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O
ver the past decade, large-scale camera net-
works have become increasingly prevalent in a 
wide range of applications, such as security and 
surveillance, disaster response, and environ-
mental modeling. In many applications, band-

width constraints, security concerns, and difficulty in storing 
and analyzing large amounts of data centrally at a single loca-
tion necessitate the development of distributed camera network 
architectures. Thus, the development of distributed scene-anal-
ysis algorithms has received much attention lately. However, 
the performance of these algorithms often suffers because of 

the inability to effectively acquire the desired images, especially 
when the targets are dispersed over a wide field of view (FOV). 
In this article, we show how to develop an end-to-end frame-
work for integrated sensing and analysis in a distributed cam-
era network so as to maximize various scene-understanding 
performance criteria (e.g., tracking accuracy, best shot, and 
image resolution). We show how the existing work in autono-
mous multiagent systems can be leveraged for this  purpose, 
more specifically, game theory-based  distributed optimization 
algorithms for dynamic camera network reconfiguration and 
consensus algorithms for scene analysis. An experimental test 
bed for evaluating such work is described, and the comparisons 
against other approaches are provided. The results from a real-
life camera network are also presented. 
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INTRODUCTION
Networks of video cameras are 
being installed in many applica-
tions. Currently, most of the 
data collected by such networks 
is manually analyzed, a task that is extremely tedious. This 
reduces the potential of the installed networks. Therefore, it is 
essential to develop tools for automatically analyzing the data 
collected from these cameras and summarizing the results in 
a manner that is meaningful to the end user. In existing cam-
era networks consisting of fixed cameras covering a large area, 
it may often be the case that some targets are not covered at 
the desired resolution or viewpoint, thus making the analysis 
of the video difficult. A possible  solution is to integrate the 
analysis and sensing tasks more closely. This can be achieved 
by controlling the parameters of a pan–tilt–zoom (PTZ) cam-
era  network to fulfill the analysis requirements, thus allowing 
for maximal utilization of the network, providing greater flexi-
bility while requiring less hardware and being cost efficient. 

Moreover, in many applications, it is desirable that the video 
analysis tasks be decentralized for various reasons. For exam-
ple, there may be bandwidth constraints (e.g., mobile net-
works), security issues, and difficulties in analyzing a large 
amount of data centrally. In such situations, the cameras would 
have to act as autonomous agents, making decisions in a 
decentralized manner. At the same time, however, the decisions 
of the cameras need to be coordinated so that there is a consen-
sus about the task (e.g., tracking, camera parameter assign-
ment, and activity recognition) even if each camera is an 
autonomous agent. Thus, the cameras, acting as autonomous 
agents, analyze the raw data locally, exchange only distilled 
information that is relevant to the collaboration, and reach a 
shared, global analysis of the scene and the selection of camera 
parameters for the next image. 

Although there are a number of methods in video analysis 
that deal with multiple cameras, and even camera networks 
(see [1] and the references therein), distributed and integrat-

ed processing and sensing in 
camera networks has received 
very little attention. On the 
other hand, distributed algo-
rithms have been extensively 

studied in the multiagent systems and cooperative control 
literature (e.g., see [2]–[4]). Methods have been developed for 
reaching a consensus on a state independently observed by 
multiple sensors. In this article, we show how to build upon 
these results for integrated sensing and analysis in distribut-
ed camera networks for various wide-area scene-understand-
ing problems. 

AN INTEGRATED SENSING AND ANALYSIS FRAMEWORK
We show how a closed-loop framework for dynamic scene 
analysis in a reconfigurable, distributed PTZ camera network 
can be developed by integrating a number of component parts 
that have been studied more or less separately. The goal is to 
optimize the performance of various dynamic scene-analysis 
criteria, for example, minimizing the tracking error, getting a 
shot at the desired resolution and pose, getting a shot of the 
face for identification, or a combination of the above. To 
achieve this, it is necessary that the camera parameters be 
selected in an intelligent and collaborative manner. Each of 
the cameras in such a network will have its own embedded 
target detection and association module, a distributed tracker 
that provides an estimate on the state of each target in the 
scene, and finally, a distributed camera-control mechanism. 
More complex functionalities like behavior recognition can 
also be included based on the application requirements. 
Neighboring cameras can communicate with each other so as 
to fulfill each of these tasks. Some major camera-specific 
issues need to be addressed, including the fact that cameras 
are directional sensors, targets are dynamic, and we need to 
simultaneously solve for the PTZ parameter settings of the 
cameras and the states of the targets. The integrated system 
structure is shown in Figure 1. 
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[FIG1] Overall system diagram depicting a framework for integrated sensing and analysis in a reconfigurable, distributed camera 
network. The user criteria can define what performance metrics the network will optimize. The user criteria could include covering the 
entire area at a desired resolution, obtaining facial shots, maximizing image resolution, and so on.
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The low-level processing 
module computes the image 
plane positions for targets. 
Through calibration, we know 
about  the transformation 
between the image and ground plane coordinates, which can 
be used for data association. An overview of calibration and 
distributed data-association strategies is presented in the next 
section. These features, along with their measurement error, 
are then passed on to the distributed tracker associated with 
each target, which then combines the information from all 
cameras to come to a consensus regarding the estimated state 
and associated error covariance of each target. An overview of 
the distributed tracking approaches is presented in the 
“Distributed Tracking in Camera Networks” section. 

The camera-control module attempts to optimize the 
scene-analysis performance at the next imaging time instant 
by  selecting the desired values for the camera parameters, 
resulting in measurements that optimize criteria that are 
specified by the user, such as minimizing the estimated error 
covariance of the tracker, maximizing the resolution of the 
targets, and minimizing the risk of failing to obtain an image 
of the target. The issues involved in representing these crite-
ria mathematically and the strategies for their distributed 
optimization are described in the “Reconfiguration of 
Distributed Camera Networks” section. We show how a game-
theoretic distributed-optimization approach to target assign-
ment can be adapted for this purpose. We will also describe a 
test bed for evaluating such systems, show results in a specif-
ic real-life scenario, and provide a comparative performance 
analysis. 

