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Abstract

Finding all the occurrences of a twig pat-
tern specified by a selection predicate on
multiple elements in an XML document is
a core operation for efficient evaluation of
XML queries. Holistic twig join algorithms
were proposed recently as an optimal solution
when the twig pattern only involves ancestor-
descendant relationships. In this paper, we
address the problem of efficient processing of
holistic twig joins on all/partly indexed XML
documents. In particular, we propose an algo-
rithm that utilizes available indices on element
sets. While it can be shown analytically that
the proposed algorithm is as efficient as the ex-
isting state-of-the-art algorithms in terms of
worst case I/O and CPU cost, experimental
results on various datasets indicate that the
proposed index-based algorithm performs sig-
nificantly better than the existing ones, espe-
cially when binary structural joins in the twig
pattern have varying join selectivities.

1 Introduction

XML is emerging as a de facto standard for infor-
mation exchange over the Internet. Although XML
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documents could have rather complex internal struc-
tures, they can generally be modelled as ordered trees.
Queries in XML query languages (see, e.g., [1, 2]) typ-
ically specify patterns of selection predicates on multi-
ple elements which have some specified structural rela-
tionships. For example, to retrieve all paragraphs that
are nested inside sections and have at least one figure
and one table can be expressed as

//section//paragraph[figure AND table]

Such a query can be represented as a node-labelled
twig pattern (or a small tree) with elements and string
values as node labels [3].

Finding all occurrences of a twig pattern is a core
operation in XML query processing [6, 13, 10, 15].
A typical approach is to first decompose the pattern
into a set of binary structural relationships (parent-
child or ancestor-descendant) between pairs of nodes,
then match each of the binary structural relationships
against the XML database and finally stitch together
the results from those basic matches [20, 9, 14, 4, 8, 19].
For example, to answer the twig pattern above, we
first retrieve all the section, paragraph, figure and
table element sets, possibly through a tag index. A
possible evaluation strategy works as follows: (1) find-
ing all (paragraph, figure) and (paragraph, table) pairs
with two separate structural joins; (2) merging these
results to obtain the paragraphs with a figure and a ta-
ble; and (3) joining these paragraphs with all sections
through another structural join.

The main disadvantage of such a decomposition
based approach is that intermediate result sizes can
get very large, even when the input and the final result
sizes are much more manageable. To address the prob-
lem, Bruno et al proposed a holistic twig join approach
for matching XML query twig patterns [3]. With a
chain of linked stacks to compactly represent partial
results of individual query root-to-leaf paths, their ap-
proach merges the sorted lists of participating element
sets altogether, without creating large intermediate re-
sults.



The work reported in this paper is motivated by the
following observations: Although the proposed holis-
tic twig join algorithm has been proved to be I/O and
CPU optimal in terms of input and output sizes for
twigs with only ancestor-descendant edges (and yet
still efficient for patterns with parent-child edges), the
potential benefit of skipping elements that do not par-
ticipate in a final twig match by using available indices
is not fully explored. In our previous study on struc-
tural joins using indices [8], we found that the benefit
of skipping elements without matches could be enor-
mous when the input lists are large while few of the
elements appear in the output.

In this paper, we address the problem of efficient
holistic processing of twig joins on indexed XML doc-
uments. In particular, we propose a generic algorithm,
TSGeneric+, which can utilize available indices, e.g.
XR-trees [8], on element sets. The main feature of
TSGeneric+ is that it uses indices to quickly locate
the first match for a sub twig pattern (starting from
the current elements of the input lists in the sub pat-
tern). Locating the first match for a sub twig pattern
can be evaluated by “fixing” edges that do not comply
with the desired structural relationship (e.g., ancestor-
descendant relationship) with a structural join like al-
gorithm. The main issue here is which edge to choose
first so that more elements without matches can be
skipped. We propose three edge-picking heuristics in
this paper: top-down, bottom-up and statistics-based,
and study their performance with our experiments in
comparison with existing algorithms.

Our contributions can be summarized as follows:

1. We propose a general holistic twig join process-
ing algorithm, namely TSGeneric, which makes
use of a set of stacks to cache elements and a
cursor interface that provides standard methods
to return elements with possible matches. With
different implementations of the cursor interface,
algorithms can be developed to process twig joins
based on available access methods.

2. We propose the TSGeneric+ algorithm based on
TSGeneric to exploit more opportunities to skip
elements. In particular, three different heuristics,
top-down, bottom-up and statistics-based, are pro-
posed to select the first edge to start the process-
ing. As such, the potential of skipping elements
with various indices is further exploited.

3. An extensive performance study with datasets of
various characteristics was conducted. Our re-
sults show that the TSGeneric+ algorithm on
the XR-tree indexed data (regardless of the edge-
picking heuristics used) significantly outperforms
the existing algorithms, namely TwigStack and its
variant TwigStackXB , in terms of various evalua-
tion metrics. While among the three edge-picking

heuristics, the statistics-based heuristic is most
robust.

The rest of the paper proceeds as follows. Section 2
is dedicated to some background knowledge and re-
lated work on XML. We present the TSGeneric al-
gorithm in section 3. Then we proceed to present the
TSGeneric+ algorithm and its worst case performance
analysis in section 4. Section 5 reports experimental
results. Section 6 concludes the paper.

2 Background and related work

2.1 Data model and numbering schemes

XML data is commonly modelled by a tree structure,
where nodes represent elements, attributes and text
data, and parent-child pairs represent nesting between
XML element nodes. Most existing XML query pro-
cessing algorithms rely on a positional representation
of element nodes, where each element is represented
with a tuple of three fields: (start, end, level)1, based
on its position in the data tree [20, 14, 4, 8]. Such a
numbering scheme is also called as region encoding.
Formally, element u is an ancestor of element v iff
u.start < v.start < u.end. For parent-child relation-
ship, we also test whether u.level = v.level − 1.

