Berkeley DB – Database Specifications

Welcome to Sleepycat's Berkeley DB (DB). DB is a general-purpose embedded database engine that is capable of providing a wealth of data management services. It is designed from the ground up for high-throughput applications requiring in-process, bulletproof management of mission-critical data. DB can gracefully scale from managing a few bytesto terabytes of data. For the most part, DB is limited only by your system's available physical resources.

Because DB is an embedded database engine, it is extremely fast. You compile and link it into your application in the same way as you would any third-party library. This means that DB runs in the same process space, as does your application, allowing you to avoid the high cost of inter process communications incurred by stand-alone database servers.

To further improve performance, DB offers an in-memory cache designed to provide rapid access to your most frequently used data. Once configured, cache usage is transparent. It requires very little attention on the part of the application developer.

Beyond raw speed, DB is also extremely configurable. It provides several different ways of organizing your data in its databases. Known as access methods, each such data organization mechanism provides different characteristics that are appropriate for different data management profiles. (Note that this manual focuses almost entirely on the Btree access method, as this is the access method used by the vast majority of DB applications). To further improve its configurability, DB offers many different subsystems, each of which can be used to extend DB's capabilities. For example, many applications require write-protection of their data so as to ensure that data is never left in an inconsistent state for any reason (such as software bugs or hardware failures). For those applications, a transaction subsystem can be enabled and used to protect the database writes.

The list of operating systems on which DB is available is too long to detail here. Suffice to say that it is available on all major commercial operating systems, as well as on many embedded platforms.

Finally, DB is available in a wealth of programming languages. Sleepycat officially supports

DB in C, C++, and Java, but the library is also available in many other languages, especially scripting languages such as Perl and Python.

Berkeley DB Concepts

Before continuing, it is useful to describe some of the larger concepts that you will encounter when building a DB application. Conceptually, DB databases contain records. Logically each record represents a single entry in the database. Each such record contains two pieces of information: a key and a data. This manual will on occaison describe a record's key or a record's data when it is necessary to speak to one or the other portion of a database record. Because of the key/data pairing used for DB databases, they are sometimes thought of as a two-column table. However, data (and sometimes keys, depending on the access method) can hold arbitrarily complex data. Frequently, C structures and other such mechanisms are stored in the record. This effectively turns a 2-column table into a table with n columns, where n-1 of those columns are provided by the structure's fields. Note that a DB database is very much like a table in a relational database system in that most DB applications use more than one database (just as most relational databases use more than one table).

Unlike relational systems, however, a DB database contains a single collection of records organized according to a given access method (BTree, Queue, Hash, and so forth). In a relational database system, the underlying access method is generally hidden from you. In any case, frequently DB applications are designed so that a single database stores a specific type of data (just as in a relational database system, a single table holds entries containing a specific set of fields). Because most applications are required to manage multiple kinds of data, a DB application will often use multiple databases.

For example, consider an accounting application. This kind of an application may manage data based on bank accounts, checking accounts, stocks, bonds, loans, and so forth. An accounting application will also have to manage information about people, banking institutions, customer accounts, and so on. In a traditional relational database, all of these different kinds of information would be stored and managed using a (probably very) complex series of tables. In a DB application, all of this information would instead be divided out and managed using multiple databases.

DB applications can efficiently use multiple databases using an optional mechanism called an environment. You interact with most DB APIs using special structures that contain pointers to functions. These callbacks are called methods because they look so much like a method on a C++ class. The variable that you use to access these methods is often referred to as a handle.

For example, to use a database you will obtain a handle to that database.

Retrieving a record from a database is sometimes called getting the record because the method that you use to retrieve the records is called get(). Similarly, storing database records is sometimes called putting the record because you use the put() method to do this.

When you store, or put, a record to a database using its handle, the record is stored according to whatever sort order is in use by the database. Sorting is mostly performed based on the key, but sometimes the data is considered too. If you put a record using a key that already exists in the database, then the existing record is replaced with the new data. However, if the database supports duplicate records (that is, records with identical keys but different data), then that new record is stored as a duplicate record and any existing records are not overwritten.

If a database supports duplicate records, then you can use a database handle to retrieve only the first record in a set of duplicate records.

In addition to using a database handle, you can also read and write data using a special mechanism called a cursor. Cursors are essentially iterators that you can use to walk over the records in a database. You can use cursors to iterate over a database from the first record to the last, and from the last to the first. You can also use cursors to seek to a record. In the event that a database supports duplicate records, cursors are the only way you can access all the records in a set of duplicates. Finally, DB provides a special kind of a database called a secondary database.