DATA ASSOCIATION AND CALIBRATION 
IN DISTRIBUTED CAMERA NETWORKS
In the initial work on scene analysis in camera networks, par-
ticular interest was focused on learning a network topology, 
i.e., learning the traffic patterns between the entry/exit points 
in different views of the cameras. This is critical for establish-
ing associations between multiple views. The authors in [5] 
used the location and velocity of objects moving across multi-
ple nonoverlapping cameras to estimate the calibration param-
eters of the cameras and the targets’ trajectories. In [6], the 
links between camera views were identified by exploiting the 
statistical consistency of the observation data. A framework for 
handoff in environments that are covered by multiple cameras 
by finding the limits of the FOV of a camera in other cameras 
was described in [7]. This method was adopted in [8] with con-
sideration of power and bandwidth constraints with wireless 
embedded smart cameras. These methods were designed for a 
network composed of static cameras, and the dynamics of 
active camera networks was not taken into account. 

Much effort has been devoted to the study of data associa-
tions in multitarget tracking, but many challenges remain in 
their applicability to camera networks, especially in distribut-
ed environments. Multihypothesis tracking (MHT) [9] and 

joint probabilistic data-associa-
tion filters (JPDAFs) [10] are 
two representative methods. To 
overcome the large computa-
tional cost of MHT and JPDAFs, 

various optimization algorithms such as linear programming 
[11] and the Hungarian algorithm [12] are used for data asso-
ciation. In [13], the authors proposed a min-cost flow frame-
work for global optimal data association. There are some 
papers on applying these techniques to camera networks, 
with a consideration of the geometrical relationship between 
cameras. In [14], the data association across cameras was 
achieved by extending the min-cost flow algorithm to camera 
networks. However, it is not straightforward to apply the 
approach to distributed camera networks. An intercamera 
matching method is presented in [15] by exploiting geometri-
cal independence properties. The authors also considered the 
communication efficiency aspect through compressive sens-
ing, which has the potential to be used in a distributed man-
ner. The problem of distributed data association has been 
addressed in [16] and [17]. Below, we briefly describe these 
two approaches. 

In distributed architectures, usually a network topology is 
considered where a camera node can only communicate with a 
node directly connected to it (neighboring node). The goal of a 
distributed approach for data association in camera networks is 
that the cameras must come to a consensus only by communi-
cating with their network neighbors and without sending all the 
information to each other or to a centralized server. 

In [16], a probabilistic data-association technique called 
JPDA was used. The system was initialized with the correct 
number of targets. Then at each time step, each of the camer-
as updated the estimated targets’ positions with a probabilistic 
fusion of all its own observations. Next, they exchanged infor-
mation with their neighboring cameras and associated the 
closest tracks to each other. After this data-association step, 
the associated tracked entities from neighboring cameras were 
fused together using a Kalman consensus framework. In [17], 
a graphical method is used to solve the data-association prob-
lem in a distributed framework. The virtual nodes were 
assumed for each camera, target, and nonoverlapping region, 
allowing distributed algorithms for graphical models, such as 
message-passing algorithm, to be used to solve the data-asso-
ciation problem. In reality, these virtual nodes may be avail-
able in a centralized server or may be distributed among the 
cameras. The prior spatial distribution of the targets was 
assumed to be known by the cameras covering each particular 
region. Then by sharing the data association confidences with 
each other, all the nodes come to an agreement about the data 
association. The camera calibration was assumed to be known 
in both of these distributed data-association papers. 

The field of distributed calibration of camera networks has 
also garnered some interest in recent years. Average consen-
sus-based methods as in [18] and graphical methods as in [19] 
have been used to design distributed estimation algorithms 

THE LOW-LEVEL PROCESSING MODULE 
COMPUTES THE IMAGE PLANE 
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for calibration parameters. 
However, distributed solution of 
the calibration parameters 
requires reliable data associa-
tion to be available at each of 
the nodes. From the above dis-
cussion, we can see that distrib-
uted data association and calibration are closely interlinked. 
We are not yet familiar with any work on distributed camera 
networks that looks at these two problems jointly, and this 
field is becoming a very interesting topic for future research. 
For the experimental analysis in this article, we implement 
the distributed data association as a special case of [16], such 
that the measurements are assigned to the targets based on 
the nearest neighbor criterion. The same criterion is also 
applied for target association across cameras. 

DISTRIBUTED TRACKING IN CAMERA NETWORKS
In this section, we address the aspect of tracking in distributed 
camera networks. We start with a review of the existing litera-
ture and then present a method for consensus-based tracking in 
a distributed environment. One of the earliest methods on 
tracking in a camera network is given in [20], where the corre-
spondences of tracks between different camera views are con-
structed using a bipartite graph-matching strategy. In [21], a 
multiobjective optimization framework was presented for track-
ing in a camera network. There has also been recent work on 
tracking people in a multicamera setup [22], [23] by exploiting 
the principal axes of the targets or using a planar homography 
constraint. However, none of these methods address the issue of 
distributed processing. 

In [24], a partially distributed target-tracking approach 
using a cluster-based Kalman filter was proposed. Here, a cam-
era is selected as a cluster head that aggregates all the measure-
ments of a target to estimate its position using a Kalman filter 
and sends that estimate to a central base station. Because of the 
presence of cluster heads and a central station, this is not a 
completely distributed approach. A related work that deals with 
tracking targets in a camera network with PTZ cameras is given 
in [25]. Here, the authors proposed a mixture between a distrib-
uted and centralized scheme using both static and PTZ cameras 
in a virtual camera network environment. 