Corollary 1 Given two elements ei and ej, if
ei.start < ej .start and ei is not an ancestor of ej,
then ei will not be an ancestor of any element ex with
ex.start > ej .start.

Figure 1 shows a fictitious XML document which
contains a root and other elements with tag a or b or
c. The region encoding is also shown for each element.
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Figure 1: A sample XML document

2.2 Structural joins

A structural join is to find all occurrences of a
given structural relationship between two sets of el-
ements. A series of structural join algorithms were

1In an XML database with multiple XML documents, we
may also need to record which document an element belongs to
with an additional DocId field. Although we do not consider the
DocId field in our algorithms, they can be easily extended to
support DocId.



proposed in the literature. Merge-based algorithms in-
clude MPMGJN [20], EE/EA-Join [9] and Stack-Tree-
Desc/Anc [14]. [4, 7, 8] are index-based approaches.
In particular, XR-tree was recently proposed to index
XML data to support efficient structural joins [8]. The
experimental results showed that the XR-tree based al-
gorithm, namely, XR-stack , performs the best among
all existing structural join algorithms, especially when
the join selectivity of (at least one of) the participating
element sets is high [8] (i.e. few matched elements).

2.3 Twig pattern matching

A twig pattern is a selection predicate on multiple
elements in an XML document. Such query pat-
terns can generally be represented as node-labelled
trees. Matching a twig pattern against an XML
database is to find all occurrences of the pattern in
the database. Formally, given a query twig pattern Q
and an XML database D, a match of Q in D is iden-
tified by a mapping from nodes in Q to nodes in D,
such that: (i) query node predicates are satisfied by
the corresponding database nodes; (ii) the structural
(parent-child or ancestor-descendant) relationships be-
tween query nodes are satisfied by the corresponding
database nodes. The answer to Q with n nodes can
be represented as an n-array relation where each tu-
ple (d1, d2, · · · , dn) consists of the database nodes that
identify a distinct match of Q in D.

The most related work on twig pattern matching is
a merge-based holistic twig join algorithm proposed in
[3]. The recent work by Wu et al [19] emphasized on
join order selection when a twig pattern is evaluated
with the traditional decomposition approach.

3 The generic twig join algorithm

In this section, we first introduce a general setting of
the twig join problem, followed by the description of
a generic twig join framework, TSGeneric. Then we
discuss how such generic work can be seamlessly ex-
tended to the case when element sets participating in
the twig join are indexed.

3.1 Preliminaries

A twig pattern can be represented with a tree. The
self-explaining functions isRoot(q) and isLeaf(q)
examine whether a query node q is a root or a leaf
node. The function children(q) gets all child nodes
and parent(q) returns the parent node of q. The func-
tion subtreeNodes(q) returns node q and all its de-
scendants. When there is no ambiguity, we may also
refer to node q as the sub query tree rooted at q. In
the rest of the paper, “node” refers to a tree node in
the twig pattern (e.g., node q), while “element” refers
to the elements in the dataset involved in a twig join.

We assume there is a data stream associated with
each node in the query tree. Every element in the data

stream is already encoded in the following region for-
mat: (start, end, level). Each data stream is already
sorted on the start attribute.

We also assume the join algorithms will make use
of two types of data structures: cursors and stacks.
Given a query tree T , we associate a cursor (Cq) and a
stack (Sq) to every node q ∈ T , as shown in Figure 2.

q1Sq1 Cq1

Cq3Cq2

root

Sq2 Sq3

q2 q3

Sorted element set of q2

Sorted element set of q1

Sorted element set of q3

Figure 2: Cursors and stacks during execution

Each cursor Cq points to some element in the cor-
responding data stream of node q. Henceforth, “Cq”
or “element Cq” will refer to the element Cq points to,
when there is no ambiguity. The cursor can move to
the element (if any) next to element Cq. Such behav-
ior can be invoked with Cq→advance(). Similarly,
we can access the attribute values of element Cq by
Cq→start, Cq→end and Cq→level. Initially, all the
cursors point to the first element of the corresponding
data stream.

Initially, all stacks are empty. During query execu-
tion, each stack Sq may cache some elements before
the cursor Cq and these elements are strictly nested
from bottom to top, i.e. each element is a descendant
of the element below it. We also associate with each
element e in Sq a pointer to the lowest ancestor in
Sparent(q). Thus, we can efficiently access all e’s an-
cestors in Sparent(q). In fact, cached elements in stacks
represent the partial results that could be further ex-
tended to full results as the algorithm goes on.

Next, we define an important concept, which is key
to the understanding of the TSGeneric algorithm.

Definition 1 (Solution Extension) We say that a
node q has a solution extension if there is a solution
for the sub query rooted at q composed entirely of the
cursor elements of the query nodes in the sub query.

Note that, if node q has a solution extension, since
Cq is the ancestor of all cursor elements in the sub
query tree nodes, Cq→start is smaller than all cursor
start values of query nodes in the subtree q, based on
the strictly nested property of XML data.

