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Abstract 
 

In many applications it is desirable to monitor a 
streaming time series for predefined patterns. In 
domains as diverse as the monitoring of space telemetry, 
patient intensive care data, and insect populations, 
where data streams at a high rate and the number of 
predefined patterns is large, it may be impossible for the 
comparison algorithm to keep up. We propose a novel 
technique that exploits the commonality among the 
predefined patterns to allow monitoring at higher 
bandwidths, while maintaining a guarantee of no false 
dismissals. Our approach is based on the widely used 
envelope-based lower bounding technique.  Extensive 
experiments demonstrate that our approach achieves 
tremendous improvements in performance in the offline 
case, and significant improvements in the fastest 
possible arrival rate of the data stream that can be 
processed with guaranteed no false dismissal. 
 

1. Introduction 
In many applications it is desirable to monitor a 

streaming time series for a set of predefined patterns. 
Note that this problem is very different to the classic (and 
much studied) time series indexing problem [7][10]. It is 
however a very close analogue to the problem of Query 
Filtering for discrete valued data (e.g. XML) [3]. As 
noted in [3], “filtering is the inverse problem of querying 
a database: In a traditional database system, a large set 
of data is stored persistently. Queries, coming one at a 
time, search the data for results. In a filtering system, a 
large set of queries is persistently stored. (new data), 
coming one at a time, drive the matching of the queries.” 
While the need for filtering is well established in discrete 
domains (XML, Bioinformatics etc), to the best of our 
knowledge it has not been addressed for time series 
before. We will therefore take the time to motivate the 
need for time series filtering in several domains. 

Electrocardiogram Monitoring: Cardiologists often 
encounter new interesting ECG patterns. These patterns 
may be unannotated or explicitly/implicitly annotated 
(eg. a pattern shows up older patients that were given the 
drug Terbutaline [1], or a pattern shows up when the 
Holter electrodes have gotten wet). In either case, once 
seeing an interesting pattern, a cardiologist will attempt to 
remember it so that future encounters with similar 
patterns can benefit from his experience. In our 
framework, all new interesting patterns are simply saved 
in the cardiologists “profile” and any future occurrences 
of similar patterns will be automatically flagged.  
Audio Sensor Monitoring:  The damage done by 
agricultural insect pests costs more than US$300 billion 
annually [6]. The best way known to mitigate this cost is 
to monitor insect populations and target harmful species 
before they can become a major problem. Technological 
advances and falling prices of hardware have created an 
explosion of interest in continuous, real-time monitoring 
of critical pest data by automated (“smart”) traps in recent 
years [12]. While it has been shown in the lab that insects 
can be identified (species and sex) from audio of their 
wing beats [11], these successes are hard to reproduce in 
the field because field stations typically have low 
powered CPUs and the greater variety of possible insects 
(i.e patterns) encountered. 

As shown above, time series filtering is applied in 
diverse domains. With continuously arriving data and 
large number of patterns, it may be impossible for the 
comparison algorithms to keep up. However, in real 
world, there is likely to be significant commonality 
among the predefined patterns. Based on this (empirically 
validated) assumption, we propose a hierarchical wedge-
based comparison approach, which merges large number 
of patterns into a small set of wedges (with similar 
patterns being merged together) and then compares this 
set of wedges against the subsequence in the coming data 
stream. The experimental results show that our approach 
provides tremendous improvements in performance. 



1.1 Related Work 
To the best of our knowledge, this problem has not 

been addressed in the literature before. The most similar 
work is by Gao and Wang [4] , where the authors 
consider the problem of continuously finding the nearest 
neighbor to a streaming time series. They assume that the 
database of predefined patterns is in secondary memory. 
Thus the problem in question is disk-bound. In contrast, 
our problem is CPU-bound. We can easily fit our 
relatively small database of predefined patterns in main 
memory (indeed, in the insect monitoring problem, there 
is no secondary storage on the sensors). Furthermore, in 
Gao and Wang’s problem definition, there is always 
some nearest neighbor to any streaming query. In 
contrast, we are only interested in finding when a 
streaming query is within r of anything in our database 
and we generally expect this to very rarely be the case. 