In the multiagent systems community, completely distrib-
uted estimation methods have been proposed using consen-
sus-based ideas. In a network of agents, consensus can be 
defined as reaching an agreement through cooperation 
regarding a certain quantity of interest that depends on the 
information available through measurements from all agents. 
An interaction rule that specifies the information exchange 
between an agent and all of its neighbors in the network and 
the method by which the information is fused is called a con-
sensus algorithm (or protocol). Cooperation means giving 
consent to providing one’s state and following a common 
 protocol that serves the group’s objective. The interaction 
topology of a network of sensors is represented using a graph 

G 5 1V, E 2 ,  with the set of 
nodes  V 5 51, 2, c, n6  and 
edges E # V 3 V . Each sensor 
node i 5 1, c, n  maintains 
an estimate x̂i [ Rm of a quanti-
ty xi [ Rm. Consensus is achiev-
ed when x̂1 5 x̂2 5 c5 x̂n , 

which is an n-dimensional subspace of Rmn. A thorough 
review of consensus in networked multiagent systems can be 
found in [26]. 

A distributed Kalman-consensus filter, and subsequent 
variants, was proposed in [2], [27], and [28]. This was a com-
pletely distributed solution for estimating the dynamic state of 
a moving target. However, there are some major issues in 
applying the method to camera networks due to the nature of 
video sensors. Cameras are directional sensors, with each hav-
ing a limited view of the entire theater of action and the com-
plexity of the data requires high bandwidth to implement full 
communication. We will next show how the basic approaches 
on consensus for distributed estimation in the multiagent sys-
tem literature can be applied for designing a consensus-based 
tracking algorithm in camera networks. 

KALMAN-CONSENSUS TRACKING 
IN CAMERA NETWORKS
Below is a brief overview of the Kalman consensus tracker 
with an emphasis on the modifications needed for it to be 
applied to a camera network. Details on the approach can be 
found in [29]. 

MATHEMATICAL FRAMEWORK
Let C be the set of all cameras in the network. We can then 
define the subset of all cameras viewing target Tl as Cl

v ( C and 
the rest of the cameras as Cl

v2 ( C. Each camera Ci will also 
have its set of neighboring cameras Ci

n ( C. Based on the com-
munication constraints due to bandwidth limitations and net-
work connections, we define the set Ci

n as all the cameras with 
which Ci is able to communicate directly. In other words, Ci can 
assume that no cameras other than its neighbors Ci

n exist, as no 
information flows directly from the nonneighboring cameras to 
Ci. Note that the set of neighbors need not be geographical 
neighbors. We also define the set of overlapping cameras of Ci as 
Ci

o ( C; since all the cameras can change their PTZ parameters 
and therefore have several possible fields of view, we define the 
set Ci

o as all the cameras with which Ci can potentially have an 
overlapping FOV. By definition, it becomes clear that, for each 
Ci [ Cl

v, it is true that Cl
v ( 5Ci

oh  Ci6. We define Ci
c ( C as the 

connected component that Ci is in. We assume Ci
o ( Ci

c, that is 
to say, Ci is able to exchange information with its overlapping 
cameras directly or via other cameras. 

We consider the situation where targets are moving on a 
ground plane, and a homography between each camera’s image 
plane and the ground plane is known. We will show how state 
vector estimation for each target by each camera (i.e., each 
camera’s estimates based on its individual measurements) can 

COOPERATION MEANS GIVING 
CONSENT TO PROVIDING ONE’S 

STATE AND FOLLOWING A COMMON 
PROTOCOL THAT SERVES THE 
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be combined together through a consensus scheme. This meth-
od is independent of the tracking scheme employed in each 
camera. If the network of cameras is connected, then a consen-
sus is achieved across the entire network. 

The first step in the process is to model the motion of a tar-
get Tl on the ground plane, as observed by camera Ci. Assuming 
a linear dynamical system with time propagation and observa-
tion models, we have 

 xl 1k 1 1 2 5 ≥ 1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

¥ xl 1k 2 1 w l 1k 2 ;    x l 10 2  (1)

 zi
l 1k 2 5 Fi

l 1k 2x l 1k 2 1 vi
l 1k 2 ,  (2)

where w l 1k 2  and vi
l 1k 2  are zero mean, white, Gaussian noise 1w l 1k 2 |N 10, Ql 2 , vi 1k 2 |N 10, Ri

l 2  and x l 10 2 |N 1x0
l , P0 2  is the 

initial state of the target. Q and R are the covariance matrices of 
Gaussian noise. We define the state of the target at time step k 
as x l 1k 2 5 1xl 1k 2 , yl 1k 2 , x# l 1k 2 , y# l 1k 2 2T, where 1xl 1k 2 , yl 1k 22  and 1x# l 1k 2 , y# l 1k 22  are the position and velocity of target Tl in the x 
and y directions, respectively. The vector x i

l is the state of target 
Tl by Ci based on the measurements in Ci only. The vector z i

l 1k 2  
is the noisy measurement of target Tl, i.e., the sensed position 1xi

l 1k 2 , yi
l 1k 22 , at camera Ci. zi

l 1k2  can be measured on either 
ground or image planes. If zi

l 1k2  is measured on the ground 

plane, then Fi
l 5 3I2 02 4, where I2 is a 2 3 2 identity matrix and 

02 is a 2 3 2 matrix with zero entities. If zi
l 1k2  is measured on 

the image plane, then Fi
l 5 3F|i 02 4 where F

|
i denotes the map-

ping from ground to the image plane of Ci, which can be derived 
from the homography. Between each camera’s image and 
ground planes, the homography can be estimated by marking 
corresponding pairs of feature points on the image and ground 
planes. In our implementation, the camera parameter setting is 
discretized, i.e., each camera has a finite number of candidate 
parameter settings. The homography is precalculated for each 
possible setting. 