3.2 The generic twig join algorithm

Here, we briefly introduce algorithm TSGeneric,
which is partly inspired by algorithm TwigStack pro-
posed in [3]. The algorithm is shown in Algorithm 1.

getNext(q) returns a query node qx in the subtree q,
such that the following three criteria are met: (a) node
qx has a solution extension; and (b) if qx has siblings,



Algorithm 1 TSGeneric(root)

1: while not end(root) do

2: q = getNext(root);
3: if not isRoot(q) then

4: cleanStack(Sparent(q), Cq);
5: if isRoot(q) or (not empty(Sparent(q))) then

6: cleanStack(Sq, Cq);
7: if not isLeaf(q) then

8: push(Sq, Cq, top(Sparent(q)));
9: else

10: outputPathSolutionsWithBlocking(Cq);
11: Cq→advance();
12: end while

13: mergeAllPathSolutions();

Procedure cleanStack(Sq, Cp)

1: pop all elements from Sq that are not ancestors of Cp;

Procedure push(Sq, Cp, ptr)

1: push the pair (Cp, ptr) onto stack Sq; {ptr is a pointer
to an element in the parent stack;}

Function end(q)

1: return ∀qi ∈ subtreeNodes(q) : isLeaf(qi) ⇒ end(Cqi
)

Algorithm 2 getNext(q)

1: if isLeaf(q) then

2: return q;
3: for qi in children(q) do

4: ni = getNext(qi);
5: if ni 6= qi then

6: return ni;
7: end for

8: nmin = minargni
{Cni

→start};
9: nmax = maxargni

{Cni
→start};

10: while Cq→end < Cnmax
→start do

11: Cq→advance();
12: end while

13: if Cq→start < Cnmin
→start then

14: return q;
15: else

16: return nmin;

then Cqx
→start < Cqs

→start, where qs is a sibling
of qx (note that all qx’s siblings must have a solution
extension, otherwise, a lower query node would have
been returned through line 5-6 in the algorithm); and
(c) if qx 6= q, Cparent(qx)→start > Cqx

→start.
The key to getNext is to apply Corollary 1. Called

with the root of the query tree, getNext first traverses
down to the left-most leaf node (by self recursive calls).
Starting from the leaf node, it tries to find the highest
possible query node with a solution extension by ap-
plying Corollary 1 (line 8-16). Given that all children
have their own solution extensions (after line 7), in or-
der for node q to be returned, we make sure that node
q has a solution extension as well by advancing Cq (line
11). If no common ancestor for all Cni

is found in q,
we return the child node with the smallest start value
(fulfilling criterion (b)), i.e. nmin. Note that as long
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Figure 3: Query //a//b//c and element sets from the
example document in Figure 1

as line 16 is executed and nmin is returned, the outer
recursive calls to getNext will return the same node
nmin all the way up through line 5-6.

Example 1 Consider a path query //a//b//c on the
element sets visualized in Figure 3. A subscript is
added to each element in the order of their start val-
ues for easy reference. Initially, the three cursors are
(a1, b1, c1). The first four calls of getNext(root) will
always return node c (with cursors at c1 to c4 one by
one) because none of elements c1 to c4 has an ancestor
in set b. These c elements are consumed by the caller
TSGeneric. Right before the fifth call, the cursors are
(a1, b1, c5). The next call of getNext(root) will return
node b, whose solution extension is (b1, c5). In addi-
tion, the cursor of node a will be forwarded to a5, the
one after b1. After several calls of getNext(root), we
will eventually reach a cursor setup (a7, b4, c9), which
is actually the first match of the query.

It is not difficult to understand TSGeneric with the
knowledge on how getNext works. In line 2, we retrieve
the next node q to process with getNext(root). Some
cached elements can be popped from Sparent(q) (line
4) and Sq (line 6) according to Corollary 1. If q is
not a leaf node, we push element Cq onto Sq (line 8);
otherwise, all the path solutions involving Cq can be
output (line 10). Note that path solutions should be
output in root-to-leaf order so that they can be easily
merged together to form final twig matches (line 13).
As a result, we may need to block some path solutions
during output, similarly as done in Stack-Tree-Anc [14]
and showSolutionsWithBlocking [3].

3.3 Cursor interface for TSGeneric

Recently, there have been many proposals that advo-
cate building certain indices on XML data to acceler-
ate query processing [4, 7, 8, 3]. A natural question
that follows is “Can we accelerate twig join process-
ing in TSGeneric by taking advantage of available in-
dices?”.

Our answer to this question is affirmative. Briefly
speaking, our solution is to extend the existing cur-
sor interface to reflect new abilities to access elements
through indices. In addition to the existing advance()
method, we define two new methods:



1. Cq→fwdBeyond(Cp) forwards Cq to the first ele-
ment e, such that e.start > Cp→start.

2. Cq→fwdToAncestorOf(Cp) forwards the cursor
to the first ancestor of Cp and returns TRUE. If
no such ancestor exists, it stops at the first ele-
ment e, such that e.start > Cp→start, and re-
turns FALSE.

The detailed discussion on various implementation
issues of these methods will be presented in section 4.2.
For now, the readers can simply assume the cursor
interface as a black box.

With the additional methods, we can have an im-
proved version of the TSGeneric algorithm. In fact,
we only need to change the getNext implementation,
which is now named to getNextCursor (Algorithm 3).

Algorithm 3 getNextCursor(q)

1: if isLeaf(q) then

2: return q;
3: for qi in children(q) do

4: ni = getNextCursor(qi);
5: if ni 6= qi then

6: return ni;
7: end for

8: nmin = minargni
{Cni

→start};
9: nmax = maxargni

{Cni
→start};

10: if Cq→fwdToAncestorOf(Cnmax
) == TRUE then

11: if Cq is an ancestor of Cnmin
then

12: return q;
13: return nmin;

Line 10-13 in Algorithm 3 correspond to line 10-16
in Algorithm 2. The semantics is rather straightfor-
ward. If we find a common ancestor for all child cur-
sors, we return q; otherwise, we return the child node
with minimum start value, i.e. nmin.

