
Dynamic Co-Processor Architecture for Software Acceleration on CSoCs

Abhishek Mitra, Zhi Guo, Anirban Banerjee, Walid Najjar
Department of Computer Science and Engineering, University of California Riverside, CA 92521

E-mail: {amitra, zguo, anirban, najjar} @cs.ucr.edu

Abstract

By integrating one or more (hard or soft) CPU core on
the chip, new generation platform FPGAs have become
configurable systems on a chip (CSoC) that support a
combined software and hardware execution model.
More recently, FPGAs, using new design tools, have
also provided support for partial reconfiguration. The
system designer is left with the task of interfacing the
IP Cores to the CPU and also for realizing partial
reconfiguration across the cores. In this paper, we
describe a software tool to automate the interface
between the CPU and the reconfigurable fabric. Our
tool generates hardware wrappers for the IP Cores
that makes them look like a C function invocation in
the source code. We also use our tool to support
partial reconfiguration: the same wrapper is used for a
multitude of IP Cores and the user selects the core to
be invoked in the program.

1. Introduction

Modern FPGAs integrate a (hard or soft) processor
core, with the reconfigurable fabric. These CSoC use
the CPU to support the software execution and rely on
one or more hardware cores for accelerating frequently
used code segments (loop nests). These hardware cores
can be either custom designed or can be selected from
a library of pre-existing IP Cores. The hardware cores
are tightly coupled with the CPU using very high
speed, point to point links for fast data transfer in the
Virtex-4 FX CSoC. CPUs such as the PowerPC 405
also support custom instructions for communicating
with these co-processors. The co-processors act as
accelerators for compute intensive portions of the
applications such as floating point intensive
calculations [17], discrete transformation algorithms
(FFT, DWT, DCT, etc) [5] [7] [13], and also for
custom applications such as Smith-Waterman string
matching, encryption/decryption engines, etc.

A multitude of co-processing functionality can be
realized using IP Cores that are highly configurable
and performance optimized. Interfacing the available
library of IP Cores to the on-chip processor is a time-
consuming and tedious task which almost always,
needs to be taken care of manually. The system

designer is left with the task of interfacing each and
every core to the co-processor interface [22].

Partial reconfiguration offers the system designer
the possibility to leverage the same basic hardware
structure for accelerating multiple tasks (programs) on
the CSoC. Partial reconfiguration on the FPGA makes
it possible to create a system that can enable re-
configuration of pre-assigned parts of the FPGA
without affecting the static parts, or inducing a system-
wide reset. The high overhead of reconfiguration, at
this point in its development (msec), precludes using it
dynamically within the same task. It is however a very
powerful tool to overcome the area limitation of a
single FPGA platform across multiple applications
since re-configuration can be combined together with a
CPU context switch. The system designer is also left
with the task of generating the interface between static
and dynamic regions of the FPGA as required for
partial reconfiguration [2] [9] [10] [11] [19].

In this paper we describe a software tool for
automatically generating the communication interface
between the software running on the CPU and a tightly
coupled IP Core based co-processing system on the
Virtex-4 FX FPGA. It generates hardware wrappers for
the core that makes it look like a C function invocation
in the source code. We extend this tool to support
partial reconfiguration: the same static wrapper is used
for multiple cores and the user selects the core to be
invoked in the program.

 Our compiler for FPGA-based reconfigurable
systems, ROCCC [16] leverages the huge wealth of IP
Cores by allowing the user to import these cores into
the source code. The compiler automatically generates
a wrapper structure that would hide the timing and
stateful nature of the IP Cores and makes each
available to the C language compiler, as an un-timed
side-effect free function call.

We also use the ROCCC compiler approach to
support run-time reconfiguration by automating the
generation of the interface between static and dynamic
regions of the FPGA. The user can switch between
multiple functional units by calling the appropriate C
function in the code, thus entailing the use of the same
hardware wrapper for multiple IP Cores.