ALGORITHM DESCRIPTION
The Kalman-consensus distributed tracking algorithm is 
presented in “Algorithm 1,” which is similar to the one in 
[27], but considers the different nature of camera sensors. 
The formal analysis of Algorithm 1 can be found in [28]. We 
describe it for the general system model of (1) and (2) and 
is applicable for the two special cases described above. This 
algorithm is performed in a distributed fashion by each 
camera node Ci. 

If Ci is viewing a target Tl, it obtains Tl’s measurements zi
l 

and computes the corresponding information vector ui
l and 

matrix Ui
l. ui

l and Ui
l are the sensor data and inverse-covariance 

matrix on Tl of camera Ci. The information fusion of multiple 
cameras can be achieved by summing ui

l and Ui
l over all camer-

as. Similar to [27] for those cameras that cannot observe a cer-
tain target, the information vectors and matrices it sends to 
other cameras for that target are defined to be 0, by assuming 
that their output matrices on Tl are zero, i.e., Fi

l 5 0. If Ci [ Cl
v 

and the communication graph for Cl
v is fully connected, such 

that Ci can receive information from all the other cameras 
viewing the same target, the local state estimation at Ci by fus-
ing information vectors and matrixes is the same as the central 
estimation, wherein all the cameras send their observations to 
a central processor, and tracking is centrally preformed. 
However, in a more typical situation, the neighbors of each 
camera are different; therefore, at each time instant, the infor-
mation each camera receives to fuse may also be different. 
There is no guarantee that the state estimates at different cam-
eras remain cohesive. Thus, a consensus step is implemented 
as part of the estimation step [see (S2) in “Algorithm 1”]. It is 
proved in [28] that all estimators asymptotically reach an 
unbiased consensus, i.e., x̂1 5c5 x̂n 5 x, with time k grow-
ing to infinity. 

HANDOFF IN CONSENSUS-TRACKING 
ALGORITHMS
For wide-area tracking algorithms, it is necessary to develop 
suitable handoff strategies between the cameras. Through the 
Kalman-consensus algorithm, each Ci has a consensus-based 
ground plane state estimate of each target that is being viewed 
by the cameras with which Ci can exchange information 
directly or indirectly, even if Ci has never seen some of the tar-
gets. For the case of overlapping cameras, a target Tl will move 

ALGORITHM 1 
Distributed Kalman-consensus tracking algorithm performed 
by every Ci at discrete time step k. The state estimate of Tl by 
Ci is represented by xi

l with an error-covariance matrix Pi
l.

Input: x l
i  and Pi

l valid at k using measurements from time step 
k 2 1
for each Tl that is being viewed by 5C i

chCi6 do 
 Obtain measurement z i

l with covariance Ri
l 

 Compute information vector and matrix 

ui
l 5 Fi

lT 1Ri
l 221zi

l,   Ui
l 5 Fi

lT 1Ri
l 221Fi

l

 Send messages mi
l 5 1ui

l, Ui
l, xi

l 2 to neighboring cameras Ci
n 

  Receive messages mj 5 1uj
l , Uj

l , xj
l 2 from all cameras Cj [ Ci

n 
 Fuse information matrices and vectors 

 yi
l 5 a

j[ 1Ci hCi
n2uj

l,   Si
l 5 a

j[ 1Ci h Ci
n2Uj

l (S1)

 Compute the Kalman-consensus state estimate 

 Mi
l 5 11Pi

l 221 1 Si
l 221

 x̂i
l 5 x i

l 1 Mi
l 1yi

l 2 Si
l xl

i 2 1 gMi
l a

j[Ci
n

1x j
l 2 x i

l 2
 g 5 1/ 1 7Mi

l 7 1 1 2 , 7 X 7 5 11tr 1XTX 22 1
2 (S2)

  Propagate the state and error-covariance matrix from 
time step k to k 1 1 

 P l
i d AlMi

l Al T

1 BlQ lBl T

, x i
l d Alx̂ i

l (S3)

end for
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from one camera Ci’s FOV to the 
FOV of an overlapping camera 
Cj [ Ci

o .  Moreover,  Ci  can 
exchange information with its 
overlapping cameras, Ci

o, direct-
ly  or  v ia  other  cameras . 
Therefore, Cj can take over the 
tracking of Tl and find the target correspondence in a seamless 
way, since the cameras had the knowledge of Tl’s ground plane 
position through the consensus tracking before it even 
entered its FOV. If the target moves from one camera to 
another that is nonoverlapping, the distributed data-associa-
tion strategies outlined above can be employed to find the cor-
respondence and maintain the continuity of the track. 

Another advantage of the fact that cameras have knowledge 
of all the targets in their neighborhood is that, in the event of a 
sudden failure of camera node Ci, the targets that were viewed 
by Ci are not suddenly lost by the camera network. Also, a cam-
era may take a short amount of time to change its parameters to 
a new position in a nonstatic camera network. If no camera is 
viewing the target for the short amount of time it takes for the 
cameras to come to a new set of parameters, the target state 
estimate and covariance continue to propagate according to  
(S3). This does not translate to a significant decrease in tracking 
performance as seen in our experiments. 

RECONFIGURATION OF 
DISTRIBUTED CAMERA NETWORKS
In the integrated sensing and analysis framework described 
earlier, the image-acquisition strategies should be informed 
by the output of the analysis modules. In this section, we will 
describe how to reconfigure a PTZ network in real time to 
achieve this. 

Many modern vision networks consist of a mixture of stat-
ic and PTZ cameras. The placement of these networks is 
determined at the moment of deployment. Optimal camera 
 placement strategies were proposed in [30] and solved by 
using a camera-placement metric that captures occlusion in 
three-dimensional (3-D) environments using binary integer 
programming. In [31], a solution to the problem of optimal 
camera placement, given some coverage constraints, was 
presented and can be used to come up with an initial camera 
configuration. The large area covered by these networks 
results in many situations where the observed targets are 
often not imaged at desirable resolutions. The ability to 
actively control the PTZ cameras in such a network raises 
many interesting research issues that have not yet been 
widely addressed. 

