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Assistive momtormg goals

Unusually inactive

Leave at night

but not return Copyright © 2013 Alex Edgcomb, UC Riverside. 5 of 19



Reasons for video in assistive monitoring

Body-worn Detect many Privacy

Pro: Anywhere events enhance-able
Con: Not always worn
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Reasons for privacy enhancements

100% Sufficient privacy?
* Participants age 65+ 96%
felt cameras were o =
intrusive, while 60%
59%

"many felt that
[silhouetting] was
more appropriate."!

a9 | Insufficient
privacy?
20%

Participants say sufficient privacy

23%

2%

0%

[1] Demiris, et al. Older adults’ attitudes towards and
perceptions of ‘smart home’ technologies: a pilot study.
Medical Informatics and The Internet in Medicine, 2004.
[2] Edgcomb, A. and F. Vahid. Privacy perception and fall
detection accuracy for in-home video assistive
monitoring with privacy enhancements, ACM SIGHIT
(Special Interest Group on Health Informatics) Record,
2012. Copyright © 2013 Alex Edgcomb, UC Riverside.
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Privacy enhancements considered

Raw Blur Silhouette Oval Box
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Person tracking and MBR extraction

via foreground-background segmentation
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Recording environment
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Energy expenditure estimation 1 of 2

Fidelity = correlation(Video,BodyBugg)

0.997° 0.994 0.998 0.997 1.000

was the same as raw video (p < 0.001)

[3] Edgcomb, A. and F. Vahid. Estimating
Daily Energy Expenditure from Video for
Assistive Monitoring, IEEE International

Conference on Healthcare Informatics
Copyright © 2013 Alex Edgcomb, UC Riverside. (ICHI), 2013. (to appear)
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Energy expenditure estimation 2 of 2

Accuracy
90.9%3 80.5% 85.0% 85.6% 84.3%
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* Accuracy of privacy-enhanced video

was less than raw video (p < 0.001)

[3] Edgcomb, A. and F. Vahid. Estimating
Daily Energy Expenditure from Video for
Assistive Monitoring, IEEE International

_ _ . Conference on Healthcare Informatics
Copyright © 2013 Alex Edgcomb, UC Riverside. (ICHI), 2013. (to appear) 9 of 19



Fall detection 1 of 2
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Fall detection 2 of 2

Sensitivity*

0.91 0.82

Specificity?

0.92 0.92
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[4] Edgcomb, A. and F. Vahid. Automated
Fall Detection on Privacy-Enhanced Video,
IEEE Engineering in Medicine & Biology
Society, 2012, 4 pages.
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In-room-too-long, and
leave-at-night-but-not-return

ped ==

Exit from left
Enter to left

Sensitivity/Specificity
1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
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 Raw and privacy-enhanced video had
perfect sensitivity and specificity
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Arisen-in-morning, and
not-arisen-in-morning

Sensitivity/Specificity
1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

R

e Raw andnprivacy-nﬂance-d video had
perfect sensitivity and specificity

enters main living
area in morning

Copyright © 2013 Alex Edgcomb, UC Riverside. 13 of 19



In region too long

Sensitivity/Specificity
1.0/1.0 0.5/1.0 1.0/1.0 1.0/1.0 1.0/1.0

R

e Raw andnprivacy-nlﬁ‘lance-d video had
perfect sensitivity and specificity,
except blur’s sensitivity.

Person in region
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Abnormally inactive during day

Sensitivity/Specificity
1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0

- — - —

. R;\}v and"pri-vacy-enhance-d videoll."la.d
perfect sensitivity and specificity

inactive for
extended period
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Most goals were achieved equally well
even with privacy enhancements

Energy Fall detection In room Arisen in In region Abnormally
estimation sensitivity too long morning too long inactive
fidelity / sensitivity | sensitivity | sensitivity during day
/ specificity / / / sensitivity
accuracy specificity | specificity | specificity /
specificity
0.997/ 0.91/
Raw 90.9% 0.92 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
0.994 / 1.00/
Bl 1.0/1.0 1.0/1.0 . . 1.0/1.0
T 80.5% 0.67 / / OSIE /
0.998 / 0.91/
Silh tt 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
TOUER® 85.0% 0.75 / / / /
0.997 / 0.91/
Oval . . . . . . . .
va 85 6% 0.92 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0
1.000/ 0.82 /
B 1. 1. 1. 1. 1. 1. 1. 1.
oX 34.3% 0.92 0/1.0 0/1.0 0/1.0 0/1.0
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Limitations of cameras and this work

Not feasible locations

e Actors all males in 20s
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Future work

* Increase variability in
experimentation

 Cameras and sensors
working together

* Algorithms that adapt to
the privacy enhancement?

[5] Edgcomb, A. and F. Vahid. Accurate and Efficient Algorithms that Adapt to Privacy-Enhanced Video for Improved
Assistive Monitoring, ACM Transactions on Management Information Systems (TMIS): Special Issue on Informatics for

Smart Health and Wellbeing, 2013. (to appear)
Copyright © 2013 Alex Edgcomb, UC Riverside. 18 of 19



Conclusion

Privacy-enhanced video is viable for 8
common monitoring goals

‘ and l had little loss in goal

achievement
Blur had loss in goal achievement ‘

Video data sets linked on my homepage:

— http://www.cs.ucr.edu/~aedgcomb/
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