The benefit of the new getNextCursor call can be
illustrated with the following example:

Example 2 Given the query //a//b//c and the el-
ement sets shown in Figure 3. Follow the exam-
ple in Example 1. Right before the fifth call of get-
NextCursor (or getNext), the cursors are (a1, b1, c5).
Although the next call of either getNextCursor or get-
Next will eventually forward the a’s cursor to a5, el-
ements a2 to a4 need to be processed by getNext (line
10), while getNextCursor only needs to make a call of
Cq→fwdToAncestorOf(Cnmax

). As such, the process-
ing time in getNextCursor is reduced.

Example 2 illustrates the following fact: if an in-
dex can efficiently support the new cursor methods,
the new algorithm getNextCursor can avoid accessing
many of the elements that do not contribute to final re-
sults but have to be scanned in getNext. On the other
hand, it is still possible to implement those methods
based on the advance() method (though inefficient).

The significance of the improved TSGeneric algo-
rithm can be summarized as that we give an integrated
and flexible solution:

• Integrated: we can deal with all-indexed datasets
or partly-indexed datasets (To the best of our
knowledge, no existing algorithm can achieve
this).

• Flexible: our generic join framework can be used
with any (or almost all existing) index for region
coded XML datasets (B+-tree, R-tree, XB-tree
and XR-tree).

4 The TSGeneric
+ algorithm

Although TSGeneric is able to skip some elements
without matches through the generic cursor interface,
the potential of skipping elements is in fact not fully
exploited. In this section, we explore the advantage of
skipping elements through the generic cursor interface
with various heuristics.

Exploiting more benefit of skipping elements with-
out matches relies heavily on a cursor-based structural
join algorithm, namely, SJCursor, which is evaluated
over edges of the query tree. The SJCursor algorithm
(evaluated over an edge of the query tree) finds the
first ancestor-descendant pair starting from the cur-
rent cursors of the two nodes connected by the edge.
Algorithm 4 shows the SJCursor algorithm. An edge
(p, c) is defined as “broken” if elements Cp and Cc

do not have an ancestor-descendant relationship (see,
function isBroken). SJCursor works as follows. If
the edge is not broken, or either Cp or Cc reaches the
end, it returns. Otherwise, if Cp→start is smaller than
Cc→start, we call Cp→fwdToAncestorOf(Cc) to move
Cp to the first ancestor element of Cc (or beyond Cc

if no such ancestor exists); otherwise, we forward Cc

to the first element whose start value is larger than
Cp→start, with Cc→fwdBeyond(Cp), because a de-
scendant element must have its start value larger than
that of its ancestor element.

Algorithm 4 SJCursor (p, c)

1: while (not end(Cp)) and (not end(Cc))
and isBroken(p, c) do

2: if Cp→start < Cc→start then

3: Cp→fwdToAncestorOf(Cc);
4: else

5: Cc→fwdBeyond(Cp);
6: end while

Function isBroken(p, c)

1: return not (Cp→start < Cc→start and Cc→start <

Cp→end);

Example 3 Consider again the sample query in Fig-
ure 3. Suppose the current cursors are (a1, b1, c1). To
find the first match for the query //a//b//c, which



is (a7, b4, c9), a better evaluation strategy would be to
first find the matching pair (a7, b4) between node a
and node b by calling SJCursor(a,b), and then call
SJCursor(b,c) to find the matching pair (b4, c9). It
is easy to verify that SJCursor(a,b) only needs to ac-
cess five elements, i.e. a1, b1, a5, b4 and a7, while
SJCursor(b,c) only accesses elements c1 and c9. As
a result, with this evaluation strategy, only 7 elements
need to be processed, which is significantly better than
the TSGeneric algorithm.

The challenge of such unordered evaluation as
shown in Example 3 is that it might violate the cor-
rectness of the TSGeneric algorithm, because we may
erroneously skip elements that do have matches. The
following lemma is important to identify when such
unordered evaluation is possible.

Lemma 1 Suppose a call of getNextCursor(root) re-
turns a query node q. If the stack Sqa

of any ancestor
node qa of node q is empty, then the current extension
of node q does not contribute to any further results and
element Cq can be discarded.

Proof There are two cases. The first case is that the
ancestor node qa (whose stack is empty) is the parent
of node q. Since q 6= root(otherwise, it could not have
any ancestor), according to the criterion (c) of a query
node returned by getNext, the start value of Cq must
be smaller than the start value of Cqa

upon return.
Given that Sqa

is empty, it is clear that the extension
of q could not contribute to any new results. The
second case is that qa is not the parent node of q. In
other words, there exists some node q′ which is the
parent node of q (obviously, qa is also an ancestor of
q′)2. Since Sq′ is not empty, the extension of q could
possibly have an ancestor in Sq′ . We now prove that
the elements in Sq′ will eventually be popped without
contributing to any further results. The reason is that
for any element in Sq′ , all its ancestors in qa (if any)
would have already been returned by previous calls of
getNextCursor(root) and popped. �

According to Lemma 1, if the stack of some node q
is empty, then, it is useless for getNextCursor(root) to
return a node q′ that is a descendant of q in the query
tree. In other words, as long as we discover the stack of
a node q is empty in the recursive call of getNextCur-
sor, there is no need to further call getNextCursor for
q’s children. Rather, we should try to locate a solu-
tion extension for node q. Based on this, we improve
getNextCursor by incorporating an extension-locating
procedure, as shown in Algorithm 5. We name it as
getNextExt. Lines 3-5 are newly added codes to get-
NextCursor: if the stack of node q is empty, the pro-
cedure LocateExtension (Algorithm 6) is called, which

2Note that, according to algorithm TSGeneric, it is possible
to have a node qx whose stack is not empty while the stack of
some ancestor node of qx is empty because we do not pop stacks
downward.

finds the first solution extension of node q, and then
we simply return q. We call the TSGeneric algorithm
TSGeneric+ if it calls getNextExt(root), other than
getNextCursor(root).