The path-planning inspired approach proposed in [32] used 
a mixed network of cameras. Static cameras were used to track 
all targets in a virtual environment, while PTZ cameras were 
assigned to obtain high-resolution video from the targets. This 
approach showed that, given the predicted tracks of all the tar-
gets, a plan of one-to-one mappings between cameras and tar-
gets can be formed to acquire high-resolution videos. A 

method for determining good 
sensor configurations that 
would  maximize performance 
measures was introduced in 
[33]. The configuration frame-
work is based on the presence of 
random occluding objects, and 

two techniques are proposed to analyze the visibility of the 
objects. These methods address the camera network reconfig-
uration problem in a centralized manner, while a distributed 
solution is more desirable in many application domains. 

A recent distributed approach in [34] uses the expectation-
maximization (EM) algorithm to find the optimal configuration 
of PTZ cameras, given a map of activities. The value of each dis-
cretized ground coordinate is determined using the map. This 
approach, upon convergence of the EM algorithm, provides the 
PTZ settings to optimally cover an area. A framework for dis-
tributed control and target assignment in camera networks was 
presented in [35], in which the cooperative network-control 
ideas based on multiplayer learning in games [36] were used. 
The result was a decision-making process that aims to optimize 
a certain global criterion based on individual decisions by each 
component (sensor) and the decisions of other interconnected 
components. The proposed method was related to the vehicle–
target assignment problem using game theory, as was presented 
in [3] where a group of vehicles is expected to optimally assign 
themselves to a set of targets. However, in that work, the tar-
gets were not dynamic, and each vehicle was assigned to one 
target. In a camera network, each camera can observe multiple 
targets, and multiple cameras can observe each target (many-
to-many mapping). 

In keeping with the overall theme of this article, we now 
provide an overview of how certain network control ideas can be 
used for camera network reconfiguration, the final module in 
the integrated sensing and analysis framework of Figure 1. 

GAME-THEORETIC FRAMEWORK FOR 
CAMERA NETWORK RECONFIGURATION
The objective of the control module in Figure 1 is to develop 
a decentralized strategy for determining camera parameters 
that relies on local decision making at the camera nodes 
while being aligned with a suitable global criterion, e.g., per-
sistently observing multiple targets at specified resolutions. 
We design each sensor to be a rational decision maker and 
formulate our problem as a multiplayer game, where each 
camera is a player and interested in optimizing its own utili-
ty. By designing the camera utility functions to be aligned 
with the global utility function, the game is a potential game 
with the global utility function being the potential function 
[37]. Then the agreeable settings of cameras, i.e., the settings 
at which there is no incentive for any camera to unilaterally 
deviate (Nash equilibria), should lead to high, ideally maxi-
mal, global utility. 

The first step is to find suitable local utility functions such 
that the objectives of each camera are localized to that 

FOR WIDE-AREA TRACKING 
ALGORITHMS, IT IS NECESSARY 

TO DEVELOP SUITABLE HANDOFF 
STRATEGIES BETWEEN THE CAMERAS.
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 camera, yet aligned with the global utility function. The sec-
ond step is to develop an appropriate negotiation mechanism 
between cameras to ensure convergence of the distributed 
solution towards the global solution. The actual computation 
of these functions depends upon the analysis of the sensed 
video, e.g., the tracks obtained by the tracking modules. 
Below, we provide an overview of how such utility functions 
can be designed for various scene-analysis tasks. 

Let us consider Nt targets in the entire area of deployment 
and Nc sensors that need to be assigned to these targets. In the 
camera network setup, each target will be represented by a loca-
tion vector and a resolution parameter. Each target has an asso-
ciated resolution parameter rl, l 5 1, c, Nt. Camera Ci [ C 
will select its own set of parameters ai # Ai, where Ai is the 
parameter profile that Ci can select from, to optimize its own 
utility function UCi

1ai 2 . Our problem is to design these utility 
functions and choose appropriate 
negotiation  procedures that lead 
to a mutually agreeable parame-
ter settings of the cameras 
resulting in meeting the global 
criterion [37]. 

A well-known concept in 
game theory is the notion of Nash equilibrium. In the context 
of our image-network  problem, it will be defined as a choice of 
parameter settings a* 5 1a1

*, c, aNc

* 2  such that no sensor 
could improve its utility further by deviating from a*, i.e., by 
choosing a different set of parameters, the utility functions of 
all cameras cannot be improved further as expressed in (3). 
Obviously, this is a function of time since the targets are 
dynamic, and the cameras could also be mobile or capable of 
panning, tilting, and zooming. For example, for the problem of 
tracking all targets, a Nash equilibrium will be reached at a 
particular instant of time when all the cameras are collectively 
observing all the targets in the deployment region at an accept-
able resolution and there is no advantage for a particular cam-
era to choose some other target to observe. Mathematically, if 
a2i denotes the collection of parameter settings of all cameras 
except camera Ci, then a* is a pure Nash equilibrium if 

 UCi
1ai

*, a2i
* 2 5 max

ai[Ai

 UCi
1ai, a2i

* 2 , 4Ci [ C. (3)

DESIGNING UTILITY FUNCTIONS
We outline below how the different utility functions can be 
designed for various scene-analysis tasks. 

TARGET UTILITY
The target utility UTl

1A 2  refers to the utility gained in observing 
a particular target under the constraints specified by the appli-
cation. Some examples are provided below.