Utilizing our software tool along with the ROCCC
infrastructure we have been able to automatically
configure multiple IP-cores on the fabric viz. FP
(Floating point) Adder, FP Multiplier, Integer divider

CORDIC engine and an FFT engine. Moreover using
partial reconfiguration we have been able to overcome
the area limitation of a single FPGA platform (Virtex-4
FX12), using five different IP Cores. We have
allocated a region of 1800 slices for the co-processor,
thus resulting in a reduction in the floor area by 2656
slices due to partial reconfiguration. Moreover the area
dedicated for the hardware wrapper is no more than
“14 “ slices, quite miniscule, when compared to the
actual IP Core area.

The rest of the paper is organized as follows:
Section 2 details out the system overview and the
associated software tools. Experimental details have
been chalked out in Section 3, with related work in
section 4. We summarize the conclusions in section 5.

2. System Overview

The target of our research emphasizes automatic
wrapper generation and reconfiguration for IP Cores
configured on CSoC systems. These systems are self
contained embedded processing solutions often
targeted for reconfigurable computing applications.
The major ingredients in our system are the CSoC
system, IP Core libraries and the Compiler
infrastructure (ROCCC).

2.1 CSoC platform

Our CSoC system consists of a Platform FPGA,
which in turn are field programmable gate array logic
along with one or more (soft/hard) processors all on a
single chip. The CPU on the CSoC runs an Operating
System as well as application software. With the
advent of higher performance FPGA fabrics it is now
possible to instantiate software code accelerators on the
FPGA and use it for speeding up execution on the
processor. In the past, the limiting factor for speedup of
these FPGA based accelerators had been the on-chip
bus used for data communication between the host-
code and the accelerator, since the same bus is used for
various other peripherals too. Software developed
around the PowerPC core on the Virtex-4 FX FPGA
can communicate with fabric co-processors using point
to point buffered links (also known as Fast Simplex
Links) [25] hence alleviating performance based
issues, present on a bus based architecture [23] [24]
[25]. The Virtex-4 FX also provides a high
performance bus architecture (PLB and OPB) for
connection with various on-fabric peripheral
controllers such as memory (DDR/SRAM) controller,
Ethernet, UART, keyboard and mouse controller,
Peripheral controllers are synthesized as soft cores on
the FPGA fabric, thus user defined peripherals may

also use this bus for communication with the CPU or
other on-chip peripherals.

2.2 APU (Auxiliary Processing Unit) on Virtex-
4 FX

The PowerPC 405 core on the Virtex-4 FX FPGA is a
32-bit architecture with on-chip instruction and data
cache memory. An Auxiliary Processor Unit (APU) [1]
controller accompanies the core to interface it to
hardware accelerators on the fabric. The APU supports
32-bit custom instructions and 64-bit data. The co-
processors instantiated on the Virtex-4 FX FPGA use
the APU on the PowerPC for seamless communication
with the FPGA fabric. Additionally there is also an
option to use a bus based architecture, FCB (Fabric
Co-Processor Bus) for sharing the APU with more than
one co-processor.

As depicted in Figure 1, the system architecture
used for our dynamic co-processor system involves a
Xilinx Virtex-4 FX, the APU interface and two FSL
channels. Data is sent/received over the FSL link from
the Power PC to the compiler generated (APU to IP)
wrapper. The wrapper parses input/output data
according to the current IP Core instantiated on the
dynamic fabric and maps them onto the Bus macro
interface. The Bus macros interface the static wrapper
to the dynamic wrapper and through it to the IP-core.
Handshaking/control signals are mapped onto the
Control bus and status/acknowledgment signals from
the IP Core to the wrapper are mapped onto the Status
bus.

Figure 1. System Architecture of the dynamic

co-processor system

 2.3 IP Cores

Intellectual Property cores have been available for a
while for FPGA based systems. These IP-cores are
highly optimized replacement for sequential software
used for time-critical systems such as real time audio-
video encoders/decoders, FIR filters, DSP blocks and
also for highly specialized applications such as string
matching based on Smith-Waterman algorithms. These
IP Cores have also been used in various FPGA based
applications for rapid prototyping of system
accelerators and co-processors. Most IP-cores are
macros for FPGA which are already mapped to the
target architecture and many of them are relationally
placed and routed as well. IP Cores result in higher
performance designs along with lowering of the design
effort for the system. Most IP Cores share a similar
input/output architecture which consist of two input
bus and one to two output bus, along with certain
control/acknowledgement signals. Thus it is possible to
encompass these interfaces into a standard I/O wrapper
architecture [27] [28] which would serve as a superset
for I/O interface to all possible IP-cores targeted at a
particular system. Our system currently targets such
compatible IP cores with future extensions planned for
IP cores with arbitrary number of inputs or outputs.

