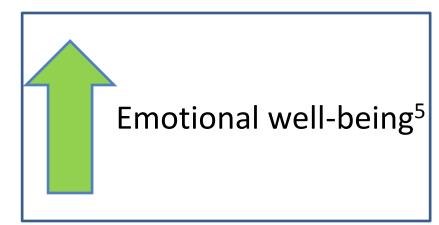

Estimating Daily Energy Expenditure from Video for Assistive Monitoring

Daily energy expenditure graph

Daily energy expenditure example


Copyright © 2013 Alex Edgcomb, UC Riverside.

Reasons to estimate energy expenditure of elderly

- Motivate more activity¹ Detect trends

 - Sufficient activity associations:

Mortality risk² Onset of dementia³ Likelihood of falls⁴

[1] Courneya, et al. Relationships Among the Theory of Planning Behavior, Stages on Change, and Exercise Behavior in Older persons over a Three Year Period.

[2] Hirvensalo, et al. Mobility Difficulties and Physical Activity as Predictors of Mortality and loss of Independence in the Community-Living Older Population.

[3] Buchman, et al.. Total Daily Physical Activity and the Risk of AD and cognitive Decline in Older Adults.

[4] Lord, et al. The Effect of a 12-Month Exercise Trial on Balance, Strength, and Falls in Older Women: A Randomized Controlled Trial.

[5] Fox, K.R. The Influence of Physical Activity on Mental Well-Being.

Commercial energy estimation methods

Respiratory chamber Direct calculation \$1,000,000 USD

Photo credit: T. Ortega Gaines/ Charlotte Observer/MCT

Doubly-labeled water (DLW) Best indirect \$30,000 USD

Photo credit: cosmedusa.com

BodyBugg Common \$150 USD

Academic energy estimation methods

Accelerometers⁶ (30 years of work)

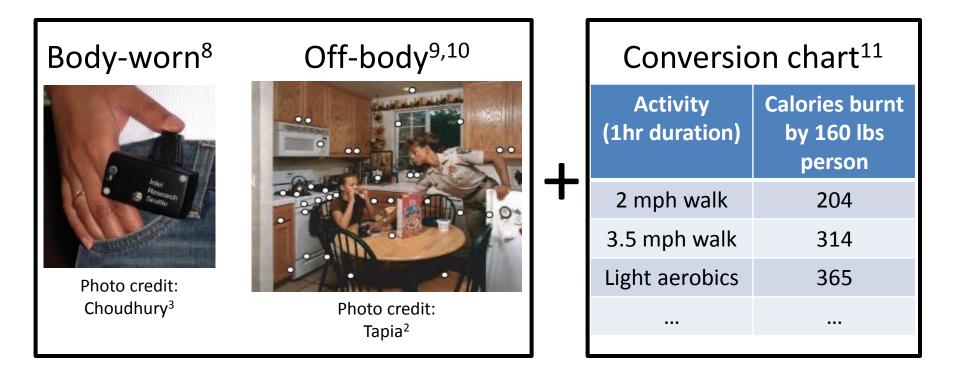
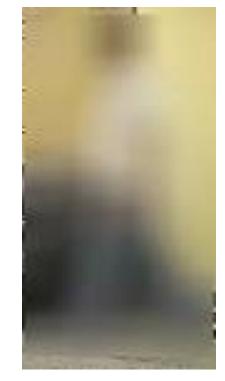

Body-worn camera⁷

Photo credit: Yao⁷

[6] Zhang, et al. Improving Energy Expenditure Estimation for Physical Activity.[7] Yao, et al. A Video Processing Approach to the Study of Obesity.

Activity recognition + Conversion chart

[8] Choudhury, et al. The Mobile Sensing Platform: An Embedded Activity Recog. System.


[9] Tapia, et al. Activity Recognition in the Home Using Simple and Ubiquitous Sensors.

[10] Zhou, et al. Activity Analysis, Sum., and Vis. for Indoor Human Activity Monitoring.

[11] Mayo Clinic. http://www.mayoclinic.com/health/exercise/SM00109

Simpler method advantages over activity recognition + conversion chart

Lightweight processing

Operate on low quality or blurred

Reasons to estimate energy expenditure with video

Body-worn

Pro: Anywhere

Detect other events

Privacy enhance-able

Con: Not always worn

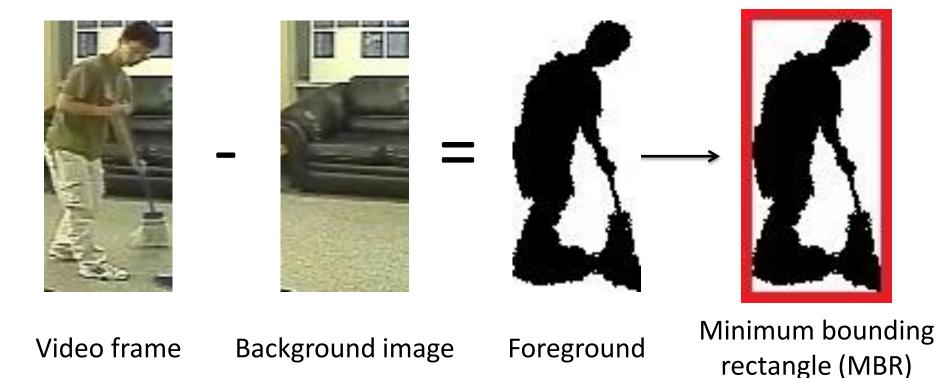
Estimate daily energy expenditure from one camera in 2 steps