Secondary databases serve as an index into normal databases (called primary database to distinguish them from secondaries). Secondary databases are interesting because DB records can hold complex data types, but seeking to a given record is performed only based on that record's key. If you wanted to be able to seek to a record based on some piece of information that is not the key, then you enable this through the use of secondary databases.

Usually you find database records by means of the record's key. However, the key that you use for your record will not always contain the information required to provide you with rapid access to the data that you want to retrieve. For example, suppose your database contains records related to users. The key might be a string that is some unique identifier for the person, such as a user ID. Each record's data, however, would likely contain a complex object containing details about people such as names, addresses, phone numbers, and so forth. While your application may frequently want to query a person by user ID (that is, by the information stored in the key), it may also on occasion want to location people by, say, their name.

Rather than iterate through all of the records in your database, examining each in turn for a given person's name, you create indexes based on names and then just search that index for the name that you want. You can do this using secondary databases. In DB, the database that contains your data is called a primary database. A database that provides an alternative set of keys to access that data is called a secondary database. In a secondary database, the keys are your alternative (or secondary) index, and the data corresponds to a primary record's key.

You create a secondary database by creating the database, opening it, and then associating the database with the primary database (that is, the database for which you are creating the index). As a part of associating the secondary database to the primary, you must provide a callback that is used to create the secondary database keys. Typically this callback creates a key based on data found in the primary database record's key or data. Once opened, DB manages secondary databases for you. Adding or deleting records in your primary database causes DB to update the secondary as necessary. Further, changing a record's data in the primary database may cause DB to modify a record in the secondary, depending on whether the change forces a modification of a key in the secondary database.

Note that you cannot write directly to a secondary database. Any attempt to write to a secondary database results in a non-zero status return. To change the data referenced by a secondary record, modify the primary database instead. The exception to this rule is that delete operations are allowed on the secondary database.
Opening Database

You open a database by instantiating a Db object and then calling its open() method.

Note that by default, DB does not create databases if they do not already exist. To override this behavior, specify the DB_CREATE flag on the open() method. The following code fragment illustrates a database open:

#include <db_cxx.h>

...

Db db(NULL, 0); // Instantiate the Db object

u_int32_t oFlags = DB_CREATE; // Open flags;

try {

// Open the database

db.open(NULL,

// Transaction pointer

"my_db.db",
// Database file name

NULL,

// Optional logical database name

DB_BTREE,

// Database access method

oFlags,

// Open flags

0);

// File mode (using defaults)

// DbException is not subclassed from std::exception, so

// need to catch both of these.

} catch(DbException &e) {

// Error handling code goes here

} catch(std::exception &e) {

// Error handling code goes here

}

Closing Databases
Once you are done using the database, you must close it. You use the Db::close() method to do this.

Closing a database causes it to become unusable until it is opened again. Note that you should make sure that any open cursors are closed before closing your database. Active cursors during a database close can cause unexpected results, especially if any of those cursors are writing to the database. You should always make sure that all your database accesses have completed before closing your database.

Be aware that when you close the last open handle for a database, then by default its cache is flushed to disk. This means that any information that has been modified in the cache is guaranteed to be written to disk when the last handle is closed. You can manually perform this operation using the Db::sync() method, but for normal shutdown operations it is not necessary.

The following code fragment illustrates a database close:

#include <db_cxx.h>

...

Db db(NULL, 0);

// Database open and access operations happen here.

try {

// Close the database

db.close(0);

// DbException is not subclassed from std::exception, so

// need to catch both of these.

} catch(DbException &e) {

// Error handling code goes here

} catch(std::exception &e) {

// Error handling code goes here

}

Reading and Writing Database Records

When reading and writing database records, be aware that there are some slight differences in behavior depending on whether your database supports duplicate records. Two or more database records are considered to be duplicates of one another if they share the same key. The collection of records sharing the same key are called a duplicates set. In DB, a given key is stored only once for a single duplicates set.

By default, DB databases do not support duplicate records. Where duplicate records are supported, cursors (see below) are typically used to access all of the records in the duplicates set.

DB provides two basic mechanisms for the storage and retrieval of database key/data pairs:

• The Db::put() and Db::get() methods provide the easiest access for all non-duplicate records in the database. These methods are described in this section.

• Cursors provide several methods for putting and getting database records.

Writing Records to the Database

Records are stored in the database using whatever organization is required by the access method that you have selected. In some cases (such as BTree), records are stored in a sort order that you may want to define.

In any case, the mechanics of putting and getting database records do not change once you have selected your access method, configured your sorting routines (if any), and opened your database. From your code's perspective, a simple database put and get is largely the same no matter what access method you are using.