Algorithm 5 getNextExt (q)

1: if isLeaf(q) then

2: return q;
3: if empty(Sq) then

4: LocateExtension (q);
5: return q;
6: for qi in children(q) do

7: ni = getNextExt (qi);
8: if ni 6= qi then

9: return ni;
10: end for

11: nmin = minargni
{Cni

→start};
12: nmax = maxargni

{Cni
→start};

13: if Cq→fwdToAncestorOf(Cnmax
) == TRUE then

14: if Cq is an ancestor of Cnmin
then

15: return q;
16: return nmin;

Algorithm 6 LocateExtension (q)

1: while (not end(q)) and (not hasExtension(q)) do

2: (p, c) = PickBrokenEdge (q); {see section 4.1}
3: SJCursor (p, c);
4: end while

Function hasExtension(q)

1: for each edge (p, c) in the sub query tree q do

2: if isBroken(p, c) then

3: return FALSE;
4: end for

5: return TRUE;

Consider the LocateExtension algorithm. It runs in
a “pick-and-fix” fashion. Each time, it picks a broken
edge (discussed in section 4.1) and fixes it with SJCur-
sor, until node q has a solution extension or any cursor
in the subtree reaches the end. Note that the overhead
to check for broken edges in function hasExtension is
minimal because all the operations are carried out on
the cursor elements of the query nodes and only neg-
ligible CPU cost is involved.

It is obvious that algorithm TSGeneric+, i.e. TS-
Generic calling LocateExtension, works correctly and
we have the following theorem (proof omitted in the
interest of space):

Theorem 1 Given a query twig pattern Q and an
XML database D, the TSGeneric+ algorithm correctly
returns all answers for Q on D.

4.1 Heuristics for picking an edge

Picking the next query edge to fix is essentially a query
optimization problem. The optimization problem of
join order selection has been extensively studied in the



context of relational databases [12, 11, 16]. Due to the
subtle difference in problem contexts, such previous
work is not directly applicable to holistic twig joins
considered here. In this subsection, we present some
edge-picking heuristics.

Intuitively, we should choose an edge whose next
match is the farthest from the current cursors of its
two nodes, so that we can skip the most number of
elements (without matches) when fixing other query
edges. This has been illustrated in Example 3. We
denote this heuristic as MD, reading “maximum dis-
tance”.

The MD heuristic can leverage the work on struc-
tural join size estimation [18, 17]. We now give the for-
mula for estimating the average inter-match distance
for a query edge (p, c), whose two nodes are associated
with element sets p and c respectively. Assume that
we have statistics about the total number of elements
in each set, i.e. Np and Nc, the width of the workspace
for all regions in each element set, i.e. Wp and Wc. If
we can estimate the percentage sp% of p elements and
the percentage sc% of c elements that have at least
one match in the structural join between p and c (e.g.,
using histograms or sampling techniques proposed in
[17]), then, the average distance between each match
can be approximated as (assuming a uniform distribu-
tion):

AvgDistp/c = min(
Wp

Np · sp%
,

Wc

Nc · sc%
)

Note that the two distance values estimated from
set p and set c should be similar if elements in both
sets are rarely nested. But the estimates might be
different for highly nested datasets. We choose the
smaller one.

Statistics might not always be available in realis-
tic applications. We propose other two heuristics that
work without assuming any knowledge about the ele-
ment sets: top-down (TD) and bottom-up (BU).

Algorithm 7 shows the complete PickBrokenEdge
algorithm. First, we retrieve all the broken edges in q
using a breadth first traversal order. The total number
of broken edges is assumed to be K (which is subject
to change in different calls of PickBrokenEdge). Then,
an edge is picked from the K broken edges according to
the heuristic specified by variable heuristic. Ties are
broken arbitrarily in heuristic MD. By the top-down
heuristic, we always choose the first broken edge. The
deepest, right-most edge is chosen in the bottom-up
heuristic.

4.2 Cost analysis of TSGeneric
+

Although utilizing indices of various kinds built on el-
ement sets is expected to speed up the efficiency of
the cursor interface to different extent, it is not clear
whether the same optimal worst-case I/O and CPU

Algorithm 7 PickBrokenEdge (q)

1: Let Edges[1...K] be the vector containing all K broken
edges in q in breadth first order;

2: if heuristic == MD then

3: (ps, cs) = maxarg(pi,ci)
AvgDistpi/ci

4: else if heuristic == TD then

5: (ps, cs) = Edges[1];
6: else

7: (ps, cs) = Edges[K];
8: return (ps, cs);

cost can be achieved when indices are used, compared
to the TwigStack algorithm [3]. In this section, we
address this problem.

Though, the effectiveness of different index struc-
tures varies, the worst-case I/O and CPU cost for
accessing elements through cursor interfaces built on
them can be shown to be linear to the size of the el-
ements indexed. The intuition is that each method
of the cursor interface always drivers the cursor for-
ward. To put it differently, the cursor never goes back.
Therefore, it can be concluded that TSGeneric+ that
utilizes indices through cursor interfaces is as efficient
as TwigStack in terms of worst-case I/O and CPU cost.

We focus ourselves on XR-tree as an example to
show how a cursor interface based on indices can be
implemented to achieve linear worst case I/O and CPU
cost. The cursor interface implementation for other
existing index structures should be similar. In the fol-
lowing, we first briefly introduce the structure of the
XR-tree index, and then describe the details of cursor
interface implementation based on XR-tree.