Camera video

Step 1 Extract Minimum Bounding Rectangle (MBR) around person

Step 2

Convert MBR into energy expenditure estimation



1,865 Calories on Monday

Step 1: Person tracking and MBR extraction

via foreground-background segmentation (details in paper)

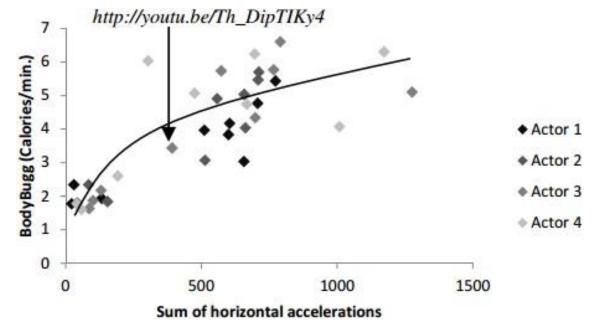
Step 2: Convert MBR to daily energy expenditure estimation

 Extract feature F from each frame of video's MBR

$$-F = (e.g.)$$
 Height

- Standardize feature data at time i $S_i = \frac{F_i \mu_F}{\sigma_F}$
- Sum the absolute differences between successive standardized data

 $sum = \sum_{i=2}^{n} |S_i - S_{i-1}|$


• Regression to convert sum to Calories Calories = R(sum)

Best MBR feature for energy estimation

MBR feature (sum)	Correlation w/ BodyBugg	P-value	
Height	r = 0.45	p < 0.01	
Width	r = 0.72	p < 0.01	
Vertical velocity	r = 0.72	p < 0.01	
Horizontal velocity	r = 0.77	p < 0.01	
Combined velocities	r = 0.77	p < 0.01	
Vertical acceleration	r = 0.70	p < 0.01	
Horizontal acceleration	r = 0.80	p < 0.01	
Combined acceleration	r = 0.79	p < 0.01	
Horizontal work	r = -0.16	p = 0.84	
Vertical work	r = -0.23	p = 0.92	
Combined work	r = -0.22	p = 0.91	
[Motion in video]	<i>r</i> = -0.01	p = 0.53	

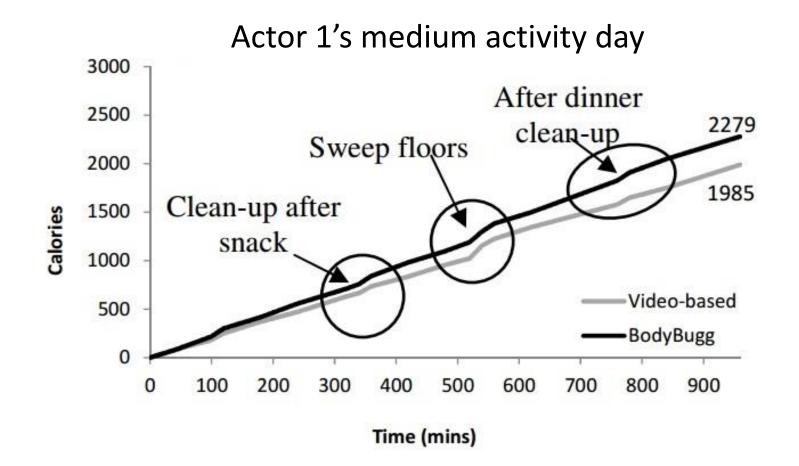
Best regression model for energy estimation

Regression model	R ² – value	
Power	0.76	
Exponential	0.69	
Logarithmic	0.67	
Linear	0.64	

Copyright © 2013 Alex Edgcomb, UC Riverside.

Recordings gathered

- Mock in-home environment
- Four actors performing 9 activities for 30 minutes each (18 hours of recordings)
- Video from popular in-home camera kit
- BodyBugg (\$150) for Calorie expenditure



9 activities that each actor performed

Activity description	Energy expenditure level	
Read while sitting	Low (< 3 Cal./min.)	
Use laptop	Low	
Eat while sitting	Low	
Walk slowly	Medium	
Clean surfaces	Medium	
Sweep floors	High (> 6 Cal./min.)	
Walk normally	High	
Use stair stepper	High	
Walk quickly	High	

Energy expenditure estimation fidelity Fidelity = correlation(video-based Calories, BodyBugg)

Copyright © 2013 Alex Edgcomb, UC Riverside.