Figure 2. An example Floating Point IP Core

Depicted in Figure 2 is an example of a compatible IP
Core viz. a Logicore series Floating Point unit from
Xilinx and Qinetiq [26]. The input bus (A, B) and
output bus (RESULT) can be configured either as 32-
bit single precision or 64-bit double precision,
conformant to the IEEE 754 specifications. This core
can be configured for a floating point operation such as
adder, subtractor, multiplier, divider, square-root, and
comparator. Adder and subtractor can be combined in a
single unit. Various status signals originating from the
IP Core are Underflow, Overflow, Invalid operation,
Divide by Zero. The OPERATION signal selects either
Add / Subtract, or from a multitude of compare
operations if a Comparator is configured. The
computational latency of the floating point unit is 5
clock cycles.

2.4 ROCCC Overview

An overview of the ROCCC framework is depicted in
Figure 3. We have separated the front and back ends to
achieve modularity and eventually allow the use of a
variety of front end and back end tools.

ROCCC is built on the SUIF2 [14] and Machine-
SUIF [15] platforms. It compiles C code into VHDL
code for mapping onto the FPGA fabric of a CSoC
device. Information about loops and memory accesses
is visible in our front-end IR (intermediate
representation) viz. Hi-CIRRF (Compiler Intermediate
Representation for Reconfigurable Fabrics).
Accordingly, most loop level analysis and
optimizations are done at this level. ROCCC performs
a very extensive set of loop analysis and
transformations, aiming at maximizing parallelism and
minimizing area. The compiler also minimizes
accesses to memory by effecting smart re-use of data.
The compiler also performs scalar replacement at
front-end. All memory loads are moved to the top of
the loop body and all memory stores are moved to the
bottom of the loop body.

 loop-level analyses,

transformations and
optimizations

user-input
C

operation-level analyses,
transformations and

optimizations

intermediate
C

front-end

synthesizable
VHDL

Hi-CIRRF

back-end

Lo-CIRRF

Figure 3. ROCCC system overview

Machine-SUIF is an infrastructure for constructing the
back end of a compiler. Machine-SUIF's existing
passes, like the Control Flow Graph (CFG) library
[30], Data Flow Analysis library [31] and Static Single
Assignment library [32] provide useful optimization
and analysis tools for our compilation system. We
build the back-end using Machine-SUIF. The
compiler’s back-end Lo-CIRRF, converts the input
from control flow graph (CFG) into data flow graph
(DFG), and generates synthesizable VHDL codes. We
rely on commercial tools viz. Xilinx XST to synthesize
the generated VHDL codes for Virtex-4 FX.

2.5 Interface Synthesis

As introduced in the system overview section, the
ROCCC compiler generates synthesizable VHDL code
for applications written in un-timed C. In this section,
we present our approach using the ROCCC system to
wrap IP Cores. The compiler takes in a C-function
intended for co-processing operation and automatically

generates the corresponding IP Core, along with high-
level abstractions. Taking the high-level wrapper
abstractions as input, ROCCC generates synthesizable
wrappers in VHDL separately as well as C language
driver code for communication across the FSL
channels. The wrappers are instantiated as components
in the outer circuit and enable a seamless connectivity
between the on chip CPU and the IP Cores instantiated
on the fabric.

2.5.1 C language function calls. ROCCC recognizes
co-processing function calls by checking a certain
pragma and records this pragma into an Intermediate
Representation field for further use. It inserts
Assembly code required to access the FSL channels.
The putfsl assembly call is used to write 32-bit data to
the FSL, while getfsl call reads back 32-bit data from
FSL. The software function call to the co-processor
sends/receives 32-bit data through the putfsl/getfsl
assembly calls as depicted in Figure 4. The APU
copies the data into/from the FSL and therefore to/from
the static wrapper i.e. the (APU to IP) wrapper.

The Internal Configuration Access Port (ICAP)
API is used by the function call to load in a partial
bitstream file in order to re-program the co-processor
region with a new IP Core by making use of the OPB-
HWICAP hardware.