You use Db::put() to put, or write, a database record. This method requires you to provide the record's key and data in the form of a pair of Dbt objects. You can also provide one or more flags that control DB's behavior for the database write.

Of the flags available to this method, DB_NOOVERWRITE may be interesting to you. This flag disallows overwriting (replacing) an existing record in the database. If the provided key already exists in the database, then this method returns DB_KEYEXIST even if the database supports duplicates.

For example:

#include <db_cxx.h>

#include <string.h>

...

char *description = "Grocery bill.";

float money = 122.45;

Db my_database(NULL, 0);

// Database open omitted for clarity

Dbt key(&money, sizeof(float));

Dbt data(description, strlen(description) + 1);

int ret = my_database.put(NULL, &key, &data, DB_NOOVERWRITE);

if (ret == DB_KEYEXIST) {

my_database.err(ret, "Put failed because key %f already exists", money);

}

Getting Records from the Database

You can use the Db::get() method to retrieve database records. Note that if your database supports duplicate records, then by default this method will only return the first record in a duplicate set. For this reason, if your database supports duplicates, the common solution is to use a cursor to retrieve records from it.

(You can also retrieve a set of duplicate records using a bulk get. To do this, you use the

DB_MULTIPLE flag on the call to Db::get(). For more information, see the DB Programmer's Reference Guide).

By default, Db::get() returns the first record found whose key matches the key provide on the call to this method. If your database supports duplicate records, you can change this behavior slightly by supplying the DB_GET_BOTH flag. This flag causes DB::get() to return the first record that matches the provided key and data.

If the specified key and/or data does not exist in the database, this method returns

DB_NOTFOUND.

#include <db_cxx.h>

#include <string.h>

...

float money;

char *description;

Db my_database(NULL, 0);

// Database open omitted for clarity

money = 122.45;

Dbt key, data;

// Use our own memory to retrieve the float.

// For data alignment purposes.

key.set_data(&money);

key.set_ulen(sizeof(float));

key.set_flags(DB_DBT_USERMEM);

my_database.get(NULL, &key, &data, 0);

// Money is set into the memory that we supplied.

description = (char *)data.get_data();

Deleting Records

You can use the Db::del() method to delete a record from the database. If your database supports duplicate records, then all records associated with the provided key are deleted. To delete just one record from a list of duplicates, use a cursor.

You can also delete every record in the database by using Db::truncate(). For example:

#include <db_cxx.h>

...

Db my_database(NULL, 0);

// Database open omitted for clarity

float money = 122.45;

Dbt key(&money, sizeof(float));

my_database.del(NULL, &key, 0);

Setting the Page Size

Internally, DB stores database entries on pages. Page sizes are important because they can affect your application's performance. DB pages can be between 512 bytes and 64K bytes in size. The size that you select must be a power of 2. You set your database's page size using Db::set_pagesize().

Note that a database's page size can only be selected at database creation time.

When selecting a page size, you should consider the following issues:

• Overflow pages.

• Locking

• Disk I/O.

These topics are discussed next.

Overflow Pages

Overflow pages are used to hold a key or data item that cannot fit on a single page. You do not have to do anything to cause overflow pages to be created, other than to store data that is too large for your database's page size. Also, the only way you can prevent overflow pages from being created is to be sure to select a page size that is large enough to hold your database entries.

Because overflow pages exist outside of the normal database structure, their use is expensive from a performance perspective. If you select too small of a page size, then your database will be forced to use an excessive number of overflow pages. This will significantly harm your application's performance. For this reason, you want to select a page size that is at least large enough to hold multiple entries given the expected average size of your database entries. In BTree's case, for best results select a page size that can hold at least 4 such entries.

IO Efficiency

Page size can affect how efficient DB is at moving data to and from disk. For some applications, especially those for which the in-memory cache can not be large enough to hold the entire working dataset, IO efficiency can significantly impact application performance.

Most operating systems use an internal block size to determine how much data to move to and from disk for a single I/O operation. This block size is usually equal to the file system's block size. For optimal disk I/O efficiency, you should select a database page size that is equal to the operating system's I/O block size. Essentially, DB performs data transfers based on the database page size. That is, it moves data to and from disk a page at a time. For this reason, if the page size does not match the I/O block size, then the operating system can introduce inefficiencies in how it responds to DB's I/O requests.

For example, suppose your page size is smaller than your operating system block size. In this case, when DB writes a page to disk it is writing just a portion of a logical file system page. Any time any application writes just a portion of a logical file system page, the operating system brings in the real file system page, over writes the portion of the page not written by the application, then writes the file system page back to disk. The net result is significantly more disk I/O than if the application had simply selected a page size that was equal to the underlying file system block size.