4.2.1 The XR-tree index

The XR-tree is an index structure recently proposed
in [8] for indexing XML data based on the region en-
coding, i.e. (start, end, level). An XR-tree is basically
a B+-tree (built on the start field of all indexed ele-
ments) augmented with stab lists and bookkeeping in-
formation in internal nodes. An element e is included
in the stab list of an index page I if: (1) there exists
some key ki in I such that e.start ≤ ki ≤ e.end (or
ki stabs the region of element e); and (2) no ancestor
page of I has a key that stabs e, i.e. I is the highest
index page that stabs e. Figure 4 shows the XR-tree
for the set of c elements in the example document in
Figure 1. Note that element (20, 35, 1) and (49, 67, 2)
are stabbed by index pages so that they are included
in stab lists and also marked with “yes” in leaf pages.

Given an element e, searching for all its descendants
in an element set R indexed by an XR-tree is as simple
as a B+-tree range search, i.e. e.start < R.start <
e.end. The novelty of XR-tree is that all the ancestors
of e can be collected from the stab lists of index pages
and the leaf page when we navigate down the XR-tree
using e.start (similar to a B+-tree equality search).
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Figure 4: The XR-tree for c elements in Figure 1

4.2.2 Implementation of the cursor interface

In our implementation, we keep in buffer the pages
from root to leaf containing the cursor, denoted as hot
path. For example, if the cursor is at element (23, 24, 3)
(Figure 4), then the hot path is I0 → I1 → L1. Be-
sides, we also keep the index entries followed to form
the hot path. The current entry for page I0 is −1 (the
left-most entry), the entry for I1 is 0 and the entry for
L1 is 1. The entry information is useful to establish
the linear CPU cost for index accesses.

To implement the Cq→advance() method, if Cq

is not the last element of the current leaf page, we
simply points it to the next element without changing
the hot path. Otherwise, we free the current leaf page
and fetch in the next leaf page through the parent
index page. If there is no more entry in the parent
index page, we fetch in another index page through
its parent similarly. For example, if the cursor is at
(9, 15, 2), to advance it, we simply move to the next
element (10, 13, 3). To advance again, we need to free
L0 and fetch in L1. Note that the entry information
of I1 is also incremented. If the cursor is at (23, 24, 3),
we need to replace I1 with I2.

Cq→fwdBeyond(Cp) is as simple as a B+-tree
search. Starting from the current index entry of
the root, sequentially scan the entries until the
largest entry ki, such that ki ≤ Cp→start is found.
ki.rightChild is the child page to be searched. If
ki.rightChild is different from the buffered page at
the lower level, fetch in ki.rightChild and replace the
old page. The search keeps going on until we reach a
leaf page. Then we set the cursor to the first element
whose start is larger than Cp→start.

Consider the Cq→fwdToAncestorOf(Cp) method.
It is obvious that we do not need to touch any leaf
pages or index pages (including their stab lists) that
are before the hot path because what we want is the
ancestor ea of Cp, such that ea.start ≥ Cq→start. If a
qualified ancestor is found in some leaf page, the path
from root to this leaf page would be the new hot path.
If a qualified ancestor is found in some stab list of an
index page, then the new hot path must include this
newly accessed index page.

Theorem 2 In the TSGeneric+ algorithm, the worst
case I/O and CPU cost for accessing an element set R

through the cursor interface implemented on the XR-
tree of set R is linear to the size of R.

4.3 Twig joins with parent-child edges

Algorithm TSGeneric+ can still be used to evaluate
twig patterns with parent-child edges. The difference
is that when we output a root-to-leaf path solution,
we check the parent-child relationship using the level
attribute of elements for parent-child edges. But the
optimality in terms of worst case I/O and CPU cost
is no longer guaranteed. In particular, the algorithm
might produce path solutions that do not contribute
to any final match.

We use an example to illustrate the point. Con-
sider a twig pattern //a[b]//c to be evaluated again
the sample dataset in Figure 3. In the TSGeneric+

algorithm, the first call of getNextExt(root) will re-
turn node a with cursors at (a7, b4, c9) (Recall that
LocateExtension is called for root node a since Sa is
empty initially). Then a7 is pushed onto stack (line
7 in Algorithm 1). The next call of getNextExt(root)
returns b4. Since b4 does not qualify the parent-child
relationship with a7, the path (a7, b4) is not output.
The third call of getNextExt(root) returns c9, and the
path (a7, c9) is output (line 10 in Algorithm 1). Sim-
ilarly, the paths for c10 and c11 will both be output.
But the twig pattern actually has zero result. The
problem here is that we “wrongly” put a7 onto stack,
which does not have a qualifying b child element at all!
(Recall that we only knew that a7 has a descendant b4

when we pushed it) Then, is it possible to efficiently
check the existence of one b child before pushing a7?
The answer is, such a checking might be very costly
because the first child of an element could be far away
from its first descendant element.

The recent work by Choi et al [5] also provided some
insight into the cause of the suboptimality in evalu-
ating twig patterns with arbitrarily mixed ancestor-
descendant and parent-child edges.

5 A performance study

In this section, we present the experiments conducted
to evaluate the effectiveness of various algorithms and
heuristics proposed in the paper and report some of
the results obtained.

5.1 Experimental setup

As Table 1 shows, with different combinations of
choices in the dimensions of index and algorithm,
we have many algorithms for twig joins. Here, we
will focus on three kinds of algorithms, namely the
TwigStack , TwigStackXB and XRTwig algorithms.
The first two algorithms were chosen as they were the
best twig join algorithms prior to this paper. We also
implemented TSGeneric+ with other kinds of indices,
however, TSGeneric+ with the XR-tree index, i.e.,



XRTwig , usually performs best. We have also imple-
mented the three variants of XRTwig based on differ-
ent edge-picking heuristics (top-down, bottom-up and
maximum-distance), resulting in the XRTwig(TD),
XRTwig(BU) and XRTwig(MD) algorithms respec-
tively. We will later compare those algorithms from
several perspectives.