Figure 4. The C function call to the co-
processor and the #pragma directive

2.5.2 Generation of the static (APU to IP) wrapper.
The static wrapper provides an interface between the
PowerPC APU and the first stage into the fabric, as
depicted in Figure 5. The static wrapper uses the
standard FSL interface, to provide for data input/
output and clock signals for synchronization. The static
wrapper buffers the input data and presents them to the
Bus macros and also buffers output data to be
communicated back using the FSL channel and into the
Power PC APU.

2.5.3 Dynamic wrapper. The dynamic wrapper is a
second wrapper which is generated in the partial
reconfigurable region of the FPGA. It is a VHDL
entity which connects the 32-bit input/output signals,
the control signal, and the status signal from the Bus
macros onto the corresponding ports of the IP Core.
We would like to emphasize that the connectivity
from/to Bus macros for each IP-core is specified in its
respective dynamic wrapper. Thus the dynamic
wrappers present a standard interface for connectivity
between Bus macros and the IP-core as shown in
Figure 6.

Figure 5. Data flow using FSL from the APU to

the static wrapper

Figure 6. The dynamic block consisting of the
dynamic wrapper around its accompanying
dynamic IP Core

A compiler generated dynamic wrapper is depicted in
Figure 7, which maps the Bus macro interface to the
ports of the IP Core. The input signals A, B, and output
signals C, D are connected to the Bus macros during
synthesis and so are the control/status signals.

2.5.4 Dynamic Co-Processor Instantiation. We also
use our tool to support dynamic partial reconfiguration.
Dynamic partial reconfiguration at runtime allows re-
use of FPGA resources to obtain a plurality of
functionality, from the same hardware block, but at
different times, and also without affecting the static
parts of the device. The compiler generates the
wrappers for each IP Cores that need to be dynamically
reconfigured.

Figure 7. A compiler generated dynamic

wrapper for CORDIC engine

The design flow in Figure 8 involves the
generation of the static logic along with the various
partial reconfigurable logic (wrapped IP Cores).
Thereafter the FPGA is floor planned to allocate a pre-
determined area for the dynamic logic and the rest of
the floor area is dedicated to static logic. The area
dedicated to the dynamic logic, also known as the PR-
Block (Partial Reconfigurable Block), is such that it
may allow for the largest IP block to be placed and
routed within it. I/O and communication of the static
logic with the PR-block takes place using certain pre-
configured hard macro blocks known as Bus macros
[9], as shown in Figure 9. These Bus macros need to be
manually placed around the boundary of the PR-block.
We have employed the Xilinx PlanAhead 8.1 visual
floorplanning tool for iterative design and placement.
The final stages of the partial reconfigurable flow
generates ‘N’ static bitstreams and ‘N’ partial
bitstreams, where ‘N’ is the number of different IP

Cores which are to be configured in the PR-Block.
Each of the ‘N’ static bitstream contains the static
design with the IP-Core numbered ‘N’ already
programmed into the stream, while each of the ‘N’
partial bitstreams contains the logic to re-program the
PR-Block with the functionality of the ‘N’th IP Core.
Thus the system may choose to start with one of the
static bitstreams during power-up and thereafter
reprogram the PR-Block with the desired functionality.

Figure 8. The Partial Reconfiguration Flow for

FPGA

Figure 9: Bus macros placed on the Dynamic

/Static logic boundary

entity rmodule is
 Port (A : in STD_LOGIC_VECTOR (31 downto 0);
 B : in STD_LOGIC_VECTOR (31 downto 0);
 C : out STD_LOGIC_VECTOR (31 downto 0);
 D : out STD_LOGIC_VECTOR (31 downto 0);
 clk : in STD_LOGIC);
end rmodule;

architecture Behavioral of rmodule is
component cordic_module –From Logicore
 port (
 x_in: IN std_logic_VECTOR(15 downto 0);
 y_in: IN std_logic_VECTOR(15 downto 0);
 phase_in: IN std_logic_VECTOR(15 downto 0);
 x_out: OUT std_logic_VECTOR(15 downto 0);
 y_out: OUT std_logic_VECTOR(15 downto 0);
 clk: IN std_logic);
end component;

u_cordic: cordic_module
 port map (
 x_in => A(31 downto 16),
 y_in => A(15 downto 0),
 phase_in => B(15 downto 0),
 x_out => C(31 downto 16),
 y_out => C(15 downto 0),
 clk => clk);
end Behavioral;

