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Daily energy expenditure graph 

Energy expenditure levels on Monday 

Estimated energy 
expenditure 

Energy 
exp. level 

< 3 Calories/minute Low 

Other Medium 

> 6 Calories/minute High 
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Daily energy expenditure example 
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Reasons to estimate energy 
expenditure of elderly 

Mortality risk2 

Onset of dementia3 

Likelihood of falls4 

Emotional well-being5 

• Detect trends 

[1] Courneya, et al. Relationships Among the Theory of Planning Behavior, Stages on Change, and Exercise Behavior in Older 
persons over a Three Year Period. 
[2] Hirvensalo, et al. Mobility Difficulties and Physical Activity as Predictors of Mortality and loss of Independence in the 
Community-Living Older Population. 
[3] Buchman , et al.. Total Daily Physical Activity and the Risk of AD and cognitive Decline in Older Adults. 
[4] Lord , et al. The Effect of a 12-Month Exercise Trial on Balance, Strength, and Falls in Older Women: A Randomized 
Controlled Trial. 
[5] Fox, K.R. The Influence of Physical Activity on Mental Well-Being. 

• Sufficient activity associations: 
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• Motivate more activity1 
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Commercial energy estimation methods 
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$1,000,000 USD 

Photo credit: T. Ortega Gaines/ 
Charlotte Observer/MCT 

Direct calculation 

Respiratory chamber 

$30,000 USD 

Photo credit: 
cosmedusa.com 

Best indirect 

Doubly-labeled 
water (DLW) 

$150 USD 

Common 

BodyBugg 
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Academic energy estimation methods 
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[6] Zhang, et al. Improving Energy Expenditure Estimation for Physical Activity. 
[7] Yao, et al. A Video Processing Approach to the Study of Obesity. 

Accelerometers6 
(30 years of work) 

Body-worn camera7 

Photo credit: Yao7 
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Activity recognition + Conversion chart 

[8] Choudhury, et al. The Mobile Sensing Platform: An Embedded Activity Recog. System. 

[9] Tapia, et al. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. 

[10] Zhou, et al. Activity Analysis, Sum., and Vis. for Indoor Human Activity Monitoring. 

[11] Mayo Clinic. http://www.mayoclinic.com/health/exercise/SM00109 

Conversion chart11 

Activity 
(1hr duration) 

Calories burnt 
by 160 lbs 

person 

2 mph walk  204 

3.5 mph walk 314 

Light aerobics 365 

… … 
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Photo credit: 
Choudhury3 

Body-worn8 Off-body9,10 

Photo credit: 
Tapia2 

+ 
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Simpler method advantages over 
activity recognition + conversion chart 

Lightweight processing Operate on low 
quality or blurred 
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Reasons to estimate energy 
expenditure with video 
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Body-worn 
Pro: Anywhere 

Con: Not always 
worn 

Detect other events 
Privacy 

enhance-able 
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Estimate daily energy expenditure 
from one camera in 2 steps 

Extract Minimum Bounding 
Rectangle (MBR) around 

person 

Camera video Convert MBR into energy 
expenditure estimation 

1,865 Calories 
on Monday 

Step 1 Step 2 
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Step 1: Person tracking and MBR extraction 
via foreground-background segmentation (details in paper) 

- = 

Minimum bounding 
rectangle (MBR) 

Video frame Background image Foreground 
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Step 2: Convert MBR to 
daily energy expenditure estimation 
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• Extract feature F from 
each frame of video’s 
MBR 

• Standardize feature data at time i 

• Sum the absolute differences between 
successive standardized data 

• Regression to convert sum to Calories 
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Best MBR feature for energy estimation 

MBR feature (sum) Correlation w/ BodyBugg P-value 

Height r = 0.45 p < 0.01 

Width r = 0.72 p < 0.01 

Vertical velocity r = 0.72 p < 0.01 

Horizontal velocity r = 0.77 p < 0.01 

Combined velocities r = 0.77 p < 0.01 

Vertical acceleration r = 0.70 p < 0.01 

Horizontal acceleration r = 0.80 p < 0.01 
Combined acceleration r = 0.79 p < 0.01 

Horizontal work r = -0.16 p = 0.84 

Vertical work r = -0.23 p = 0.92 

Combined work r = -0.22 p = 0.91 

[Motion in video] r = -0.01 p = 0.53 
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Best regression model for energy estimation 
Regression model R2 – value 

Power 0.76 

Exponential 0.69 

Logarithmic 0.67 

Linear 0.64 
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Recordings gathered 

• Mock in-home environment 

• Four actors performing 9 
activities for 30 minutes each 
(18 hours of recordings) 

• Video from popular in-home 
camera kit 

• BodyBugg ($150) for Calorie 
expenditure 
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9 activities that each actor performed 
Activity description Energy expenditure level 

Read while sitting Low (< 3 Cal./min.) 

Use laptop Low 

Eat while sitting Low 

Walk slowly Medium 

Clean surfaces Medium 

Sweep floors High (> 6 Cal./min.) 

Walk normally High 

Use stair stepper High 

Walk quickly High 
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Energy expenditure estimation fidelity 
Fidelity = correlation(video-based Calories, BodyBugg) 

Actor 1’s medium activity day 
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Daily energy estimation fidelity 
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Actor Fidelity 

1 r = 0.996 

2 r = 1.000 

3 r = 0.983 

4 r = 0.997 

Combined r = 0.997 

(Ideal is 1.0) 
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Daily energy estimation accuracy 
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Actor Energy exp. 
level 

BodyBugg estimate 
(Calories) 

Video-based estimate 
(Calories) 

Accuracy 

1 Low 2128 1849 86.9% 

1 Medium 2279 1985 87.1% 

1 High 2407 2145 89.1% 

… … … … … 

3 Low 1993 1974 99.1% 

3 Medium 2127 2042 96.0% 

3 High 2331 2273 97.5% 

… … … … … 

Average accuracy over all actors = 90.9% 
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• Added initial calibration phase (same results) 

Attempted refinements to improve 
fidelity and accuracy 
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• Added orthogonal camera 
(same results) 

• Use only orthogonal camera 
(decreased accuracy and fidelity) 
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Limitations of cameras and this work 

• BodyBugg ($150) had 90% accuracy vs. 
doubly labeled water ($30,000) 

• Actors all male around age 20 
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Not feasible locations Not outside home 
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Future work 

• Improve person tracker 

– Track only monitored person 

– Filter out pets, other motions 

• Increase variability in experimentation 

– Resolution, direction, location, camera type, etc. 

– Include elder male and female actors 

• Explore more elaborate feature selection 

• Determine misleading activities 
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Conclusion 

• Estimating energy from video is viable 

• Simple and effective technique 

 

 

 

 

• Video data set linked on my homepage: 
– http://www.cs.ucr.edu/~aedgcomb/ 
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