, at each time step, the
camera network will choose the set of parameters that opti-
mizes the utility, which is dependent on the error covariance
of the Extended Kalman-Consensus filter.
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Fig. 7. Comparison of the average tracker covariance [i.e., P, as shown in
(6)] and average resolution [i.e., 77, as shown in (8)] of all targets being actively
tracked by a system using Target Coverage versus Area Coverage. (a) Average
trace of tracker covariance of targets. (b) Average resolution of targets over time.
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Fig. 8. Effects of increasing the number of targets on tracking covariance and
image resolution of the targets. (a) Average trace of tracker covariance of targets.
(b) Average resolution of targets over time.
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Fig. 9. Tracking covariance and resolution of a single target 7, € N, for
|N,| = 22. (a) Average trace of tracker covariance of targets. (b) Average res-

olution of targets over time.

C. Performance Analysis

Through another simulation, we analyze the performance of
the proposed system in the cases of Example 1 and Example 2
(which are two common modes of operation). The goal of the
simulation here is to show the effect of the number of targets
on the performance of the proposed method. The simulation
was modeled very similarly to our real-world setup, allowing
us to do experiments that would be otherwise prohibitive due
to the setup and maintenance costs involved with active camera
network experiments. New simulated targets were evenly dis-
tributed around the available area. We show below the effects
of increasing the number of targets within the surveillance re-
gion and discuss the dynamics of our system.

Fig. 8(a) and (b) shows that, as the number of targets in-
creases, the average tracking covariance does not significantly
change, in contrast to the change in average resolution. Note that
the resolutions are still at a much better value compared with
the system for Area Coverage. An example of one of the targets
is shown in Fig. 9. The reason for the small effect on tracking
covariance increase is partly due to the low weight to the risk
in our experiments. This allows the system to choose to leave
some targets unobserved at any given time step in favor of im-
proving poorly tracked or poorly resolved shots of targets. We
can see in Fig. 9(a) and (b) that at some time instants the target
is unobserved. At these instants, the number of pixels imaged is
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zero and the tracking covariance increases. It is also clear that,
as the tracking covariance increases, the greater the incentive
for the system to image the target at a setting that minimizes the
increasing error. Thus, the system will zoom out to get an image
of the target. This is shown in the plots in Fig. 9 where the target
is reacquired.

V. CONCLUSION

We have presented in this paper an approach to optimize
various scene analysis performance criteria through distributed
control of a dynamic camera network. An Extended Kalman-
Consensus filtering approach was used to track multiple targets
in a dynamic network. A camera control framework using a dis-
tributed optimization approach allowed selection of parameters
to acquire images that best optimized the user-specified require-
ments. We also considered the uncertainty in state estimation
when deciding upon camera settings and the effect of different
utility function weights. We also demonstrated the effectiveness
of our system by showing results from a real-life camera net-
work in addition to analysis of simulation results. This paper
can lay the foundations for autonomous systems with embedded
video processors that are capable of opportunistic sensing, effi-
cient navigation, and scene analysis.

APPENDIX A
EXTENDED KALMAN-CONSENSUS FILTER

The Extended Kalman-Consensus filter allows us to track
targets on the ground plane using multiple measurements in
the image plane taken from various cameras. This allows each
camera C; to have at any time step & a consensus state estimate
%! and estimate error covariance P] for each target 7. Let C
be the set of cameras viewing target 7);. To model the motion
of a target T; on the ground plane, we use (1) with the non-
linear observation model of (2) for each camera C;, where A;(.)
is the mapping from the ground to the image plane for camera
C;, w? (k) and v (k) are zero-mean white Gaussian noise (i.e.,
wi(k) ~ N(0, QJ) and v, (k) ~ N(0, R?), respectively), and
x7(0) is the initial state of the target. The estimate state X! of
T} is based on the observations by the cameras viewing T;. The
noisy measurement z (k) at camera C; is the sensed target po-
sition (¥ (k)7 g (k;)) on (;’s image plane.

Due to the nonlinear nature of the observation model, the
linear Kalman-Consensus filter proposed in [21] cannot be ap-
plied as is. An extension to deal with the nonlinearity of the ob-
servation model is required. Taking into account the nonlinear
nature of our dynamical model, we utilize an Extended Kalman-
Consensus distributed tracking algorithm. The following are our
basic Extended Kalman filter iterations, as implemented in each
camera, in the information form:!