Alternatively, if you select a page size that is larger than the underlying file system block size, then the operating system may have to read more data than is necessary to fulfill a read request. Further, on some operating systems, requesting a single database page may result in the operating system reading enough file system blocks to satisfy the operating system's criteria for read-ahead. In this case, the operating system will be reading significantly more data from disk than is actually required to fulfill DB's read request. Setting the Page Size

Selecting the Cache Size

Cache size is important to your application because if it is set to too small of a value, your application's performance will suffer from too much disk I/O. On the other hand, if your cache is too large, then your application will use more memory than it actually needs. Moreover, if your application uses too much memory, then on most operating systems this can result in your application being swapped out of memory, resulting in extremely poor performance.

You select your cache size using either Db::set_cachesize(), or DbEnv::set_cachesize(), depending on whether you are using a database environment or not. You cache size must be a power of 2, but it is otherwise limited only by available memory and performance considerations.

Selecting a cache size is something of an art, but fortunately it is selected at database (or environment) open time, so it can be easily tuned to your application's data requirements as they change over time. The best way to determine how large your cache needs to be is to put your application into a production environment and watch to see how much disk I/O is occurring. If your application is going to disk quite a lot to retrieve database records, then you should increase the size of your cache (provided that you have enough memory to do so).

You can use the db_stat command line utility with the -m option to gauge the effectiveness of your cache. In particular, the number of pages found in the cache is shown, along with a percentage value. The closer to 100% that you can get, the better. If this value drops too low, and you are experiencing performance problems, then you should consider increasing the size of your cache, assuming you have memory to support it.

Exception Handling

Before continuing, it is useful to spend a few moments on exception handling in DB with

the C++ API.

By default, most DB methods throw DbException in the event of a serious error. However, be aware that DbException does not inherit from std::exception so your try blocks should catch both types of exceptions. For example:

**

#include <db_cxx.h>

...

try

{

// DB and other code goes here

catch(DbException &e)

{

// DB error handling goes here

}

**

catch(std::exception &e)

{

// All other error handling goes here

}

You can obtain the DB error number for a DbException by using DbException::get_errno(). You can also obtain the informational message associated with that error number using DbException::what().

If for some reason you do not want to manage DbException objects in your try blocks, you can configure DB to suppress them by setting DB_CXX_NO_EXCEPTIONS for your database and environment handles. In this event, you must manage your DB error conditions using the integer value returned by all DB methods. Be aware that this manual assumes that you want to manage your error conditions using DbException objects. For information on managing error conditions using the integer return values.
Locking

Locking and multi-threaded access to DB databases is built into the product. However, in order to enable the locking subsystem and in order to provide efficient sharing of the cache between databases, you must use an environment. Environments and multi-threaded access are not fully described in this manual (see the Berkeley DB Programmer's Reference Manual for information), however, we provide some information on sizing your pages in a multi-threaded/multi-process environment in the interest of providing a complete discussion on the topic.

If your application is multi-threaded, or if your databases are accessed by more than one process at a time, then page size can influence your application's performance. The reason why is that for most access methods (Queue is the exception), DB implements page-level locking. This means that the finest locking granularity is at the page, not at the record. In most cases, database pages contain multiple database records. Further, in order to provide safe access to multiple threads or processes, DB performs locking on pages as entries on those pages are read or written.

As the size of your page increases relative to the size of your database entries, the numbers of entries that are held on any given page also increase. The result is that the chances of two or more readers and/or writers wanting to access entries on any given page also increases.

When two or more threads and/or processes want to manage data on a page, lock contention occurs. Lock contention is resolved by one thread (or process) waiting for another thread to give up its lock. It is this waiting activity that is harmful to your application's performance.

It is possible to select a page size that is so large that your application will spend excessive, and noticeable, amounts of time resolving lock contention. Note that this scenario is particularly likely to occur as the amount of concurrency built into your application increases.

Oh the other hand, if you select too small of a page size, then that that will only make your tree deeper, which can also cause performance penalties. The trick, therefore, is to select a reasonable page size (one that will hold a sizeable number of records) and then reduce the page size if you notice lock contention.

You can examine the number of lock conflicts and deadlocks occurring in your application by examining your database environment lock statistics. Either use the DbEnv::lock_stat() Environment.getLockStats() method, or use the db_stat command line utility. The number of locks that could not be obtained due to conflicts is held in the lock statistic's st_nconflicts field.

PAGE
78