The problem is very similar to the widely studied 
dictionary matching problem with errors and don't cares 
[2]. This problem is defined in [2] as “preprocess(ing) a 
text or collection of strings, so that given a query string p, 
all matches of p with the text can be reported quickly”. 
The crucial difference is that this problem deals with 
discrete data, and researchers are therefore able to tackle 
it with an arsenal of tools that are defined only for 
discrete data, such as suffix trees and lexicographic 
sorting.  

The rest of the paper is organized as follows. In 
Section 2 we review background material. We introduce 
our algorithms and representations in Section 3. Section 4 
sees a comprehensive empirical evaluation and we offer 
some conclusions in Section 5.  

2. Background Material 
In this section, we review some background 

material. We begin with a definition of our data type of 
interest, time series.  

Definition 1. Time Series: A time series T = t1,…,tm 
is an ordered set of m real-valued variables. 

We are typically not interested in the global 
properties of a time series; rather, data miners confine 
their interests to subsequences of the time series.   

Definition 2. Subsequence: Given a time series T of 
length m, a subsequence Cp of T is a sampling of 
length w < m contiguous positions from T, that is, C 
= tp,…,tp+w-1 for  1 ≤ p ≤ m – w + 1. 

In this work, we extract all the subsequences from a 
time series and compare them to the target time series. 
The extraction is achieved by use of a sliding window. 

Definition 3. Sliding Window: Given a time series T 
of length m, and a user-defined subsequence of 
length w, all possible subsequences can be extracted 
by “sliding a window” across T and extracting 
subsequence Cp.  

Definition 4. Euclidean Distance: Given two time 
series (or time series subsequences) both of length n, 
the Euclidean Distance between them is the square 
root of the sum of the squared differences between 
each pair of corresponding data points:  
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2, , as shown in Figure 1. 
 

Figure 1: Illustration of Euclidean distance 
If we are comparing two time series, in an attempt 

to discover if they are within a given distance r from 
each other, we can potentially speed up the calculation 
by doing early abandoning. 

Definition 5. Early Abandon: During the 
computation of the Euclidean distance, if we note 
that the current sum of the squared differences 
between each pair of corresponding data points 
exceeds r2, we can stop the calculation, secure in the 
knowledge that the exact Euclidean distance had we 
calculated it, would exceed r.  

 

Figure 2:  Illustration of early abandoning 
While the idea of early abandoning is fairly obvious 

and intuitive [7], it is so critical to our work we illustrate 
it in Figure 2 and provide pseudocode in Table 1. We 
call the distance computation of each pair of 
corresponding data points a step, and we use num_steps 
to measure the utility of early abandonment. 

Table 1: Euclidean distance with early abandonment 
1
2
3
4
5
6
7
8
9

10
11
12

Function  [dist, num_steps] = Optimized_Euclidean_Dist(Q, C, r ) 

accumulator = 0 

 

For i = 1 to length(Q )                      // Loop over time series             

   accumulator += (qi -  ci)
2              // Accumulate error contribution   

   If accumulator > r 2 
                      // Can we abandon?    

       disp(‘doing an early abandon’) 

       num_steps = i 

       Return [ infinity, num_steps ]         // Terminate and return an  

   End                                                     // infinite error to signal the 

End                                                        // early abandonment. 

Return [ sqrt(accumulator), length(Q ) ] 
    // Return true dist 

0 10 20 30 40 50 60 70 80 90 100

Q

C1

0 10 20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 100

Q

C1

QQ

C1C1

0 10 20 30 40 50 60 70 80 90 100

calculation 
abandoned 
at this point

Q

C1

0 10 20 30 40 50 60 70 80 90 100

calculation 
abandoned 
at this point

Q

C1

QQ

C1C1



3. Time Series Filtering 
We are now in the position to give a formal 

statement of the problem. Assume we are given a set of 
time series C = {C1, C2,…, Ck} all of length w and a 
range r by a user. We want to either: 
• Search a long batch time series for any subsequences 

that are within r of any time series in the set C, or 
• Monitor a time series stream for any subsequences 

that are within r of any time series in the set C. 
We make two realistic assumptions: 1) for the 

streaming case we only have a small O(C) memory 
buffer; 2) once we are given C and r, we have some 
reasonable amount of time (say O(C2)) to prepare. 