+ Prediction

P(k+1) = A(E)M(K)A(k)" +B(k)Q(k)B(k)"
x(k+1) = A(k)k(k) @1
» Correction
M(k) ' =P(k)"" + H(k)"R(k) 'H(k)

IThe subscript/superscript that indicate camera/target is dropped here for ease
of reading.
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K(k) = M(k)H(E)'R(k) "

x(k) =x(k) + K(k) (2(k) — b (x(K)))
where P and M are the a priori and a posteriori estimate error
covariance matrices, respectively, and H is the Jacobian matrix
of partial derivatives of & with respect to x, i.e.,
ah['m,]
OX[p]

(22)

Hppn = . (23)
x=x(k)
This algorithm is distributedly performed in each camera node
C;. At each time step & and for each target T;, we assume
to be given the estimated a priori target state X! (k) and the
error covariance matrix P7. At time step & = 0, the Extended
Kalman-Consensus filter is initialized with P} = Py and X} =

E{x!(0)). The consensus algorithm is shown in Algorithm 1.

(3

Algorithm 1 Distributed Extended Kalman-Consensus tracking algorithm
performed by every C; at discrete time step k. The state of 7; is represented
by x? with error covariance matrix P7

Input: % and P7 from time step k& — 1
for each 7 that is being viewed by {C* U C;} do
Obtain measurement z7 with covariance R?

Calculate Jacobian matrix H? with respect to the observation model

Ol ) m)

(H:
Ix(n)

Do =

x=x7
W

Compute information vector and matrix

. T -1 . . T —1 :
u =H! R/ z and U =H! R]; H!

i

Compute the predicted measurement

"he (%))

T .
— 7 7
- Hz R‘i
Compute the residue
rl =uf —g]
Send message ml’ = (11"{7 Uf, )‘({) to neighboring cameras C*

Receive messages m; = (rj, Uj, %] ) from all cameras C; € C

Fuse information

vi= > vl si=

te{cuey te(o;

> vl
uer)

Compute the Extended Kalman-Consensus state estimate
M{ = ((Pg{)*1 +si)"
yi+Mi Y (xi - )
2= / (ja:

tech
Update the state and error covariance matrix for time step &

) Il = (tr(xlvx))%

P/ — A'M/AT + B'QIBT
)_(f <—A’f(f

end for
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We now describe the consensus algorithm, as shown in Algo-
rithm 1. It is performed at each C; distributedly for each 7 that
is viewed by {C" U C;}, where C}" is the neighboring camera
set of C; and defined as all cameras with which C; can directly
communicate. If C; is viewing a target 7}, it obtains 7}’s po-
sition on its image plane z] and calculates the Jacobian ma-
trix H; of its observation model and consensus state estimate
x!. After this, the corresponding information vector and ma-
trix are computed with the given measurement covariance ma-
trix R} and H;. C; then sends a message m to its neighbors,
which includes the computed information vector and matrix,
and its estimated target state X! at previous time step (k — 1).
C; then receives similar messages my; only from the cameras
in its neighborhood that are also viewing 7;. The information
matrices and vectors received from these messages, and its own
information matrix and vector, are then fused, and the Extended
Kalman-Consensus state estimate is computed. Finally, ground
plane state x] and error covariance matrix P are updated ac-
cording to the assumed linear dynamical system.

APPENDIX B
GAME THEORY FUNDAMENTALS FOR CAMERA NETWORKS

Below, we summarize some known results in game theory-
based distributed optimization as they pertain to the camera net-
work problem in this paper [20].

Definition B.1: A game is an exact potential game if there
exists potential function ¢: 4 — R such that for every camera,
C; € C, forevery a_; € A_; and for every a;, al € A,

L‘rCi((Liv a7i> - UCL' ((L;TH,i) = (/)(a"i:af’i) - (/) (0’27 afi)

where A = A; x Ay x ... x Ay, is the strategy space and
.A,.,; = ./41 X ... X ./47',71 X ./47;+1 X ... X ANE-

Definition B.2: A game is an ordinal potential game if there
exists ordinal potential function ¢: .4 — R such that for every
camera, C; € C, foreverya_; € A_; and for every a;, o € A;

UCi (@h a*i)fUCz‘ (aiv a*i) > 0<:>¢(0Jiv afi)f(b (alw afi) >0.

Result (Existence of Pure Nash Equilibrium): If a game in-
volving the set of cameras C has a continuous ordinal potential
function ¢, then the game has at least one Nash Equilibrium.

Proof: Leta € Abethe setof assigned camera parameters.

Let ¢ : A — R be an ordinal potential function. Consider
the case where a single camera changes parameters from a; to
bi((li7bi S Al)

Let AU¢, be the change in utility caused by the change in
parameters

AUC,, = Uci(bi,a_i) — Ucvi((li,a_i) > 0.

Let A¢ be the change in potential caused by the change in pa-
rameters

Ad) = (/)(b,‘/, a,i) — (/)(ai, a,i) > 0.

Thus, we can conclude that, for a single camera’s parameters,
change we get

Ad > 0= AUg, > 0.
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This means that we can start from an arbitrary a, and at each
step, one camera increases its utility. Likewise, at each step,
¢ is increased by A¢ > 0. Since ¢ can accept only a finite
number of values, it will eventually reach a local maxima. At
this point, no camera can achieve improvement, and we reach a
Nash Equilibrium. ]
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