3. Experimental Results

We have incorporated four Xilinx Logicore IP Cores in
our compiler infrastructure for the purpose of
conducting experiments. These cores are enumerated
in, Table 1. The CORDIC (Coordinate Rotational
Digital Computer) IP Core [33] performs a rectangular-
to-polar vector translation. The IP Cores takes in as
input the angle and magnitude in a polar coordinate
and generates the equivalent vector (X, Y) in Cartesian
coordinate. The CORDIC module has been configured
to utilize eight DSP48 blocks for fast multiplication for
calculating the new coordinates and to enable scaling.

The floating point adder, on the Xilinx Logicore
IP Core [26] takes in two 32-bit single precision values
conformant to the IEEE 754 standard (A, B) and
outputs their sum in single precision (result). The
floating point multiplier takes in two 32-bit single
precision values (A, B) and outputs their 32-bit
product (result). The FP multiplier [26] has been
configured to utilize four DSP48 blocks for fast
multiplication of the significand values from the
floating point inputs.

Table 1: The area covered by the dynamic IP
Cores

Reconfig
Time

IP Core Slices DSP
48

Blks

Clk
Spd

MHz

Bit-
Size

KB

J
T
A
G

Select
MAP
ICAP

Floating Pt
Add 32bit

431 0 250 79 0.2
sec

5ms

Floating Pt
Multi
32bit

189 4 218 76 0.19
sec

4.8ms

CORDIC
coordinate
rot. 16-bit

989 8 220 99 0.24
sec

6ms

Fixed
Point Div.
32bit

1111 0 228 112 0.28
sec

7ms

FFT16,
256pt

1736 9 250 142 0.29
sec

7.1ms

The IP Core for a pipelined Integer divider [34]

does arithmetic division on a 32bit dividend and a
32bit divisor thus resulting in a 32bit quotient and a
32-bit fraction value.

For calculation of FFT, we have configured the
Logicore FFT IP Core [35] for 256 points, operating on
16-bit data. The core is configured for Burst I/O for
non simultaneous processing and data

loading/unloading. Nine DSP48 blocks have been
utilized for fast multiplication operations. The static
wrapper contains logic for timing and burst data
loading/unloading from the FFT unit.

We have targeted the Xilinx Virtex-4 FX 12
FPGA containing 5472 slices on the ML403
Evaluation board. The design tools that we used are the
Xilinx EDK 8.1 for generation of the Implementation
files for the static subsystem and various wrappers for
peripherals. We used Xilinx ISE 8.1i XST for
synthesizing, and Xilinx PlanAhead 8.1 for
floorplanning, implementing and testing the partial
reconfiguration designs.

These five examples illustrate how a multitude of IP
Cores can be effectively configured as co-processors
on a FPGA using C based function calls. The execution
time overhead at both the input side and output side for
these four examples is one clock cycle except for the
static wrapper for FFT engine. The configuration units
(slices) dedicated to the reconfigurable block is 1800
slices as shown in Figure 10 and bus macros and
wrappers account for less than 1% of slices dedicated
to the PR Block (Table 2).

Ratio of SLICES vis-à-vis PR-Block, for various IP Cores

445
203

1003 1124

1751

0

1355
1597

797

1800

49

676

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

FP Adder FP Mult CORDIC DIV FFT PR Block

IP Core Type

Pe
rc

en
ta

ge
 u

sa
ge

 /
Re

m
ai

ni
ng

Remaining PR SLICES

IP Core SLICES
Figure 10: SLICE usage for IP Cores

Table 2: The area coverage of the IP Wrappers

Entity FP-
Add

FP-
Mult

CORD
IC DIV FFT

SLICEs 12 12 12 12 12
SLICE% w.r.t
IP Core 2.7 6.4 1.2 1.06 0.74

Static
wrapper

Cycle induced 1 1 1 1 1
Area (slice) 2 2 2 2 2
SLICE% w.r.t
IP Core 0.45 .98 0.2 0.17 0.11Dyn.