We begin by defining a representation of a set of 
time series. We use the set of C1,..,Ck to form two new 
sequences U and L: 

Ui = max(C1i,..,Cki ) 
Li = min(C1i,..,Cki ) 

U and L stand for Upper and Lower respectively. We 
can see why in Figure 3. They form the smallest possible 
bounding envelope that encloses all members of the set 
C1,..,Ck from above and below. More formally: 

    ∀i     Ui ≥  C1i,..,Cki  ≥ Li       
We call the combination of U and L a wedge, and 

denote it as W = {U, L}. Now we define a lower bounding 
measure between an arbitrary query Q and the entire set of 
candidate sequences contained in a wedge W: 
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The lower bounding property is proved in [10] 
using a different notation. 
 

Figure 3: Top) Two time series C1 and C2  Middle) A 
time series wedge W, created from C1 and C2  Bottom) 
An illustration of LB_Keogh 

In the special case where W is created from a single 
candidate sequence, LB_Keogh degenerates to the 
Euclidean distance. More importantly, we can do early 
abandoning with LB_Keogh, as shown in Table 2.   

Table 2: LB_Keogh with early abandonment 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Function  [dist, num_steps] = EA_LB_Keogh(Q, W, r ) 

accumulator = 0 

 

For i = 1 to length(Q )                    // Loop over time series              

   If qi  >  W.Ui                                 // Accumulate error contribution  

        accumulator += (ci - W.Ui )
2           

   Elseif  qi  <  W.L    

        accumulator += (ci - W.Li )
2    

   End    

   If accumulator > r 2                              // Can we abandon?    

        disp(‘doing an early abandon’) 

        num_steps = i 

       Return [ infinity, num_steps ]        // Terminate and return an 

   End                                                   // infinite error to signal the 

End                                                      // early abandonment. 

Return [ sqrt(accumulator), length(Q ) ]   // Return true dist 

Suppose we have two candidate sequences C1 and 
C2 of length n, and we are given a query sequence Q and 
asked if one (or both) of the candidate sequences are 
within r of the query, we naturally wish to minimize the 
number of steps we must perform (“step” was defined in 
Section 2). We are now in a position to outline two 
possible approaches to this problem.  
• We can simply compare the two candidate sequences, 

C1 and C2 (in either order) to the query using the early 
abandon algorithm. We call this algorithm, classic. 

• We can combine the two candidate sequences into a 
wedge, and compare the query to the wedge using 
LB_Keogh. If the LB_Keogh function early abandons, 
we are done. Otherwise, we need to individually compare 
the two candidate sequences, C1 and C2 (in either order) 
to the query. We call this algorithm, wedgie. 

Let us consider the best and worst cases for each 
approach. For classic the worst case is if both candidate 
sequences are within r of the query, which will require 
2n steps. In the best case, the first point in the query 
may be radically different to the first point in either of 
the candidates, allowing immediate early abandonment 
and giving a total cost of 2 steps. For wedgie, the worst 
case is also if both candidate sequences are within r of 
the query. We will waste n steps in the lower bounding 
test between the query and the wedge, and then 1n steps 
for each individual candidate, for a total of 3n. However 
the best case, also if the first point in the query is 
radically different, would allow us to abandon with a 
total cost of 1 step.  

Which of the two approaches is better depends on: 
• The shape of the candidate sequences. If they are 

similar, this greatly favors wedgie. 
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• The shape of the query. If the query is truly similar to 
one (or both) of the candidate sequences, this would 
greatly favor classic. 

• The matching distance r. Here the effect is non 
monotonic and dependent on the two factors above. 

We generalize the notion of wedges by hierarchally 
nesting them. For example, in Figure 4 we have three 
sequences C1, C2, and C3. A wedge is built from C1 and 
C2, and we denote it as W(1,2) . Again, we can combine 
W(1,2) and W3 into a single wedge by finding maximum 
and minimum values for each ith location, from either 
wedge. More concretely: 

Ui = max(W(1,2)i, W3i )     
Li = min(W(1,2)i, W3i )  
W((1,2),3) = {U, L} 

 

Figure 4:  An example of hierarchally nested wedges 
Having the generalization to hierarchal wedges, 

now we generalize the wedgie approach. Given a query 
Q and a wedge W((1,2),3), we compare the query to the 
wedge using LB_Keogh. If it early abandons, we are 
done - none of the three candidate sequences is within r 
of the query. Otherwise, we need to recursively compare 
the two child wedges, W(1,2) and W3 to the query using 
LB_Keogh. The procedure continues until we early 
abandon or reach individual candidate sequence. 
Because our algorithm works by examining nested 
wedges until (if necessary) only atomic wedges are left, 
we call it Atomic Wedgie. 