Table 1: Diagrammatic view of algorithms
P

P
P

P
P

P
P

Index
Algo

TSGeneric TSGeneric+

No Index TwigStack

XB-tree TwigStackXB

XR-tree XRTwig

B+-tree

R-tree

We evaluated the performance of those join algo-
rithms using the following three metrics:

• number of elements scanned. We measure the
total number of elements scanned during a join,
which reflects the ability of each algorithm to skip
elements that do not belong to the final result.

• number of page accesses. This metrics measures
the performance of algorithms in terms of I/O
cost.

• running time. The running time of an algorithm is
obtained by averaging the running times of several
consecutive runs with hot buffers.

In this paper, we mainly report our results that
demonstrate the performance of algorithms for data
with different characteristics. We fixed a set of queries
and executed those queries on different datasets, de-
signed with different kinds of selectivity. Intuitively, a
high selectivity (i.e., few matches) tends to favor algo-
rithms utilizing indices.

Three query patterns were selected to represent dif-
ferent classes of twig patterns. They include a sim-
ple path query (Q1), a deep twig (Q2) and a bushy
twig (Q3) as shown in Figure 5. All edges in the
queries are ancestor-descendant relationships because
all these algorithms deal with parent-child edges much
the same way as ancestor-descendant edges, though,
without guarantee of optimality.

We chose to generate synthetic datasets so that we
can better control the relationship between the algo-
rithms and the characteristics of the datasets. We gen-
erated 8 datasets for Q1, 10 for Q2 and 10 for Q3.
There are two types of datasets: with varying selectiv-
ities and with the same selectivity. For example, we
generated 4 datasets DSi, 1 ≤ i ≤ 4, for Q1 in which
the selectivities of different edges are different. For
DS1, the selectivity of the A−B edge is 1% while the
selectivity of the B−C edge is 10%. We used a “round-
robin” fashion method to generate other datasets by
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Figure 5: Three query patterns used

cyclically assigning the selectivity of the current edge
to the next edge. For datasets of fixed selectivity, we
simply assigned the same selectivity to all the edges.
For example, all the edges of Q1 on dataset DS5 have
the same selectivity, i.e. 1%.

Table 2 gives the description of datasets with vary-
ing selectivities for Q1. We also generated 4 datasets,
DS5 to DS8, with fixed edge selectivity values of 1%,
10%, 50% and 100% respectively.

Table 2: Selectivity of edges in Q1 for DS1 to DS4

datasets A / B B / C C / D D / E

DS1 1% 10% 50% 100%
DS2 10% 50% 100% 1%
DS3 50% 100% 1% 10%
DS4 100% 1% 10% 50%

Since Q2 has six edges in the pattern, we used six
different join selectivity values to generate six “selec-
tivity round-robin” datasets, as shown in Table 3. Sim-
ilarly as for Q1, four other datasets DS7 to DS10 were
generated to test the case when all edges in Q2 have
the same selectivity, i.e. 1%, 10%, 50% and 100% re-
spectively. The 10 datasets for Q3 were similarly gen-
erated and the description is omitted in the interest of
space.

Table 3: Selectivity of edges in Q2 for DS1 to DS6

DS A / B A / E B / C E / F C / D F / G

DS1 1% 10% 25% 50% 75% 100%
DS2 10% 25% 50% 75% 100% 1%
DS3 25% 50% 75% 100% 1% 10%
DS4 50% 75% 100% 1% 10% 25%
DS5 75% 100% 1% 10% 25% 50%
DS6 100% 1% 10% 25% 50% 75%

Each element set generated contains 250K elements.
As a result, each dataset for Q1 involves more than one
million elements while each dataset for Q2 and Q3 has
near two million elements. Elements can be self-nested
up to five levels. The join result size for each dataset
varied according to the selectivity of edges. Take Q1
as an example. The numbers of path solutions for
DS1 to DS4 are 29K, 36K, 38K and 35K respectively.
There is no output solution when all edges are very
selective (1% for DS5) while there are more than 70
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Figure 6: Experimental results for query Q1

million path solutions when the selectivity of edges is
very low (100% for DS8).

Our test-bed is an experimental database system
that includes a storage manager, a buffer pool manger,
B+-tree, XB-tree and XR-tree index modules. All the
algorithms were coded using Microsoft Visual C++
6.0. All the experiments were conducted on a Pentium
IV 1.60GHz PC with 512M RAM and a 30G hard disk,
running Windows XP. The page size used is 4K and
we used the file system as the storage. All the exper-
imental results presented below were obtained with a
fixed buffer pool size: 500 pages, just large enough to
cache the hot paths.

Figure 6 shows all the results on Q1 for the five dif-
ferent algorithms/heuristics and 8 datasets. Figure 7
and 8 give the numbers of elements scanned and num-
bers of page accesses on Q2 and Q3 respectively (we
ignore the results for TwigStack because it performed
almost always worse than TwigStackXB as can be seen
from Figure 6).

5.2 Effects of using indices

[3] reported experiment results of TwigStack and
TwigStackXB . Our results coincide with theirs.
Specifically, both the number of elements scanned and
the number of page accesses for TwigStackXB are sig-
nificantly smaller than those for TwigStack in most
cases. For example, TwigStack scanned about 2 times
as many elements as TwigStackXB for DS2 on Q1 (See
Figure 6(a)). This is simply because TwigStack always
scans almost all the elements while TwigStackXB can
identify and skip unmatched elements. On the other
hand, under the extreme case where there is hardly any

element that can be skipped, for example, the DS8 on
Q1, TwigStack performs the best, scanning the least
number of elements and incurring the least amount of
I/O. TwigStackXB will have some overhead due to the
access to the internal pages of the index, although such
overhead is negligible.