wrapper

Cycle induced 1 1 1 1 1
Total SLICES 445 203 1003 1124 1751Wrappd

IP Core Total cycles 7 7 23 3 400
PR Blk 1800 SLICEs dedicated for the PR Block

4. Related Work

Intellectual Property cores have been available for a
while for FPGA based systems and have been
successfully used by developers of such systems.
Xilinx Logicore series of IP Cores are a library of
highly available cores and have been extremely
popular with designs based on Virtex series FPGA [7]
[12] [13]. The XILINX IPIF module attempts to target
connectivity of IP Cores to FPGA [27] [28], but does
so only for the slower peripheral busses.

Targeting IP Cores to the FPGA peripheral bus
using wrappers is discussed in [20] [22] [28].

Since IP-cores provide a black / gray box paradigm,
system verification and integration maybe an issue.
These have been documented in light of popular
simulation and programming tools in [4] and the
advantages and challenges in development of interface
synthesis has been targeted in [5]. IP Core Reuse has
been effectively discussed in light of a co-design
paradigm in [3].

An automatic generator of interface synthesis for
PowerPC software to custom software accelerators is
detailed in [1].

Standards based IP bus interfaces such as the VSIA
(Virtual Socket Interface Alliance) specify interface
standards allow IP Cores to fit into “virtual sockets”
[6]. However, the current condition is that numerous
standards exist and no standard is adopted widely [21].

Two popular FPGA configuration mechanisms
required for Partial-Reconfiguration (PR) along with
their performances are discussed in [9] [11] [29].

Since development of a PR system on a FPGA
entails working with a birds-eye view of the chip for
layout and interface planning, thus the use of graphical
environment leads to proper and efficient floor-
planning and the process is documented in [10].

An early toolkit (PARBIT) targeted at the Virtex-E
FPGA for enabling columnar partial-reconfiguration is
treated in [2].

Reconfiguration interfaces, modules and tools have
been discussed in [8] [18].

5. Conclusions and Future Work

Using our ROCCC compiler infrastructure, Xilinx
Logicore IP Core library, we have been able to
effectively configure a co-processor on the FPGA
using a C function call in software, thus accelerating
software using IP Cores. With the partial
reconfiguration flow for FPGAs, we have effectively
shared the reconfigurable fabric among various IP
Cores, to overcome area limitation on CSoCs.

We plan to deal with the reconfiguration latency by
incorporating a parallel reconfiguration engine on the
FPGA. Since certain CPU cycles are always required at
the initiation and the conclusion of an executing task
during a context switch by the operating system, the
time-penalty for re-configuration of the FPGA fabric
can be minimized by parallelizing the reconfiguration
with the context switch.

6. References

[1] D. Pellerin, G. Edvenson, K. Shenoy, D Isaacs,
“Accelerating PowerPC Software Applications”, Xilinx Xcell
Embedded Magazine.

[2] E L. Horta, J W. Lockwood, “PARBIT: A Tool to
Transform Bitfiles to Implement Partial Reconfiguration of
Field Programmable Gate Arrays FPGAs”, WUCS-01-13.

[3] E. Filippi, L. Lavagno, L. Licciardi, A. Montanaro, M.
Paolini, R. Passerone, M. Sgroi, A. Sangiovanni-Vincentelli
“Intellectual Property Re-use in Embedded System Co-
design: an Industrial Case Study,” in Int. Symp. On System
Synthesis (ISSS 1998).

[4] Mardav Wala, Don Bouldin, “Integrating and Verifying
Intellectual Property Blocks using Platform Express and
ModelSim”, MWSCAS05.

[5] L. Shannon, “Impact of Intellectual Property Cores on
Field Programmable Gate Array Designs”, MS Thesis, Univ
of Toronto

[6] http://www.vsi.org, VSIA, Virtual Socket Interface
Association.

[7] Signal Proc. IP Cores, COTS Journal 09/2003, pp65-70,
www.cotsjournalonline.com/pdfs/2003/09/cots09_techfocus1
.pdf

[8] H Tan, R F. De Mara, A J. Thakkar, A Ejnioui, J D
Sattler , “Complexity and Performance Tradeoffs with FPGA
Partial Reconfiguration Interfaces” , Proceedings of RAW06.