To demonstrate the utility of Atomic Wedgie, we 
compared it to classic, using the 3 time series shown in 
Figure 4. We measured the utility by the number of steps 
needed by each approach. We found that for reasonable 
values of r, the type of data we compared it to made 
little difference: Atomic Wedgie was almost always 3 
times faster on average.  

While this result is promising, we cannot expect the 
linear speedup to hold for all possible collections of 
candidate sequences. This is because the utility of a 
wedge is strongly correlated with its area. We can get 
some intuition as to why by visually comparing 
LB_Keogh(Q, W(1,2)) with  LB_Keogh(Q, W((1,2),3)) in 
Figure 5. Note that the area of W((1,2),3) is much greater 
than that of W(1,2), and that this reduces the value 
returned by the lower bound function and thus the 
possibility to early abandon. 

 

Figure 5: Top) Illustration of LB_Keogh(Q, W(1,2)). 
Bottom) Illustration of LB_Keogh(Q, W((1,2),3)) 

At this point we can see that the efficiency of 
Atomic Wedgie is dependent on the candidate sequences 
and the data stream itself. In general, merging similar 
sequences into a hierarchal wedge is a good idea, but 
merging dissimilar sequences is a bad idea. Since the 
meaning of similar/dissimilar is relative to a data stream 
that by definition we cannot see in advance, it is difficult 
to predict if Atomic Wedgie will be useful. 

These observations motivate a further generalization 
of Atomic Wedgie. Given a set of k sequences, we can 
merge them into K hierarchal wedges, where 1 ≤ K ≤  k. 
This merging forms a partitioning of the data, with each 
sequence belonging to exactly one wedge. We use W to 
denote a set of hierarchal wedges: 

W = {Wset(1) , Wset(2) ,.., Wset(K)} ,      1 ≤ K ≤  k 
where Wset(i) is a (hierarchally nested) subset of the k 
candidate sequences. Note that we have 

Wset(i) ∩ Wset(j) = ∅  if i ≠ j,  and 
| Wset(1) ∪Wset(2) ∪..∪ Wset(K) | = k 

We can then compare this set of wedges against our 
query. Table 3 formalizes the algorithm.  

Table 3: Algorithm Atomic Wedgie 
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Function  [] = Atomic_Wedgie(Q, W,K, r ) 

S = {empty }                                   // Initialize a stack.  

For i = 1 to K                                 // Place all the wedges into the stack. 

     enqueue(Wset(i) ,S ) 

End 

 

While Not empty(S ) 

     T = dequeue(S ) 

     dist =  EA_LB_Keogh(Q,T,r )       // This is early abandon version. 

     If isfinite(dist)                                //  We did not early abandon. 

          If cardinality(T ) = 1                   // T  was an individual sequence. 

             disp(‘The sequence ’,T, ‘is ’, dist, ‘ units from the query’) 

         Else                                             // T was a wedge, find its children 

            enqueue(children(T ) ,S )     // and push them onto the stack. 

         End 

    End 

End 

As we shall see in the experiments, Atomic Wedgie 
can produce impressive speedup if we make judicious 
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choices in the set of hierarchal wedges that make up W. 
However, the number of possible ways to arrange the 
hierarchal wedges is greater than KK, and the vast majority 
of these arrangements will generally be worse than 
classic. So specifying a good arrangement of W is critical. 

Note that hierarchal clustering algorithms have very 
similar goals to an ideal wedge-producing algorithm. 
Hierarchal clustering algorithms attempt to minimize the 
distances between objects in each subtree, while a 
wedge-producing algorithm attempts to minimize the 
area of each wedge. However the area of a wedge is 
simply the maximum Euclidean distance between any 
sequences contained therein (i.e Newton-Cotes rule from 
elementary calculus). This motivates us to derive wedge 
sets based on the result of a hierarchal clustering 
algorithm. Figure 7 shows wedge sets W, of every size 
from 1 to 5, derived from the dendrogram in Figure 6. 

