Automated In-Home Assistive Monitoring with Privacy-Enhanced Video

Alex Edgcomb Frank Vahid University of California, Riverside Dept. of Computer Science & Engineering

Assistive monitoring goals

Fall detection

Leave at night but not return

In region too long

Unusually inactive

Copyright © 2013 Alex Edgcomb, UC Riverside.

Arisen in morning

Reasons for video in assistive monitoring

Body-worn

Pro: Anywhere

Detect many events

Privacy enhance-able

Con: Not always worn

Reasons for privacy enhancements

Participants say sufficient privacy

 Participants age 65+ felt cameras were intrusive, while "many felt that [silhouetting] was more appropriate."¹

[1] Demiris, et al. Older adults' attitudes towards and perceptions of 'smart home' technologies: a pilot study. Medical Informatics and The Internet in Medicine, 2004.
[2] Edgcomb, A. and F. Vahid. Privacy perception and fall detection accuracy for in-home video assistive monitoring with privacy enhancements, ACM SIGHIT (Special Interest Group on Health Informatics) Record, 2012. Copyright © 2013 Alex

Privacy enhancements considered

Raw Blur Silhouette Oval Box

Person tracking and MBR extraction

via foreground-background segmentation

Video frame

Background image

Foreground

Minimum bounding rectangle (MBR)

Recording environment

Energy expenditure estimation 1 of 2

BodyBugg

Fidelity = correlation(Video,BodyBugg)

 0.997^3 0.994 0.998 0.997 1.000

 Fidelity of privacy-enhanced video was the same as raw video (p < 0.001)

> [3] Edgcomb, A. and F. Vahid. Estimating Daily Energy Expenditure from Video for Assistive Monitoring, IEEE International Conference on Healthcare Informatics (ICHI), 2013. (to appear) 8 of 19

Energy expenditure estimation 2 of 2

Accuracy

 $90.9\%^3$ 80.5% 85.0% 85.6% 84.3%

Accuracy of privacy-enhanced video was less than raw video (p < 0.001)

[3] Edgcomb, A. and F. Vahid. Estimating Daily Energy Expenditure from Video for Assistive Monitoring, IEEE International Conference on Healthcare Informatics (ICHI), 2013. (to appear) 9 of 19

Fall detection 1 of 2

Fall detection 2 of 2

Sensitivity ⁴	0.91	1.00	0.91	0.91	0.82
Specificity ⁴	0.92	0.67	0.75	0.92	0.92

[4] Edgcomb, A. and F. Vahid. Automated Fall Detection on Privacy-Enhanced Video, IEEE Engineering in Medicine & Biology Society, 2012, 4 pages.

In-room-too-long, and leave-at-night-but-not-return

Exit from left Enter to left

Sensitivity/Specificity 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

 Raw and privacy-enhanced video had perfect sensitivity and specificity

Arisen-in-morning, and not-arisen-in-morning

Arisen person enters main living area in morning

Sensitivity/Specificity 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

 Raw and privacy-enhanced video had perfect sensitivity and specificity

In region too long

Person in region

Sensitivity/Specificity 1.0/1.0 0.5/1.0 1.0/1.0 1.0/1.0 1.0/1.0

 Raw and privacy-enhanced video had perfect sensitivity and specificity, except blur's sensitivity.

Abnormally inactive during day

Person home but inactive for extended period

Sensitivity/Specificity 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

 Raw and privacy-enhanced video had perfect sensitivity and specificity

Most goals were achieved equally well even with privacy enhancements

	Energy estimation fidelity / accuracy	Fall detection sensitivity / specificity	In room too long sensitivity / specificity	Arisen in morning sensitivity / specificity	In region too long sensitivity / specificity	Abnormally inactive during day sensitivity / specificity
Raw	0.997 / 90.9%	0.91/ 0.92	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0
Blur	0.994 / 80.5%	1.00 / 0.67	1.0 / 1.0	1.0 / 1.0	0.5 / 1.0	1.0 / 1.0
Silhouette	0.998 / 85.0%	0.91/ 0.75	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0
Oval	0.997 / 85.6%	0.91 / 0.92	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0
Box	1.000 / 84.3%	0.82 / 0.92	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0	1.0 / 1.0

Limitations of cameras and this work

Not feasible locations

• Actors all males in 20s

Future work

- Increase variability in experimentation
- Cameras and sensors working together

 Algorithms that adapt to the privacy enhancement⁵

[5] Edgcomb, A. and F. Vahid. Accurate and Efficient Algorithms that Adapt to Privacy-Enhanced Video for Improved Assistive Monitoring, ACM Transactions on Management Information Systems (TMIS): Special Issue on Informatics for Smart Health and Wellbeing, 2013. (to appear)

Conclusion

 Privacy-enhanced video is viable for 8 common monitoring goals

- Blur had loss in goal achievement
- Video data sets linked on my homepage:
 - <u>http://www.cs.ucr.edu/~aedgcomb/</u>