1) View Criterion: The view utility MVl
1A 2  determines 

whether the resolution and/or pose requirement for target 
Tl is satisfied by the camera network using a particular 
parameter profile A5 5a1, a2, c, aNc

6. Let pil be the prob-

ability that target Tl is viewed at the desired resolution by 
camera Ci. Then, MVl

1A 2  can be defined for the resolution 
requirement as 

 MVl
1A 2 5 1 2 q

i

11 2 pil 2 ,  (4)

where pil is defined as 

 pil 5 •1 2 e2l
ril

rmax if ril . r0,

0 otherwise,
 (5)

r0 is the minimum acceptable resolution in terms of target 
pixel height at which the targets should be viewed and rmax 
is the height in pixels of Ci’s image plane. ril is the resolu-
tion at which Tl is being viewed by Ci. The term l can be 
changed according to how well the single-view tracking 

algorithm performs as the 
height of the target on the image 
plane increases or decreases. It 
can be seen from (5) that the 
higher the resolution at which Tl 
is being viewed, the higher the 
probability acquired by Tl. 

This utility could also be modified to prioritize certain 
poses  or  facial  shots  by factoring in pose and 
 facial-view angle or resolution. For example, if a facial 
shot is required for identification, which is view depen-
dent ,  a  v iew angle  factor  can be  def ined as 
g 5 cos 1uTl2arccos 11OSTl  

#  O
S

Ci
2 / 1 7OSTl

7  7OSCi 7 22  where uTl
 is 

the desired view angle of Tl, O
S

Tl
 is the orientation of Tl and 

O
S

Ci
 is the orientation of camera Ci. Thus, the view utility 

becomes MVl
1A 2 5 g 312w i 112pil 24.

2) Tracking Criterion: The purpose of the tracking utility is 
to quantify how well the tracking module in camera Ci is 
tracking target Tl, given the settings ai. We can define this 
utility using the error-covariance matrices Pi

l computed by 
the Kalman-consensus filter and the measurement matrix 
Fi

l, i.e., 

 MTrl
1A 2 5 exp52Trace 1Pi

l1 2 6,  (6)

where Pi
l1 is defined as 

 1Pi
l1 221 5 1Pi

l 221 1 a
j[ 1Cih Ci

n2 1Fj
l 1A 22TRj

l 1A 221Fj
l 1A 2 . (7)

R is the measurement-error covariance and Ci
n is the neigh-

borhood of Ci, i.e., the cameras that can directly communi-
cate with Ci. Note that 1Pi

l1221 is the information we expect 
to get from the next image set based on the camera settings 
A; hence, the right-hand side of (6) is a function of A. Using 
this estimated error-covariance update equation, we can pre-
dict the covariance Pi

l1, given some settings profile A. By 
choosing a settings profile that maximizes the tracking utili-
ty, we are selecting a set of measurements that will minimize 
the estimated error covariance within the Kalman-
consensus tracker. 

MANY MODERN VISION NETWORKS 
CONSIST OF A MIXTURE OF STATIC 

AND PTZ CAMERAS.
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GLOBAL UTILITY
The global utility UG describes the desirability of the settings 
profile a, given the criteria that must be satisfied by the entire 
camera network. From the target utility functions, we can 
now define the global utility function as the sum of the utili-
ties generated by observing all the targets weighted by their 
importance, i.e., Ug 1A 2 5 g l Vl

# UTl
1A 2 , where Vl denotes the 

importance of target Tl. Vl can be set based on the user’s 
input. For example, if a user specifies a target to view, then 
the importance of this target should be set much higher than 
the others. 

CAMERA UTILITY
We define the utility of a camera observing a particular tar-
get as its marginal contribution to the global utility as a 
result of this action, i.e., the camera utility is the change in 
the global utility as a result of 
that sensor observing that 
particular target as opposed to 
not observing it. Since each 
 camera Ci in our distributed 
camera network can influence 
the target assignments of its 
neighbors, we will define the camera utility depending on the 
assignments of its neighboring cameras, i.e., 

 UCi
1A 2 5 Ug 1A 2 2 Ug 1a2i 2 5 a

l
Vl 1UTl

1A 2 2 UTl
1a2i 22 ,  (8)

where a2i 5A2 ai is the parameter profile of all the cameras 
except Ci.

OPTIMIZATION STRATEGY
At each control time instant, all the cameras in the network will 
team up to play a potential game. At any step of the negotiation, 
a camera Ci is randomly chosen from a pool of cameras in the 
network according to a uniform distribution, and only this cam-
era is given the chance to update its proposed parameter set-
tings. At negotiation step m, camera Ci searches for a set of 
parameters that maximizes its camera utility based on other 
camera parameters from the previous negotiation step and 
broadcasts its choice to all its neighboring cameras (more details 
on the negotiation mechanism can be found in [38]). This 
occurs until no camera can increase its own utility by changing 
its parameters. This is called the Nash equilibrium of the game. 
The camera utility functions being aligned with the global utili-
ty, combined with appropriate negotiation strategies, guarantees 
that, at each time step, the set of parameters chosen for the net-
work of cameras is an optimal solution for the system’s goals. 

This distributed optimization strategy is similar to the EM 
approach used in [34]. The prediction of the global utility is 
comparable to the expectation step, and the maximization of the 
camera utility can be related to the maximization step in the 
EM approach. Compared with the other camera reconfiguration 
strategies described above [32], [33], this is a completely distrib-
uted system. It is a more general framework than that in [34], 

since it explicitly shows how the analysis and sensing phases 
can be linked together in a closed-loop system (see the design of 
the utility functions, whose parameters are dependent on the 
tracker outputs). 

PERFORMANCE ANALYSIS AND DISCUSSION
We provide below an experimental evaluation of the integrated 
sensing and analysis framework and a comparison with other 
approaches. 