 

Figure 6: A dendrogram of five sequences 
 

Figure 7: Wedge sets W, of size 1 to 5, derived 
from the dendrogram in Figure 6 

Given that the clustering algorithm produces k 
wedge sets, all we need to do is to choose the best one. 
We could attempt to do this by eye, for example in 
Figure 7 it is clear that any sequence that early abandons 
on W3, will almost certainly also early abandon on both 
W2 and W5; similar remarks apply to W1 and W4. At the 

other extreme, the wedge at K = 1 is so “fat” that it is 
very likely to have poor pruning power. The set W = 
{W((2,5),3), W(1,4)} is probably the best compromise. 
However because the set of time series might be very 
large, visual inspection is not scalable. More generally, 
we choose the wedge set based on empirical tests. We 
test all k wedge sets on a sample of data that we believe 
to be representative of future data and choose the most 
efficient one. 
3.1 A Bound on Atomic Wedgie 

As it stands, Atomic Wedgie is an efficient tool for 
comparing a set of time series to a large batch dataset. 
However so far it does not make any contribution to the 
problem of streaming time series. The reason is that 
while it is efficient on average, streaming algorithms are 
limited by their worst case. The worst case is easy to see. 
Imagine that we might have chosen W with size of K = 
1, and the query Q is within r of all k candidates. This 
means that we would do EA_LB_Keogh 2k-1 times, 
without early abandoning. This is actually worse than 
classic, which only requires k complete invocations of 
EA_LB_Keogh in the worst case.  

Fortunately, we can generally derive much tighter 
bounds for the worst case of Atomic Wedgie. The 
intuition is that for realistic values of r and realistic sets 
of time series, no query Q will be within r of all 
members of the pattern set. For example, consider the 
five time series in Figure 7. Clearly any sequence Q that 
is close to C1 or C4 cannot also be close to C3, C5 or C2. 
A more formal explanation is given below. 

Given two wedges W1 = {U1, L1} and W2 = {U2, 
L2}, we define the distance between them as: 
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An example is given in Figure 8. 
 

Figure 8: Illustration of distance between wedges 
We claim that, for any two time series (one from W1 

and one from W2), the distance between them is at least 
d(W1, W2). This is easy to see. For unoverlapped portion, 
we sum up the distance between the closest edges of the 
two wedges. Recall that wedge forms the smallest 
possible bounding envelope that encloses all its 
members, which means any pair of the time series from 
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W1 and W2 cannot be closer than the closest edge pair. 
For overlapped area, we count the distance as zero. 

Now we are ready to give the upper bound of the 
cost of Atomic Wedgie. Say for the five time series 
shown in Figure 7, we start from the biggest wedge 
W(((2,5),3),(1,4)) and fail, then we need to test on wedge 
W(1,4) and W((2,5),3), respectively. If rWWd ⋅≥ 2),( )3),5,2(()4,1( , it 
is guaranteed that we would not fail both on W(1,4) and 
W((2,5),3). Without loss of generality, we can assume that 
the test fails on W(1,4), which means d(Q, W(1,4)) < r. 
According to triangle inequality,  

r
rr

WQdWWdWQd

>
−⋅>

−>

                        
2                        
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which means testing on W((2,5),3) would prune the query 
and we can safely stop that branch there. However，if 

rWWd ⋅< 2),( )3),5,2(()4,1( , we have to test on both wedges 
recursively. We illustrate the computation of the cost 
upper bound in Table 4. 

Table 4: Compute cost upper bound of Atomic Wedgie 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Function  upperBound = Compute_ub( W, r, len ) 

cost = len                                          // Current test fails 

 

If W  is atomic                                  // Contains no child wedges 

   Return cost 

Else                                                // Contains child wedges 

  [W1,W2] = Get_children(W)           // Get child wedges 

   If d(W1,W2) >= 2r                          // Could not fail on both wedges 

       Return cost + max { Compute_ub(W1, r, len) , Compute_ub(W2, r, len)} 

   Else                                               // May fail on both wedges 

      Return cost + Compute_ub(W1, r, len) + Compute_ub(W2, r, len)} 

   End 

End 

Recall that r is the threshold to define the similarity 
between subsequence and interesting patterns, so usually 
r is a relatively small value, which increases the 
possibility for two wedges having distance larger than 
2·r. As the result, the Atomic Wedgie algorithm can skip 
a lot of computations based on the proof we gave above. 
As we shall see in Section 4, with reasonable value of r, 
in the worst case Atomic Wedgie is still three to four 
times faster than the brute force approach. 
3.2 A Final Optimization  

There is one simple additional optimization that we 
can do to speed up Atomic Wedgie. Recall that in both 
Table 1 and Table 2 when we explained early 
abandoning we assumed that the distance calculation 
proceeded from left to right (cf. Figure 2). When 
comparing individual sequences we have no reason to 
suppose that left to right, right to left, or any other of the 
w! possible orders in which we accumulate the error will 
allow an earlier abandonment. However this order can 

make a huge difference. It is simply that we cannot 
know this order in advance. 