Daily energy estimation fidelity

Actor	Fidelity
1	r = 0.996
2	r = 1.000
3	r = 0.983
4	r = 0.997
Combined	r = 0.997
	(Ideal is 1.0)

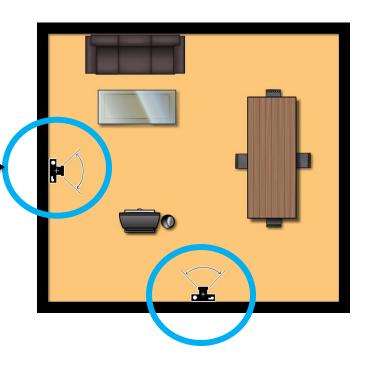
Daily energy estimation accuracy

Average accuracy over all actors = **90.9%**

Actor	Energy exp. level	BodyBugg estimate (Calories)	Video-based estimate (Calories)	Accuracy
1	Low	2128	1849	86.9%
1	Medium	2279	1985	87.1%
1	High	2407	2145	89.1%
3	Low	1993	1974	99.1%
3	Medium	2127	2042	96.0%
3	High	2331	2273	97.5%
	•••			

Attempted refinements to improve fidelity and accuracy

• Added initial calibration phase (same results)



- Added orthogonal camera— (same results)
- Use only orthogonal camera

(decreased accuracy and fidelity)

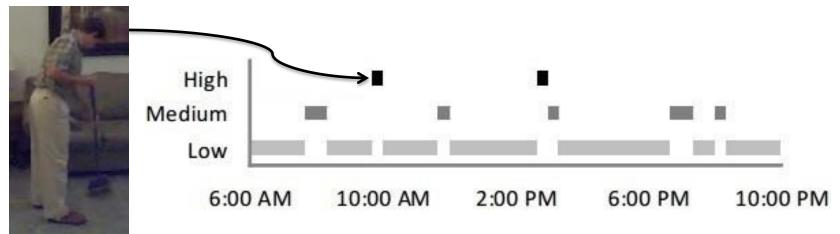
Limitations of cameras and this work

Not feasible locations


Not outside home

- BodyBugg (\$150) had 90% accuracy vs. doubly labeled water (\$30,000)
- Actors all male around age 20

Future work


- Improve person tracker
 - Track only monitored person
 - Filter out pets, other motions

- Increase variability in experimentation
 - Resolution, direction, location, camera type, etc.
 - Include elder male and female actors
- Explore more elaborate feature selection
- Determine misleading activities

Conclusion

- Estimating energy from video is viable
- Simple and effective technique

- Video data set linked on my homepage:
 - <u>http://www.cs.ucr.edu/~aedgcomb/</u>

Complete reference list

[1] Courneya, et al. Relationships Among the Theory of Planning Behavior, Stages on Change, and Exercise Behavior in Older persons over a Three Year Period. Psychology and Health. Volume 13, Issue 2, 1998.

[2] Hirvensalo, et al. Mobility Difficulties and Physical Activity as Predictors of Mortality and loss of Independence in the Community-Living Older Population. Journal of the American Geriatrics Society. Volume 48, pgs. 493-498, 2000.

[3] Buchman, et al. Total Daily Physical Activity and the Risk of AD and cognitive Decline in Older Adults. Neurology. Volume 78, pgs.1323-1329, 2012.

[4] Lord, et al. The Effect of a 12-Month Exercise Trial on Balance, Strength, and Falls in Older Women: A Randomized Controlled Trial. Journal of Aging Physical Activity. Volume 43, pgs. 1198-1206, 1995.

[5] Fox, K.R. The Influence of Physical Activity on Mental Well-Being. Public Health Nutrition. Volume 2, pgs. 411-418, 1999.

[6] Zhang, et al. Improving Energy Expenditure Estimation for Physical Activity. Medicine and Science in Sports and Execise. Volume 36, pgs. 883-889, 2004.

[7] Yao, et al. A Video Processing Approach to the Study of Obesity. Multimedia and Expo. Pgs. 1727-1730, 2007.

[8] Choudhury, et al. The Mobile Sensing Platform: An Embedded Activity Recog. System. IEEE Pervasive Computing. Volume 7, pgs. 32-41, 2008.

[9] Tapia, et al. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. Pervasive Computing: Lecture Notes in Computer Science. Volume 3001, pgs. 158-175, 2004.

[10] Zhou, et al. Activity Analysis, Sum., and Vis. for Indoor Human Activity Monitoring. IEEE Transactions on Circuits and Systems for Video Technology. Volume, 18, pgs. 1489-1498, 2008.

[11] Mayo Clinic. http://www.mayoclinic.com/health/exercise/SM00109. Sept. 2012.