[9] Xilinx, Inc., Two Flows for Partial Reconfiguration:
Module Based or Difference Based, v1.1, Nov. 2003.

[10] N. Dorairaj, E. Shiflet, M. Goosman, “PlanAhead
Software as a Platform for Partial Reconfiguration”, Xilinx
XCELL Journal, Art 55.

[11] B. Blodget, P. James-Roxby, E. Keller, S. McMillan,
and P Sundararajan, “A Self-reconfiguring Platform”, Int.
Conference on Field Programmable Logic and Applications
(FPL 2003).

[12] Virtex-4 Multi Platform FPGA,
http://www.xilinx.com/products/silicon_solutions/fpgas/virte
x/virtex4/

[13] Xilinx Intellectual Property library, Logicore,
http://www.xilinx.com/ipcenter/

[14] SUIF Compiler System. http://suif.stanford.edu, 2006

[15] Machine-SUIF.2006
http://www.eecs.harvard.edu/hube/research/machsuif.html

[16] Z. Guo, B. Buyukkurt, W. Najjar and K. Vissers.
Optimized Generation of Data-path from C Codes for
FPGAs, Int. ACM/IEEE Design, Automation and Test in
Europe Conference (DATE 2005). Munich, Germany,
March, 2005.

[17] J. Tripp, K. Peterson, C. Ahrens, J. Poznanovic, M.
Gokhale. Trident: An FPGA Compiler Framework for
Floating-Point Algorithms, Int. Conference on Field
Programmable Logic and Applications (FPL 2005). Finland,
2005

[18] Michael Barr, “A Reconfigurable Computing Primer,”
Multimedia Systems Design, Sep. 1998, pp. 44 – 47.

[19] Xilinx ISE 8.1i Development System Reference Guide,
pp130-140.

[20] R. Lysecky and F. Vahid. Pre-fetching for Improved
Bus Wrapper Performance in Cores, ACM Transactions on
Design Automation of Electronic Systems, Vol. 7, No. 1, pp.
58-90, January 2002.

[21] SPIRIT consortium, http://www.spiritconsortium.com/

[22] Tien-Lung Lee, Neil W. Bergmann, “Interfacing
methodologies for IP re-use in Reconfigurable System on-
Chip”, SPIE International Symposium on Microelectronics,
MEMS and Nanotechnology, Perth Australia, 12 / 2003

[23] EDK, PowerPC 405 Processor Block Reference Guide,
UG018, http://www.xilinx.com/bvdocs/userguides/ug018.pdf

[24] A. Ansari, P. Ryser, D. Isaacs, Accelerated System
Performance with APU Enhanced Processing,
http://www.xilinx.com/publications/xcellonline/xcell_52/xc_
v4acu52.htm

[25] Xilinx Fast Simplex Link v2.00a
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/FSL_V20.
pdf

[26] Xilinx Floating point Operator v2.0, Logicore,
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/floating_p
oint_ds33[5.pdf

[27] Xilinx PLB IPIF specifications DS414
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/plb_ipif.p
df

[28] Xilinx OPB IPIF specifications DS414
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/opb_ipif.p
df

[29] Tien-Lung Lee and Neil Bergmann. An Interface
Methodology for Retargettable FPGA Peripherals. In
Engineering of Reconfigurable Systems and Algorithms
(ERSA), July 2003, pages 1-7.

[30] G. Holloway and M. D. Smith. Machine SUIF Control
Flow Graph Library. Division of Engineering and Applied
Sciences, Harvard University 2002.

[31] G. Holloway and A. Dimock. The Machine SUIF Bit-
Vector Data-Flow-Analysis Library. Division of Engineering
and Applied Sciences, Harvard University 2002.

[32] G. Holloway. The Machine-SUIF Static Single
Assignment Library. Division of Engineering and Applied
Sciences, Harvard University 2002.

[33] Xilinx CORDIC 3.0, DS 239
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/cordic.pdf

[34] Xilinx Pipelined Divider v 3.0, DS305
http://www.xilinx.com/ipcenter/catalog/logicore/docs/sdivide
r.pdf

[35] Xilinx FFT v3.2, DS 260
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/xfft.pdf