The situation is somewhat different when we are 
comparing a query to a wedge. In this case we do have 
an a priori reason to suspect that some orders are better 
than others. Consider the wedge shown in Figure 3. The 
left side of this wedge is so “fat”, that most query 
sequences will pass through this part of the wedge, thus 
contributing nothing to the accumulated error.  In 
contrast, consider the section of the wedge from 10 to 
50. Here the wedge is very thin, and there is a much 
greater chance that we can accumulate error here.  

The optimization then, is to simply modify Table 2 
such that the loop variable is sorted in ascending order 
by the value of Ui - Li (the local thickness of the wedge). 
This sorting takes O(wlog(w)) for each wedge (w is the 
length of the wedge), but it only needs to be done once. 
As we shall see, this simple optimization speeds up the 
calculations by an order of magnitude.  

4. Experimental Results 
In this section, we test our proposed approach with 

a comprehensive set of experiments. For each 
experiment, we compared Atomic Wedgie to three other 
approaches, brute force, classic, and Atomic Wedgie 
Random (AWR). Among them, brute force is the 
approach that compares each pattern to the query 
without early abandoning. AWR is similar to Atomic 
Wedgie, except that instead of using the wedge sets 
resulted from the hierarchical clustering algorithm (in 
this paper we use complete linkage clustering), we 
randomly merge time series. This modification is 
essentially a lesion study which helps us separate the 
effectiveness of Atomic Wedgie from our particular 
wedge merging strategy.  

Throughout this work we have referred to 
“reasonable values of r”. As the reader may already 
appreciate, the value of r can make a huge difference to 
the utility of our work. We want to know the 
performance of Atomic Wedgie at the values of r which 
we are likely to encounter in the real world. The two 
domain experts (cardiology and entomology) that are co-
authors of this work independently suggested the 
following policy. 

Assume that our dataset contains typical examples 
of the patterns of interest. A logical value for r would be 
the average distance from a pattern to its nearest 
neighbor. The intuition is that if the patterns seen before 
tended to be about r apart, then a future query Q that is 
actually a member of this class will probably also be 
within r of one (or more) pattern(s) of our dataset.  

Note that all datasets used in this work are freely 
available at the following URL [8]. 



4.1 ECG Dataset 
We examined one dataset from the MIT-BIH 

Arrhythmia Database [5], which contains half an hour’s 
excerpts of two-channel ambulatory ECG recordings. 
The recordings were digitized at 360 samples per second 
per channel with 11-bit resolution over a 10 mV range. 
We use signals from one channel as our batch time 
series, which has 650,000 data points in total. Our 
pattern set consists of 200 time series, each of length 40. 
According to the cardiologists’ annotation, they are 
representative patterns of left bundle branch block beat, 
right bundle branch block beat, atrial premature beat, 
and ventricular escape beat. For Atomic Wedgie and 
AWR, we tested all 200 wedge sets on first 2,000 data 
points, and chose the most efficient one to use. 

Using the policy described above, we set r to 0.5 
and illustrate the number of steps needed by each 
approach in Figure 9 (the precise numbers are recorded 
in the Appendix). The result shows that our approach is 
faster than brute force by three orders of magnitude, and 
faster than classic by two orders of magnitude. Note that 
AWR does not achieve the same speedup as Atomic 
Wedgie, suggesting that our wedge building algorithm is 
effective. We also computed the upper bound of the cost 
of Atomic Wedgie for ECG dataset, which is 2,120 steps. 
This is about 4 times faster than the brute force 
approach, which in the worst case will need to compare 
the subsequence to all patterns, resulting in 200 * 40 = 
8,000 steps. 