EXPERIMENTAL SETUP
Our camera network is composed of five PTZ cameras looking 
over an outdoor area of approximately 600 m2. The area was 
divided into a number of grids, each of size 1 cm2. Tracked tar-
gets were assumed to have a height of 1.80 m. Each camera 
acquired images of resolution 640 3 480 pixels. The cameras 

were arranged such that four of 
the cameras were located on the 
same side of the courtyard, with 
one camera on the opposite side. 
In the region of interest, there 
were five targets in addition to 
two entrances and exits. Since 

the entrances and exits must be always monitored, we treated 
them as static virtual targets, leading to a total of seven tar-
gets. Each camera in our setup is an independent entity con-
nected through a wireless network, with the entire system 
running in real time. 

We considered two tasks. The first task was to cover the 
entire area (area coverage), while the second one was to cover 
only the targets and the entry/exit regions (target coverage). We 
defined the target utility for viewing target Tl from the tracking 
and view utility functions defined in (4) and (6), i.e., 
UTl
1A 2 5 w1

l MTrl
1A 2 1 w2

l MVl
1A 2 ,  where w1

l  and w2
l  are the 

weights that can be set by the user and were set to one for this 
experiment. This can be easily adapted to the case of covering 
the entire area by treating every grid point as a virtual target 
(possibly viewed at a lower resolution) and the tracking utility 
for them is set to be zero. The acceptable resolution in terms of 
target pixel height [r0 as in (5)] is set to be 70 here. We can then 
determine the settings profile that maximize the global utility 
based on analysis of UG 1A 2  for both these cases. 

PERFORMANCE ANALYSIS
At initialization, the entire region under surveillance is divided 
into grids, and each grid is treated as a virtual target. All of the 
cameras apply the utility function to cover the entire region and 
to detect targets already in the region. The target-detection 
modules in each camera determine the image plane position of 
each target in its FOV. This information is then passed along to 
the Kalman-consensus filter and is processed along with the 
information from the filters running on neighboring cameras. 

We compared the two scenarios: area coverage and target 
coverage. The targets followed the same path through the 
courtyard during the collection of data for both cases. Figure 2 

AT EACH CONTROL TIME INSTANT, ALL 
THE CAMERAS IN THE NETWORK WILL 
TEAM UP TO PLAY A POTENTIAL GAME.
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shows the images captured by the actively controlled camera 
network at different time steps. Figure 2(a) shows the result 
for the area coverage as the initialization. Figure 2(b)–(d) 
shows the results for the target coverage. Since the targets are 

free to move about the region under surveillance, the cameras 
in the network are required to adjust their parameters dynam-
ically to maintain shots of each target that optimize the utility 
functions. To acquire these shots, the camera network con-
cedes a large unobserved area. We can see in Figure 3 that, as 
time progresses, the average trace of the covariance and the 
resolution of all targets settle at a significantly better value 
(compared to the area coverage) when the tracking and con-
trol modules are integrated together (as described in this arti-
cle). This is because, at each time step, the camera network 
will choose a set of parameters that optimizes the utility, 
which is dependent on the error covariance of the Kalman-
consensus filter. In the area-coverage problem, the camera 
network has to cover the entire area and take shots at lower 
resolutions, resulting in increased tracking error. 

DISCUSSION
We address some performance issues related to distributed cam-
era networks. 

SCALABILITY
The data that need to be exchanged between cameras include 
information vector u, information matrix U, state estimate x 
as shown in Algorithm 1, and PTZ parameters of cameras. As 
U depends on the settings of cameras, in practice, it does not 
need to be transmitted at every step as long as the cameras 
keep their current settings. u is a 4 3 1 vector, U is a 4 3 4 
matrix, and x is a 4 3 1 vector. The bandwidth capacity 

[FIG3] Comparison of the average tracker covariance and 
resolution of all targets being actively tracked by a system for 
target coverage versus the one for area coverage.
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[FIG2] Dynamic camera-control images. Blue regions mark the FOVs. The targets are marked in green with a red label. This figure 
is best viewed on a computer monitor. (The video as well as the experimental results and example code are available at http://www.
ee.ucr.edu/ amitrc/CameraNetworks.php.) Time steps are as follows: (a) k 5 0, (b) k 5 2, (c) k 5 19, and (d) k 5 36. 
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determines the precision of 
these values. Since these values 
are quantized, a quantization 
error is introduced into the 
tracking results if the band-
width is reduced. For camera 
parameters, in practice, we dis-
cretize their parameter space 
(i.e., PTZ parameters) so each camera only has a finite num-
ber of possible settings to choose from. The PTZ parameters 
are sampled over their allowed ranges to reflect possible 
selections, e.g., the FOV of that specific setting should over-
lap with the region under surveillance. As a typical example, 
we select nine settings for pan, three settings for tilt, and 
two settings for zoom, which result in totally 54 candidate-
parameter settings of a camera. The cameras only need to 
transmit the indices of their PTZ settings. Assuming there 
are NT targets being viewed by a network of NC cameras, 
each camera has Np possible parameter settings, the frame 
rate is fr, and the  precision of the values contained in u, U, 
x and is of the type double (64 b each; the precision is more 
than enough for tracking), the upper bound of the band-
width requirement (if every camera can view all the targets) 
is 3 14 1 16 1 4 2 # 64 # NT 

#
 NC 1 log2 1Np 2 # NC 4 · fr b/s.

LATENCY
The cameras used in our experiments can adjust their 
parameters very fast compared with the speed of targets; 
for example, the pan speed is 180 °/s and tilt speed is 
140 °/s. So the latency of the cameras does not have any 
effect on the experimental results. For example, assume 
that the distance of a person to the optical center of a cam-
era is 4 m and the person is walking parallel to that cam-
era. Assuming the average human walking speed is about 5 
km/h, that camera only needs to pan at the speed of around 
20 °/s to keep the person in the center of its view, which is 
much lower than the moving speed of our camera. If for a 
moment a camera cannot obtain measurements for targets 
because of the latency, the information vectors and matri-
ces it sends to other cameras are defined to be 0. It can be 
seen from (S1) and (S2) that the Kalman-consensus state 
estimate is achieved based on the other cameras’ measure-
ments. In addition, if no camera can stably observe the tar-
gets due to parameter adjustment, the state estimate is 

equal  to  x ,  the predicted 
states, and the error covari-
ance increases because of the 
lack of measurements; howev-
er, it will drop again once the 
new measurements become 
available. 