It is interesting to compare their performance, for
example, in terms of the number of elements scanned,
of DS1 on Q1. For this dataset, the selectivity of edges
changes from 1% to 100% from top to bottom. As a
result, there is not much opportunity for TwigStackXB
to skip elements through the fwdToAncestorOf oper-
ation (line 10 in Algorithm 3) because the operation
is very frequently called due to the low selectivity of
lower edges. On the contrary, for DS2 for which the
lowest edge has selectivity 1%, the matches between
D and E are rare, therefore, there is high potential for
skipping elements in upper query nodes.

We conclude that twig join algorithms can enhance
their performance consistently with the help of indices
in most cases, without incurring noticeable overhead
even for the worst case scenario.

5.3 TSGeneric
+ vs. TSGeneric

Now we compare the performance of all the algorithms
based on TSGeneric+ with the algorithm based on
TSGeneric (i.e., TwigStackXB). Both classes of algo-
rithms can make use of indices to skip some unmatched
elements.

It can be observed that, for example, from ex-
periment results on Q1 (Figure 6), TSGeneric+

based algorithms are usually much more efficient than
TwigStackXB . For Q1 in terms of running time,
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Figure 7: Experimental results for query Q2

TSGeneric+ based algorithms could be up to 10 times
faster than TwigStackXB . Similar trends can be ob-
served in other examples and in terms of other met-
rics as well. For example, we find that the advantage
of TSGeneric+ based algorithms over TwigStackXB is
even greater for most datasets on Q2 and Q3. In par-
ticular, for DS1 in terms of the number of elements
scanned (see, Figure 7(a) and 8(a)), TSGeneric+ only
scanned less than 1/7 of the total elements scanned
by TwigStackXB . Meanwhile, in terms of the number
of page accesses, TwigStackXB performed much worse
than TSGeneric+, even for datasets with low selectiv-
ity DS7 to DS10 (see, Figure 7(b) and 8(b)), though
it showed similar performance with TSGeneric+ for
those fixed selectivity datasets on Q1.

The performance advantage of TSGeneric+ over
TSGeneric mainly attributes to the fact that with
a “pick-and-fix” strategy for locating solution exten-
sions, TSGeneric+ stands more chances of taking the
advantage of edges with high selectivity to skip ele-
ments. Furthermore, for twig pattern queries, the cur-
sor advances in one branch help more in TSGeneric+

than in TSGeneric to skip elements in another branch
due to the unordered evaluation of edges in the exten-
sion location procedure of TSGeneric+.

Generally speaking, TSGeneric+ has stronger capa-
bility to identify and skip unmatched elements, espe-
cially when the twig pattern is complex.
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Figure 8: Experimental results for query Q3

5.4 Comparison of heuristics

In this subsection, we study the three proposed heuris-
tics for edge-picking. To that end, we also summarize,
in Figure 9, the numbers of page accesses for all the
queries with varying edge selectivities on Q1, Q2 and
Q3.
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Figure 9: #Page accesses under different edge-picking
heuristics (thousand)

We can draw several interesting observations from
Figure 6 to Figure 9:

• It is quite surprising that the difference be-
tween the three edge-picking heuristics of the
TSGeneric+ algorithm is not significant, in terms



of the number of elements scanned (see, Fig-
ure 6(a), 6(b), 7(a) and 8(a)). This is mainly
due to the fact that although MD always picks
the most selective edge (with accurate estimates)
to fix, other heuristics somehow also have the op-
portunity to select such an edge (after other high
priority edges have been fixed).

• Despite their similar numbers of elements
scanned, the three heuristics show various
I/O performance (Figure 9). In particu-
lar, XRTwig(MD) has the best overall I/O
performance, which indicates that, although
XRTwig(MD) did not scan much less elements
than algorithms based on the other heuristics, it
managed to cluster those element scans better.
For example, XRTwig(BU) for DS4 on Q3 (X =
14 in Figure 9) performed 1.6 times as much I/O
as XRTwig(MD).

• The relative performance of XRTwig(TD) and
XRTwig(BU) varies with the different formation
of selectivities on the twig edges. Generally speak-
ing, better I/O performance can be observed
when the more selective edges have higher pri-
ority in terms of edge-picking heuristics. For
example, XRTwig(TD) performed better than
XRTwig(BU) for DS1 and DS4 on Q1, while
XRTwig(BU) is better than XRTwig(TD) for DS2

and DS3 on Q1.

In summary, MD algorithm always performs the
best as long as accurate statistics are available.

6 Conclusions

In this paper, we addressed the problem of effi-
cient evaluation of holistic twig joins on all/partly in-
dexed XML documents. In particular, we proposed
TSGeneric+ with three different evaluation heuristics,
namely, top-down, bottom-up and statistics-based.
Experimental results indicated that the TSGeneric+

algorithm on XR-tree indexed datasets performs sig-
nificantly better than the existing ones by much more
effectively skipping elements that do not contribute to
final results, especially when binary structural joins
in the twig pattern have varying selectivities. Among
the three heuristics we considered, the statistics-based
heuristic is most robust, given that the statistics used
are accurate. As such, existing work on join selectivity
estimation for XML data can be leveraged.

Regarding our future work, we will investigate new
heuristics for the edge picking process in TSGeneric+,
which may require more sophisticated estimation tech-
niques for XML data. Another future work is to con-
sider more complex queries, like a query pattern con-
sisting of multiple twig patterns.
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