 

Figure 9: Speedup for ECG dataset 
4.2 Stock Dataset  

Our second experiment considered the problem of 
finding interesting patterns in a stock dataset. We tested 
on a stock time series with 2,119,415 data points.  There 
are 337 time series of length 128 in the pattern set. They 
represent three types of patterns which where annotated 
by a technical analyst, with 140 for head and shoulders, 
127 for reverse head and shoulders, and 70 for cup and 
handle. Again, for Atomic Wedgie and AWR, we tested 
all 337 wedge sets on first 2,000 data points, and used 
the most efficient one for the rest of the data.  

This time r is set to 4.3, and the number of steps 
needed by each approach is illustrated in Figure 10. The 
result again indicates impressive speedup of Atomic 

Wedgie. Atomic Wedgie is faster than brute force by two 
orders of magnitude, and faster than classic by one order 
of magnitude. For stock dataset, the cost upper bound of 
Atomic Wedgie is 18,048, which is about one third to 
that of the brute force approach (337*128 = 43,136). 

 

Figure 10: Speedup for Stock dataset 
4.3 Audio Dataset  

In this experiment, we tested a one-hour wave file 
to monitor the occurrences of some harmful mosquito 
species. The wave file, at sample rate 11,025HZ, was 
converted to a 46,143,488 data points’ time series. Here 
we used a sliding window of size 11,025 data points (1 
second’s sound) and slid it by 5,512 points (0.5 second) 
each time. Because insect detection is based on the 
frequency of wing beat, we applied Fourier 
transformation on each subsequence and then resampled 
the time series we got (note that the FFT was performed 
by specialized hardware directly on the sensor [9] and 
that the time taken for this is inconsequential compared 
to the algorithms considered here). We have 68 
candidate time series of length 101, which are obtained 
through the same procedure (FFT plus resampling) from 
three different species of harmful mosquitoes, Culex 
quinquefasciatus, Aedes aegypti, and Culiseta spp. For 
Atomic Wedgie and AWR, we used first three minutes’ 
sound to decide which wedge set to use. 

The number of steps needed by each approach is 
shown in Figure 11. Here the parameter r equals to 4.14. 
Atomic Wedgie is faster than brute force by two orders 
of magnitude. Note that here AWR is worse than classic. 
For audio dataset, the cost upper bound of Atomic 
Wedgie is 2,929, which is about one third to that of the 
brute force approach (68*101 = 6,868). 

 

Figure 11: Speedup for Audio dataset 
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4.4 Speedup by Sorting 
In Section 3.2, we described an optimization on 

Atomic Wedgie, where the distance calculation proceeds 
in the ascending order of the local thickness of the 
wedge. To demonstrate the effect of this optimization, 
we compare the wedge in Figure 3 to 64,000 random 
walk time series, and recorded the total number of steps 
required with and without sorting. The result, shown in 
Figure 12, demonstrates that the simple optimization can 
speed up the calculations by an order of magnitude. 
 

Figure 12: Speedup by sorting 

5. Conclusions  
In this paper, we introduce the problem of time 

series filtering: fast, on-the-fly subsequence matching of 
streaming time series to a set of predefined patterns. 
Given the continuously arriving data and the large 
number of patterns we wish to support, a brute force 
strategy of comparing each pattern with every time 
series subsequence does not scale well. We propose a 
novel filtering approach, which exploits commonality 
among patterns by merging similar patterns into a wedge 
such that they can be compared to the time subsequence 
together. The resulting shared processing provides 
tremendous improvements in performance.  

The approach currently chooses the wedge set 
based on the empirical test. For data changing over 
time (i.e concept drift), dynamically choosing the 
wedge set will be more useful. We leave such 
considerations for future work. 
Acknowledgments: We gratefully acknowledge Dr. 
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Appendix 
Table A: Number of steps for each algorithm 

Number of Steps 

Algorithm ECG Stock Audio 

brute force 5,199,688,000 91,417,607,168 57,485,160

classic 210,190,006 13,028,000,000 1,844,997

Atomic Wedgie 8,853,008 3,204,100,000 1,144,778

AWR 29,480,264 10,064,000,000 2,655,816
This table contains the numbers graphed in Figure 9, Figure 
10, and Figure 11. 

Table B: Number of steps w/ and w/o sorting 
 r = 0.5 r = 1 r = 2 r = 3 

Sorted 95,025 151,723 345,226 778,367

Unsorted 1,906,244 2,174,994 2,699,885 3,286,213
This table contains the numbers graphed in Figure 12. 
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