ACCURACY
In a single camera, the measurements are assigned to targets 
based on appearance (color) and position information (this is 
only for our experiments; the framework can use any other 
 feature). The association could be achieved through an 
O (n2.5) algorithm for maximum matchings in bipartite 
graphs, as used in [20]. Noisy measurements may introduce 
errors in  association so as to affect the tracking accuracy. In 
such a case, a multiobjective optimization framework [21] 
can be used to correct the tracking error caused by the mis-
match in data association. The data association across 
 cameras can also be achieved through the bipartite graph 
matching, based on the information of the states of targets 
exchanged between cameras. There may exist errors in data 
association, i.e., different targets are wrongly associated 
across cameras, especially when they are very close in their 
state space. Due to the characteristics of the consensus algo-
rithm, i.e., seeking the agreement of most participants, the 
tracking inaccuracy caused by incorrect intercamera data 
association can be minimized by integrating information 
from multiple cameras. The exact nature of how this will 
affect the performance is very much a function of the targets, 
their movements, the camera positions, and the area under 
surveillance. 

COMPARATIVE ANALYSIS
In Table 1, we provide a comparison of the different methods 
in the literature that have looked into the problem of camera 
network reconfiguration. We note that they have different 
objective functions, architectures, and performance criteria. 
The area of distributed analysis in camera networks is very 
much evolving, and standard comparison metrics or experi-
mental frameworks are not available. This should be an area of 
attention as this research matures. 

The method proposed in [33] uses a simulated annealing 
approach to evaluate a globally optimal configuration for 

[TABLE 1] COMPARISON BETWEEN CAMERA NETWORK RECONFIGURATION STRATEGIES.

APPROACH OBJECTIVE ARCHITECTURE OUTCOMES 
MITTAL AND DAVIS [33] STATIC CAMERA PLACEMENT CENTRALIZED GLOBAL MAXIMA OF AREA COVERED WHILE 

CONSIDERING OCCLUSION 
SOTO ET AL. [35] AREA COVERAGE DISTRIBUTED LOCAL MAXIMA OF TOTAL AREA COVERED 
PICIARELLI ET AL. [34] WEIGHTED AREA COVERAGE 

BASED ON PRIOR ACTIVITY MAP 
DISTRIBUTED LOCAL MAXIMA OF WEIGHTED AREA COVERED 

QURESHI AND TERZOPOULOS [32] CAMERA-TO-TARGET ASSIGNMENT CENTRALIZED TRACK-BASED ONE-TO-ONE MAPPING (BETWEEN 
CAMERAS AND TARGETS) AND HANDOFF 

INTEGRATED APPROACH SATISFIES MULTIPLE CRITERIA DISTRIBUTED TRACK-BASED MANY-TO-MANY MAPPING (BETWEEN 
CAMERAS AND TARGETS) 

THE DATA ASSOCIATION ACROSS 
CAMERAS CAN ALSO BE ACHIEVED 
THROUGH THE BIPARTITE GRAPH 

MATCHING, BASED ON THE INFORMATION 
OF THE STATES OF TARGETS EXCHANGED 

BETWEEN CAMERAS.



IEEE SIGNAL PROCESSING MAGAZINE   [30]   MAY 2011

static camera networks. As 
shown in the area-coverage 
case, our framework can also 
handle this situation with some 
minor changes in the view util-
ity to model occlusion. 

The approaches proposed in 
[32], [34], and [35] have an 
independent tracker running 
in the background. The authors in [34] use it to generate 
the prior (activity map) and then optimize camera settings 
on the weighed area. In [32], the authors use tracks to pre-
dict the paths of targets to do assignments requiring mini-
mal assignment switching but break when targets mingle 
due to unreliable predictions. The work in [35], while using 
a distributed tracker, does not tie together the control and 
tracking modules. The integrated sensing and analysis 
approach described here is a generalization of all of these 
and provides a framework for optimizing the image-acquisi-
tion capabilities based on how well the system objectives are 
being met. This leads to an optimal allocation of resources 
and  provides an overall efficiency to the system. This can be 
seen from Figure 3, where, in the case where the entire area 
needs to be covered, it leads to a situation in which the 
resources are being used to cover empty space most of the 
time (this would be the case using either [34] or [35]). 

CONCLUSIONS AND FUTURE WORK
In this article we discussed a framework to optimize various 
scene-analysis performance criteria through the distributed 
control of a reconfigurable camera network and studied its 
relation to the existing literature. We addressed three fun-
damental tasks: distributed data association, dynamic 
 camera control, and distributed tracking using a Kalman-
consensus filtering approach. We also provided a compara-
tive analysis of work in this area. The approach for 
integrated sensing and video analysis can lay the ground-
work for solving many problems in wide-area scene under-
standing in camera networks. 

Research in camera networks as a collection of autono-
mous agents capable of sensing and reasoning about the envi-
ronment is very much in its infancy. There are numerous 
problems with an interdisciplinary flavor. These include analy-
sis of the effects of communication constraints such as power 
and bandwidth; path planning, and routing of mobile agents; 
robustness of the networks to partial outage due to malfunc-
tion or adversarial attacks; distributed data storage and 
retrieval; learning semantic models for complex tasks like 
behavior recognition; performance analysis of complex distrib-
uted systems; and visualization tools for dynamic high-dimen-
sional data. 
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